Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Phytomedicine ; 101: 154108, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35472694

ABSTRACT

BACKGROUND: Canthin-6-one (CO) is an active ingredient found in Picrasma quassioides (D.Don) Benn. (PQ) that displays various biological activities including anti-inflammatory properties. Several studies reported PQ displayed neuroprotective activities, but its effects on astrocytes have not yet been investigated. Astrocytes are crucial regulators of neuroinflammatory responses under pathological conditions in the central nervous system (CNS). Proinflammatory astrocytes can induce the blood-brain barrier (BBB) breakdown, which plays a key role in the progression of neurodegenerative disorder (ND). PURPOSE: This study aims to investigate the anti-neuroinflammatory effects of CO in LPS-induced astrocyte activation and its underlying mechanisms in protecting the blood-brain barrier (BBB) in vitro. METHODS: Mouse astrocytes (C8-D1A) were activated with lipopolysaccharide (LPS) with or without CO pretreatment. Effects of CO on astrocyte cell viability, secretions of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1ß (IL-1ß) and nitric oxide (NO) were determined. Intracellular transcriptions and translations of proinflammatory mediators, molecular signaling, [Ca2+] and the levels of reactive oxygen species (ROS) were evaluated by RT-PCR, western blotting, and flow cytometry, respectively. Astrocyte-conditioned medium (ACM) was further prepared for incubating endothelial monolayer (bEnd.3) grown on transwell. Endothelial disruptions were evaluated by transendothelial electrical resistance (TEER), FITC-dextran permeability and monocyte adhesion assays. Endothelial tight junctions (TJs) and molecular signaling pathways were evaluated by immunofluorescence staining and western blotting. RESULTS: CO attenuated LPS-induced expression of astrocytic proinflammatory mediators (TNF-α, IL-1ß, IL-6, NO) and inhibited deleterious molecular activities including inducible nitric oxide synthase (iNOS), p-NFκB and p-STAT3 in astrocytes. Incubation of ACM collected from CO-treated astrocytes significantly ameliorated endothelial disruptions, reduced expressions of endothelial cytokine receptors (IL-6R, gp130 (IL-6RB), TNFR and IL-1R), suppressed proinflammatory pathways, MAPKs (p-AKT, p-MEK, p-ERK, p-p38, p-JNK) and p-STAT3, restored endothelial stabilizing pathways (p-Rac 1) and upregulated beneficial endothelial nitric oxide synthase (eNOS). CONCLUSION: Our study demonstrates for the first time CO exhibited potent protective effects against astrocyte-mediated proinflammatory responses and associated endothelial barrier disruptions.


Subject(s)
Lipopolysaccharides , Picrasma , Animals , Astrocytes , Brain/metabolism , Carbolines , Indole Alkaloids , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Mice , Nitric Oxide Synthase Type II/metabolism , Picrasma/metabolism , Tumor Necrosis Factor-alpha/metabolism
2.
In Vivo ; 34(4): 1823-1833, 2020.
Article in English | MEDLINE | ID: mdl-32606152

ABSTRACT

BACKGROUND/AIM: Picrasma quassioides (P. quassioides) is used in traditional Asian medicine widely for the treatment of anemopyretic cold, eczema, nausea, loss of appetite, diabetes mellitus, hypertension etc. In this study we aimed to understand the effect of P. quassioides ethanol extract on SiHa cervical cancer cell apoptosis. MATERIALS AND METHODS: The P. quassioides extract-induced apoptosis was analyzed using the MTT assay, fluorescence microscopy, flow cytometry and western blotting. RESULTS: P. quassioides extract induced cellular apoptosis by increasing the accumulation of cellular and mitochondrial reactive oxygen species (ROS) levels and inhibiting ATP synthesis. Pretreatment with N-Acetylcysteine (NAC), a classic antioxidant, decreased the intracellular ROS production and inhibited apoptosis. In addition, the P38 MAPK signaling pathway is a key in the apoptosis of SiHa cells induced by the P. quassioides extract. CONCLUSION: The P. quassioides extract exerts its anti-cancer properties on SiHa cells through ROS-mitochondria axis and P38 MAPK signaling. Our data provide a new insight for P. quassioides as a therapeutic strategy for cervical cancer treatment.


Subject(s)
Picrasma , Uterine Cervical Neoplasms , Apoptosis , Female , Humans , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Picrasma/metabolism , Reactive Oxygen Species , Signal Transduction , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , p38 Mitogen-Activated Protein Kinases/genetics
3.
Bioorg Chem ; 84: 309-318, 2019 03.
Article in English | MEDLINE | ID: mdl-30530072

ABSTRACT

Seven new tirucallane-type triterpenoids (1-7), kumuquassin A-G, along with 20 known analogues (8-27) were isolated from the stems of Picrasma quassioides. The structures and the absolute configurations of new compounds were elucidated by spectroscopic data, electronic circular dichroism (ECD) spectroscopic analyses and quantum ECD calculations. Notably, kumuquassin A (1) contains a rare Δ17, 20 double bond, kumuquassin B (2) is the first example of tirucallane triterpenoid possessing a 5/3 biheterocyclic ring system at the side chain. All the compounds were screened for the cytotoxicity against two human hepatoma cell lines, HepG2 and Hep3B, and several compounds exhibited promising activity. The most potential compound 3 was selected for cell cycle analysis, which showed that 3 could cause an accumulation of HepG2 cells at subG1 peak. Annexin V-FITC/PI staining further confirmed that compound 3 caused death of hepatoma cells through apoptosis induction.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cell Proliferation/drug effects , Picrasma/chemistry , Triterpenes/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Molecular Conformation , Picrasma/metabolism , Plant Stems/chemistry , Plant Stems/metabolism , Triterpenes/isolation & purification , Triterpenes/pharmacology
4.
J Pharm Biomed Anal ; 129: 60-69, 2016 Sep 10.
Article in English | MEDLINE | ID: mdl-27399343

ABSTRACT

Picrasma quassioides (D. Don) Benn. is a traditional Chinese medicine used clinically to treat gastrointestinal disorders and as a vermifuge. 5-Hydroxy-4-methoxycanthin-6-one (CAN), a major canthinone alkaloid found in P. quassioides, has significant pharmacological activities. In the present study, a method using liquid chromatography-quadrupole time-of-flight tandem mass spectrometry together with multiple data processing techniques, including extracted ion chromatogram, multiple mass defect filter, precursor/product ion scanning and neutral loss scanning was developed to screen and characterize the phase I and II metabolites of CAN in plasma, bile, urine and feces of rats after a single oral dose of 20mg/kg. A total of 17 metabolites were tentatively or conclusively identified. Pathways for the metabolism of CAN have been proposed, and include hydroxylation, N-decarbonylation, methylation, oxidation and sequential conjugation. A previously unknown metabolically active site at the C4-C6 position and a novel N-decarbonylation-oxidation metabolic pathway for the prototypical canthinone alkaloid, CAN, were discovered. Our results provide valuable information about the in vivo metabolism of CAN that can also be used as a comprehensive guide for the biotransformation of other canthinone alkaloids.


Subject(s)
Alkaloids/analysis , Alkaloids/metabolism , Carbolines/analysis , Carbolines/metabolism , Electronic Data Processing/methods , Metabolomics/methods , Tandem Mass Spectrometry/methods , Animals , Chromatography, Liquid/methods , Male , Picrasma/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...