Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 362, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702604

ABSTRACT

BACKGROUND: There are numerous challenges associated with producing desired amounts of secondary metabolites (SMs), which are mostly unique and cannot be chemically synthesized. Many studies indicate that nanoparticles (NPs) can boost the production of SMs. Still, the precise manner in which NPs induce metabolic changes remains unidentified. This study examines the influence of eco-friendly silver NPs (AgNPs) on the chemical makeup and toxicity of Pimpinella anisum L. (anise). RESULTS: AgNPs were introduced into anise callus cultures at different concentrations (0, 1.0, 5.0, 10, and 20 mg/L). The induced oxidative stress was tracked over intervals of 7, 14, 28, and 35 days. Chemical composition evaluations were carried out on the 35th day. Within the first 14 days, plant stress was evident, though the plant adapted to the stress later on. Notably, the plant showed high tolerance at 1 mg/L and 5 mg/L concentrations despite increased toxicity levels. However, relatively high toxicity levels were identified at 10 and 20 mg/L. The AgNP-induced stress significantly impacted anise SMs, particularly affecting fatty acid content. In the 10 and 20 mg/L AgNP groups, essential metabolites, including palmitic and linoleic acid, showed a significant increase. Polyunsaturated (omega) and monounsaturated fatty acids, vital for the food and pharmaceutical industries, saw substantial growth in the 1 and 5 mg/L AgNP groups. For the first time, vanillyl alcohol and 4-Hydroxybenzoic acid were detected along with various phenolic compounds, such as t-anethole, Salicylic acid, and Thiamazole. CONCLUSION: AgNPs can function as an elicitor to efficiently generate essential SMs such as omegas and phenolic compounds in anise callus culture. This study explores the application of AgNPs as plant elicitors in anise SM production, offering invaluable insight into potential uses.


Subject(s)
Metal Nanoparticles , Pimpinella , Secondary Metabolism , Silver , Metal Nanoparticles/toxicity , Silver/toxicity , Pimpinella/metabolism , Pimpinella/drug effects , Secondary Metabolism/drug effects , Oxidative Stress/drug effects
2.
Biotechnol Lett ; 40(2): 413-418, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29185164

ABSTRACT

OBJECTIVES: To explore the potentiality of undifferentiated Pimpinella anisum L. cell cultures for the production of secondary metabolites by means of elicitation. RESULTS: Two chromone compounds were secreted to the medium of undifferentiated cultures of P. anisum: 4-methoxyfuro[3,2-g]chromen-7-one, known as bergapten, which is constitutive to anise, and 5-hydroxy-7-methoxy-2-methylchromen-4-one, the rare chromone eugenin, not yet described in P. anisum. Caffeoyl quinic acid species were also identified in the biomass. Elicitation with methyl jasmonate enhanced chromone accumulation in the medium and stimulated phenolic acid metabolism in the biomass (11 mg caffeoyl quinic acids g-1 DW cells). The application of 2,6-dimethyl-ß-cyclodextrins to cultures led to an intense accumulation of chromones, with nearly 10 mg l-1 bergapten and 150 mg l-1 eugenin being accumulated extracellularly after optimal elicitation conditions. CONCLUSIONS: The significant amounts of eugenin obtained in the anise cultures and the stability of production over long periods of time can be of interest for its biotechnological production and for future studies on biosynthesis regulation.


Subject(s)
Acetates/pharmacology , Chromones/metabolism , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Pimpinella/drug effects , Pimpinella/metabolism , beta-Cyclodextrins/pharmacology , 5-Methoxypsoralen , Cell Culture Techniques , Chromans/analysis , Chromans/metabolism , Chromones/analysis , Extracellular Space/chemistry , Extracellular Space/metabolism , Methoxsalen/analogs & derivatives , Methoxsalen/analysis , Methoxsalen/metabolism , Pimpinella/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...