Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 342
Filter
1.
Theranostics ; 14(8): 3221-3245, 2024.
Article in English | MEDLINE | ID: mdl-38855177

ABSTRACT

The availability of non-invasive drug delivery systems capable of efficiently transporting bioactive molecules across the blood-brain barrier to specific cells at the injury site in the brain is currently limited. Delivering drugs to neurons presents an even more formidable challenge due to their lower numbers and less phagocytic nature compared to other brain cells. Additionally, the diverse types of neurons, each performing specific functions, necessitate precise targeting of those implicated in the disease. Moreover, the complex synthetic design of drug delivery systems often hinders their clinical translation. The production of nanomaterials at an industrial scale with high reproducibility and purity is particularly challenging. However, overcoming this challenge is possible by designing nanomaterials through a straightforward, facile, and easily reproducible synthetic process. Methods: In this study, we have developed a third-generation 2-deoxy-glucose functionalized mixed layer dendrimer (2DG-D) utilizing biocompatible and cost-effective materials via a highly facile convergent approach, employing copper-catalyzed click chemistry. We further evaluated the systemic neuronal targeting and biodistribution of 2DG-D, and brain delivery of a neuroprotective agent pioglitazone (Pio) in a pediatric traumatic brain injury (TBI) model. Results: The 2DG-D exhibits favorable characteristics including high water solubility, biocompatibility, biological stability, nanoscale size, and a substantial number of end groups suitable for drug conjugation. Upon systemic administration in a pediatric mouse model of traumatic brain injury (TBI), the 2DG-D localizes in neurons at the injured brain site, clears rapidly from off-target locations, effectively delivers Pio, ameliorates neuroinflammation, and improves behavioral outcomes. Conclusions: The promising in vivo results coupled with a convenient synthetic approach for the construction of 2DG-D makes it a potential nanoplatform for addressing brain diseases.


Subject(s)
Dendrimers , Deoxyglucose , Drug Delivery Systems , Neurons , Animals , Dendrimers/chemistry , Neurons/drug effects , Neurons/metabolism , Drug Delivery Systems/methods , Deoxyglucose/pharmacology , Deoxyglucose/pharmacokinetics , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacology , Mice , Pioglitazone/pharmacology , Pioglitazone/administration & dosage , Pioglitazone/pharmacokinetics , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Brain/metabolism , Brain/drug effects , Brain Diseases/drug therapy , Humans , Disease Models, Animal , Tissue Distribution , Male
2.
Ulus Travma Acil Cerrahi Derg ; 30(6): 406-414, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863295

ABSTRACT

BACKGROUND: This study evaluated the use of metformin or pioglitazone in preventing or reducing the development of post-operative intra-abdominal adhesion (PIAA) by employing histopathological, immunohistochemical, and biochemical analyses in an experimental adhesion model. METHODS: Fifty Wistar-Albino rats were divided into five groups: Group I (Control), Group II (Sham Treatment), Group III (Hy-aluronic Acid), Group IV (Metformin), and Group V (Pioglitazone). Adhesions were induced in the experimental groups, except for the sham group, using the scraping method. After 10 days, rats were euthanized for evaluation. Macroscopic adhesion degrees were assessed using Nair's scoring system. Immunohistochemical and enzyme-linked immunosorbent assay (ELISA) methods were utilized to assess serum, peritoneal lavage, and intestinal tissue samples. Fructosamine, interleukin-6 (IL-6), transforming growth factor-beta (TGF-ß), and fibronectin levels were measured in serum and peritoneal lavage samples. RESULTS: The groups exhibited similar Nair scores and Type I or Type III Collagen staining scores (all, p>0.05). Pioglitazone significantly reduced serum IL-6 and TGF-ß levels compared to controls (p=0.002 and p=0.008, respectively). Both metformin and pioglitazone groups showed elevated IL-6 in peritoneal lavage relative to controls, while fibronectin levels in the lavage were lower in pioglitazone-treated rats compared to the sham group (all, p<0.005). CONCLUSION: Pioglitazone, but not metformin, demonstrated a positive biochemical impact on preventing PIAA formation in an experimental rat model, although histological impacts were not observed. Further experimental studies employing different dose/duration regimens of pioglitazone are needed to enhance our understanding of its effect on PIAA formation.


Subject(s)
Disease Models, Animal , Metformin , Pioglitazone , Rats, Wistar , Animals , Pioglitazone/pharmacology , Metformin/pharmacology , Tissue Adhesions/prevention & control , Tissue Adhesions/drug therapy , Rats , Hypoglycemic Agents/pharmacology , Male , Thiazolidinediones/pharmacology , Postoperative Complications/prevention & control
3.
Molecules ; 29(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38731628

ABSTRACT

Fluorescence lifetime imaging microscopy (FLIM) has proven to be a useful method for analyzing various aspects of material science and biology, like the supramolecular organization of (slightly) fluorescent compounds or the metabolic activity in non-labeled cells; in particular, FLIM phasor analysis (phasor-FLIM) has the potential for an intuitive representation of complex fluorescence decays and therefore of the analyzed properties. Here we present and make available tools to fully exploit this potential, in particular by coding via hue, saturation, and intensity the phasor positions and their weights both in the phasor plot and in the microscope image. We apply these tools to analyze FLIM data acquired via two-photon microscopy to visualize: (i) different phases of the drug pioglitazone (PGZ) in solutions and/or crystals, (ii) the position in the phasor plot of non-labelled poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), and (iii) the effect of PGZ or PGZ-containing NPs on the metabolism of insulinoma (INS-1 E) model cells. PGZ is recognized for its efficacy in addressing insulin resistance and hyperglycemia in type 2 diabetes mellitus, and polymeric nanoparticles offer versatile platforms for drug delivery due to their biocompatibility and controlled release kinetics. This study lays the foundation for a better understanding via phasor-FLIM of the organization and effects of drugs, in particular, PGZ, within NPs, aiming at better control of encapsulation and pharmacokinetics, and potentially at novel anti-diabetics theragnostic nanotools.


Subject(s)
Nanoparticles , Pioglitazone , Pioglitazone/pharmacology , Pioglitazone/chemistry , Nanoparticles/chemistry , Animals , Cell Line, Tumor , Humans , Microscopy, Fluorescence/methods , Rats , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry
4.
Clin Transl Sci ; 17(5): e13834, 2024 May.
Article in English | MEDLINE | ID: mdl-38771175

ABSTRACT

Pioglitazone is class of thiazolidinediones that activates peroxisome proliferator-activated receptors (PPARs) in adipocytes to improve glucose metabolism and insulin sensitivity and has been used as a treatment for type 2 diabetes. However, the underlying mechanisms of associated pioglitazone-induced effects remain unclear. Our study aimed to investigate endogenous metabolite alterations associated with pioglitazone administration in healthy male subjects using an untargeted metabolomics approach. All subjects received 30 mg of pioglitazone once daily in the assigned sequence and period. Urine samples were collected before pioglitazone administration and for 24 h after 7 days of administration. A total of 1465 compounds were detected and filtered using a coefficient of variance below 30% and 108 metabolites were significantly altered upon pioglitazone administration via multivariate statistical analysis. Fourteen significant metabolites were identified using authentic standards and public libraries. Additionally, pathway analysis revealed that metabolites from purine and beta-alanine metabolisms were significantly altered after pioglitazone administration. Further analysis of quantification of metabolites from purine metabolism, revealed that the xanthine/hypoxanthine and uric acid/xanthine ratios were significantly decreased at post-dose. Pioglitazone-dependent endogenous metabolites and metabolic ratio indicated the potential effect of pioglitazone on the activation of PPAR and fatty acid synthesis. Additional studies involving patients are required to validate these findings.


Subject(s)
Healthy Volunteers , Pioglitazone , Purines , Thiazolidinediones , Humans , Male , Pioglitazone/pharmacology , Pioglitazone/administration & dosage , Purines/administration & dosage , Purines/metabolism , Adult , Thiazolidinediones/administration & dosage , Thiazolidinediones/pharmacology , Thiazolidinediones/adverse effects , Metabolomics/methods , Young Adult , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/administration & dosage
5.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R25-R34, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38682243

ABSTRACT

Insulin insensitivity decreases exogenous glucose oxidation and metabolic clearance rate (MCR) during aerobic exercise in unacclimatized lowlanders at high altitude (HA). Whether use of an oral insulin sensitizer before acute HA exposure enhances exogenous glucose oxidation is unclear. This study investigated the impact of pioglitazone (PIO) on exogenous glucose oxidation and glucose turnover compared with placebo (PLA) during aerobic exercise at HA. With the use of a randomized crossover design, native lowlanders (n = 7 males, means ± SD, age: 23 ± 6 yr, body mass: 84 ± 11 kg) consumed 145 g (1.8 g/min) of glucose while performing 80 min of steady-state (1.43 ± 0.16 V̇o2 L/min) treadmill exercise at HA (460 mmHg; [Formula: see text] 96.6 mmHg) following short-term (5 days) use of PIO (15 mg oral dose per day) or PLA (microcrystalline cellulose pill). Substrate oxidation and glucose turnover were determined using indirect calorimetry and stable isotopes ([13C]glucose and 6,6-[2H2]glucose). Exogenous glucose oxidation was not different between PIO (0.31 ± 0.03 g/min) and PLA (0.32 ± 0.09 g/min). Total carbohydrate oxidation (PIO: 1.65 ± 0.22 g/min, PLA: 1.68 ± 0.32 g/min) or fat oxidation (PIO: 0.10 ± 0.0.08 g/min, PLA: 0.09 ± 0.07 g/min) was not different between treatments. There was no treatment effect on glucose rate of appearance (PIO: 2.46 ± 0.27, PLA: 2.43 ± 0.27 mg/kg/min), disappearance (PIO: 2.19 ± 0.17, PLA: 2.20 ± 0.22 mg/kg/min), or MCR (PIO: 1.63 ± 0.37, PLA: 1.73 ± 0.40 mL/kg/min). Results from this study indicate that PIO is not an effective intervention to enhance exogenous glucose oxidation or MCR during acute HA exposure. Lack of effect with PIO suggests that the etiology of glucose metabolism dysregulation during acute HA exposure may not result from insulin resistance in peripheral tissues.NEW & NOTEWORTHY Short-term (5 days) use of the oral insulin sensitizer pioglitazone does not alter circulating glucose or insulin responses to enhance exogenous glucose oxidation during steady-state aerobic exercise in young healthy men under simulated acute (8 h) high-altitude (460 mmHg) conditions. These results indicate that dysregulations in glucose metabolism in native lowlanders sojourning at high altitude may not be due to insulin resistance at peripheral tissue.


Subject(s)
Altitude , Cross-Over Studies , Exercise , Glucose , Hypoglycemic Agents , Oxidation-Reduction , Pioglitazone , Humans , Pioglitazone/administration & dosage , Pioglitazone/pharmacology , Male , Young Adult , Exercise/physiology , Adult , Glucose/metabolism , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/pharmacokinetics , Metabolic Clearance Rate , Blood Glucose/metabolism , Blood Glucose/drug effects , Insulin/blood , Insulin/metabolism
6.
Nano Lett ; 24(15): 4354-4361, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38563599

ABSTRACT

The recent focus of cancer therapeutics research revolves around modulating the immunosuppressive tumor microenvironment (TME) to enhance efficacy. The tumor stroma, primarily composed of cancer-associated fibroblasts (CAFs), poses significant obstacles to therapeutic penetration, influencing resistance and tumor progression. Reprogramming CAFs into an inactivated state has emerged as a promising strategy, necessitating innovative approaches. This study pioneers the design of a nanoformulation using pioglitazone, a Food and Drug Administration-approved anti-diabetic drug, to reprogram CAFs in the breast cancer TME. Glutathione (GSH)-responsive dendritic mesoporous organosilica nanoparticles loaded with pioglitazone (DMON-P) are designed for the delivery of cargo to the GSH-rich cytosol of CAFs. DMON-P facilitates pioglitazone-mediated CAF reprogramming, enhancing the penetration of doxorubicin (Dox), a therapeutic drug. Treatment with DMON-P results in the downregulation of CAF biomarkers and inhibits tumor growth through the effective delivery of Dox. This innovative approach holds promise as an alternative strategy for enhancing therapeutic outcomes in CAF-abundant tumors, particularly in breast cancer.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Nanoparticles , Humans , Female , Pioglitazone/pharmacology , Pioglitazone/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Tumor Microenvironment
7.
Eur J Med Chem ; 269: 116279, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38460271

ABSTRACT

In the current study, two series of novel thiazolidin-4-one benzenesulfonamide arylidene hybrids 9a-l and 10a-f were designed, synthesized and tested in vitro for their PPARÉ£ agonistic activity. The phenethyl thiazolidin-4-one sulphonamide 9l showed the highest PPARÉ£ activation % by 41.7%. Whereas, the 3-methoxy- and 4-methyl-4-benzyloxy thiazolidin-4-one sulphonamides 9i, and 9k revealed moderate PPARÉ£ activation % of 31.7, and 32.8%, respectively, in addition, the 3-methoxy-3-benzyloxy thiazolidin-4-one sulphonamide 10d showed PPARÉ£ activation % of 33.7% compared to pioglitazone. Compounds 9b, 9i, 9k, 9l, and 10d revealed higher selectivity to PPARÉ£ over the PPARδ, and PPARα isoforms. An immunohistochemical study was performed in HepG-2 cells to confirm the PPARÉ£ protein expression for the most active compounds. Compounds 9i, 9k, and 10d showed higher PPARÉ£ expression than that of pioglitazone. Pharmacological studies were also performed to determine the anti-diabetic activity in rats at a dose of 36 mg/kg, and it was revealed that compounds 9i and 10d improved insulin secretion as well as anti-diabetic effects. The 3-methoxy-4-benzyloxy thiazolidin-4-one sulphonamide 9i showed a better anti-diabetic activity than pioglitazone. Moreover, it showed a rise in blood insulin by 4-folds and C-peptide levels by 48.8%, as well as improved insulin sensitivity. Moreover, compound 9i improved diabetic complications as evidenced by decreasing liver serum enzymes, restoration of total protein and kidney functions. Besides, it combated oxidative stress status and exerted anti-hyperlipidemic effect. Compound 9i showed a superior activity by normalizing some parameters and amelioration of pancreatic, hepatic, and renal histopathological alterations caused by STZ-induction of diabetes. Molecular docking studies, molecular dynamic simulations, and protein ligand interaction analysis were also performed for the newly synthesized compounds to investigate their predicted binding pattern and energies in PPARÉ£ binding site.


Subject(s)
Benzenesulfonamides , Diabetes Mellitus, Type 2 , Rats , Animals , Pioglitazone/pharmacology , PPAR gamma/metabolism , Molecular Docking Simulation , Diabetes Mellitus, Type 2/metabolism , Hypoglycemic Agents/pharmacology
8.
Toxicon ; 241: 107687, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484848

ABSTRACT

The effects of safranal and pioglitazone alone and their combination on inhaled paraquat (PQ)-induced systemic oxidative stress and inflammation as well as behavioral changes were examined in rats. In this study, animals were exposed to saline (Ctrl) or PQ (PQ groups) aerosols. PQ exposed animals were treated with dexamethasone, 0.8 and 3.2 mg/kg/day safranal (Saf-L and Saf-H), 5 mg/kg/day pioglitazone (Pio), and Saf-L + Pio for 16 days during PQ exposure period. PQ group showed increased numbers of total and differential WBCs in blood and bronchoalveolar lavage fluid (BALF), increased malondialdehyde (MDA), in the serum BALF and brain reduced thiol, catalase (CAT), and superoxide dismutase (SOD) levels compared to the control group (for all, p < 0.001). The escape latency and traveled distance were enhanced, but the time spent in the target quadrant in the probe day and the latency to enter the dark room 3, 24, 48, and 72 h after receiving an electrical shock, (in the shuttle box test) were decreased in the PQ group (p < 0.05 to P < 0.001). In all treated groups, all measure values were improved compared to PQ group (p < 0.05 to p < 0.001). In combination treated group of Saf-L + Pio, most measured values were more improved than the Saf-L and Pio groups (p < 0.05 to p < 0.001). Saf and Pio improved PQ-induced changes similar to dexamethasone but the effects produced by combination treatments of Saf-L + Pio were more prominent than Pio and Saf-L alone, suggesting a potentiating effect for the combination of the two agents.


Subject(s)
Acute Lung Injury , Cyclohexenes , Paraquat , Pulmonary Edema , Terpenes , Rats , Animals , Paraquat/toxicity , Lung , Pioglitazone/pharmacology , Oxidative Stress , Inflammation/chemically induced , Inflammation/drug therapy , Dexamethasone/pharmacology , Dexamethasone/therapeutic use
9.
Pharmacol Biochem Behav ; 237: 173721, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38307465

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopment disorder that mainly arises due to abnormalities in different brain regions, resulting in behavioral deficits. Besides its diverse phenotypical features, ASD is associated with complex and varied etiology, presenting challenges in understanding its precise neuro-pathophysiology. Pioglitazone was reported to have a fundamental role in neuroprotection in various other neurological disorders. The present study aimed to investigate the therapeutic potential of pioglitazone in the prenatal valproic acid (VPA)-model of ASD in Wistar rats. Pregnant female Wistar rats received VPA on Embryonic day (E.D12.5) to induce autistic-like-behavioral and neurobiological alterations in their offspring. VPA-exposed rats presented core behavioral symptoms of ASD such as deficits in social interaction, poor spatial and learning behavior, increased anxiety, locomotory and repetitive activity, and decreased exploratory activity. Apart from these, VPA exposure also stimulated neurochemical and histopathological neurodegeneration in various brain regions. We administered three different doses of pioglitazone i.e., 2.5, 5, and 10 mg/kg in rats to assess various parameters. Of all the doses, our study highlighted that 10 mg/kg pioglitazone efficiently attenuated the autistic symptoms along with other neurochemical alterations such as oxidative stress, neuroinflammation, and apoptosis. Moreover, pioglitazone significantly attenuated the neurodegeneration by restoring the neuronal loss in the hippocampus and cerebellum. Taken together, our study suggests that pioglitazone exhibits therapeutic potential in alleviating behavioral abnormalities induced by prenatal VPA exposure in rats. However, further research is needed to fully understand and establish pioglitazone's effectiveness in treating ASD.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Prenatal Exposure Delayed Effects , Pregnancy , Rats , Female , Animals , Humans , Valproic Acid/pharmacology , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/drug therapy , Rats, Wistar , Pioglitazone/pharmacology , Autistic Disorder/chemically induced , Social Behavior , Behavior, Animal , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/drug therapy , Disease Models, Animal
10.
Cancer Chemother Pharmacol ; 93(5): 439-453, 2024 May.
Article in English | MEDLINE | ID: mdl-38270613

ABSTRACT

PURPOSE: Midostaurin, approved for treating FLT-3-mutated acute myeloid leukemia and advanced systemic mastocytosis, is metabolized by cytochrome P450 (CYP) 3A4 to two major metabolites, and may inhibit and/or induce CYP3A, CYP2B6, and CYP2C8. Two studies investigated the impact of midostaurin on CYP substrate drugs and oral contraceptives in healthy participants. METHODS: Using sentinel dosing for participants' safety, the effects of midostaurin at steady state following 25-day (Study 1) or 24-day (Study 2) dosing with 50 mg twice daily were evaluated on CYP substrates, midazolam (CYP3A4), bupropion (CYP2B6), and pioglitazone (CYP2C8) in Study 1; and monophasic oral contraceptives (containing ethinylestradiol [EES] and levonorgestrel [LVG]) in Study 2. RESULTS: In Study 1, midostaurin resulted in a 10% increase in midazolam peak plasma concentrations (Cmax), and 3-4% decrease in total exposures (AUC). Bupropion showed a 55% decrease in Cmax and 48-49% decrease in AUCs. Pioglitazone showed a 10% decrease in Cmax and 6% decrease in AUC. In Study 2, midostaurin resulted in a 26% increase in Cmax and 7-10% increase in AUC of EES; and a 19% increase in Cmax and 29-42% increase in AUC of LVG. Midostaurin 50 mg twice daily for 28 days ensured that steady-state concentrations of midostaurin and the active metabolites were achieved by the time of CYP substrate drugs or oral contraceptive dosing. No safety concerns were reported. CONCLUSION: Midostaurin neither inhibits nor induces CYP3A4 and CYP2C8, and weakly induces CYP2B6. Midostaurin at steady state has no clinically relevant PK interaction on hormonal contraceptives. All treatments were well tolerated.


Subject(s)
Bupropion , Cytochrome P-450 CYP2B6 , Cytochrome P-450 CYP2C8 , Cytochrome P-450 CYP3A , Drug Interactions , Midazolam , Staurosporine , Humans , Area Under Curve , Bupropion/pharmacokinetics , Bupropion/administration & dosage , Contraceptives, Oral/administration & dosage , Contraceptives, Oral/pharmacology , Contraceptives, Oral/pharmacokinetics , Cytochrome P-450 CYP2B6/metabolism , Cytochrome P-450 CYP2B6/genetics , Cytochrome P-450 CYP2C8/metabolism , Cytochrome P-450 CYP3A/metabolism , Drug Combinations , Ethinyl Estradiol/pharmacokinetics , Ethinyl Estradiol/administration & dosage , Ethinyl Estradiol/pharmacology , Healthy Volunteers , Levonorgestrel/pharmacokinetics , Levonorgestrel/administration & dosage , Levonorgestrel/pharmacology , Midazolam/pharmacokinetics , Midazolam/administration & dosage , Pioglitazone/pharmacology , Pioglitazone/administration & dosage , Pioglitazone/pharmacokinetics , Staurosporine/analogs & derivatives , Staurosporine/pharmacology , Staurosporine/pharmacokinetics , Staurosporine/administration & dosage , Male , Female , Adolescent , Young Adult , Adult , Middle Aged
11.
J Tradit Chin Med ; 44(1): 63-69, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38213240

ABSTRACT

OBJECTIVE: To explore the mechanism of the Chinese medicine Cigu Xiaozhi prescription (, CGXZ) in the treatment of the non-alcoholic fatty liver disease (NAFLD) by detoxification and phlegm-reducing, the effect of CGXZ prescription on ceramide-mediated lipid apoptosis in Hep G2 cells with NAFLD. METHODS: The experiment was randomly divided into 6 groups: normal control group, model group, CGXZ prescription medicated serum high, medium, and low dose groups, and pioglitazone positive control group. Using 500 µmol/L free fatty acid (FFA) mixture to induce Hep G2 cells to establish NAFLD cell model, respectively, with 2%, 4%, and 6% concentration of CGXZ prescription medicated serum intervention for 24 h. The changes in organelles and lipid droplet accumulation were observed under the electron microscope. Furthermore, TdT-mediated dUTP Nick-End Labeling method was used to assay hepatocyte apoptosis; Biochemical determination of glutamic-pyruvic transaminase, glutamic oxalacetic transaminase, triglycerides, and FFA levels in Hep G2 cells; the content of ceramide was determined by high-performance thin-layer chromatography. Finally, Western Blot and quantitative real-time polymerase chain reaction (qRT-PCR) were used to determine the protein and gene expression levels, such as inducible nitric oxide synthase (iNOS), nuclear factor κB (NF-κB), B cell lymphoma 2 (Bcl-2) and Bcl-2-associated X (Bax). RESULTS: Under the electron microscope, the cells in the model group showed moderate-to-severe steatosis, and apoptotic bodies could be seen. The model group had greater improvements in the apoptosis rate (P < 0.01), and the levels of ceramide C2 and FFA in the cytoplasm (P < 0.01) than the normal control group. The protein expressions of NF-κB, iNOS, and Bax were significantly up-regulated (P < 0.05), while the Bcl-2 had no significant change (P > 0.05). Compared with the model group, the levels of ceramide C2 and FFA (P < 0.01), the protein expressions of NF-κB, iNOS, and Bax (P < 0.05) in the CGXZ prescription treatment group and pioglitazone positive control group were significantly decreased; Only the Bcl-2 protein was significantly up-regulated in the high-dose Chinese medicine group (P < 0.05). The down-regulation of Bax mRNA expression in each Chinese medicine treatment group was significantly better than in the pioglitazone positive control group (P < 0.01). CONCLUSIONS: The CGXZ prescription, formulated with the method of detoxification and phlegm, can inhibit lipoapoptosis in the NAFLD cell model by down-regulating the levels of ceramide C2 and FFA, which may be achieved by regulating ceramide/iNOS/NF-κB signaling pathway.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Liver , NF-kappa B/genetics , NF-kappa B/metabolism , bcl-2-Associated X Protein/metabolism , Ceramides/metabolism , Ceramides/pharmacology , Ceramides/therapeutic use , Pioglitazone/metabolism , Pioglitazone/pharmacology , Pioglitazone/therapeutic use , Prescriptions
12.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 411-421, 2024 01.
Article in English | MEDLINE | ID: mdl-37458776

ABSTRACT

The decrease in tight junction proteins and their adapter proteins in the hypertensive brain is remarkable. Here, we aimed to investigate tight junction proteins and peroxisome proliferator-activated receptor (PPARγ) activation as well as inflammation factors and cell death proteins in the brainstem of hypertension models, namely spontaneously hypertensive rats (SHR) and borderline hypertensive rats (BHR). At first, SHR and BHR groups were treated with PPARγ agonist, pioglitazone. Then, occludin, claudin-1, claudin-2, claudin-12, ZO-1, and NF-κB p65 gene expression levels; pIKKß, NF-κB p65, TNF, IL-1ß, caspase-3, caspase-9 levels, and PARP-1 cleavage were evaluated. Significantly lower pIKKß, NF-κB p65, TNF, and IL-1ß levels were measured in pioglitazone-treated SHR. Results from this study confirm higher occludin (1.35-fold), claudin-2 (7.45-fold), claudin-12 (1.12-fold), and NF-κB p65 subunit (4.76-fold) expressions in the BHR group when compared to the SHR group. Pioglitazone was found effective in terms of regulating gene expression in SHR. Pioglitazone significantly increased occludin (8.17-fold), claudin-2 (2.41-fold), and claudin-12 (1.85-fold) mRNA levels, which were accompanied by decreased cleaved caspase-3, caspase-9 levels, PARP-1 activation, and proinflammatory factor levels in SHR (p ˂ 0.05). Our work has led us to conclude that alterations in tight junction proteins, particularly occludin, and cell death parameters in the brainstem following PPARγ activation may contribute to neuroprotection in essential hypertension.


Subject(s)
Hypertension , PPAR gamma , Rats , Animals , Pioglitazone/pharmacology , PPAR gamma/metabolism , NF-kappa B/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , PPAR-gamma Agonists , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism , Occludin/genetics , Occludin/metabolism , Claudin-2/metabolism , Poly(ADP-ribose) Polymerase Inhibitors , Hypertension/drug therapy , Rats, Inbred SHR , Cell Death , Brain Stem/metabolism
13.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1633-1646, 2024 03.
Article in English | MEDLINE | ID: mdl-37698622

ABSTRACT

The aim of this study was the investigation of analgesic and anti-inflammatory activity of naproxen and pioglitazone following intra-plantar injection of carrageenan and assessment of the PPAR-γ receptor involvement in these effects. Rats were intra-plantarly injected with carrageenan (1%, 100 µl) to induce thermal hyperalgesia and paw inflammation. Different groups of rats were pre-treated intraperitoneally with naproxen (1 and 10 mg/kg) or pioglitazone (3 and 10 mg/kg) or GW9662 (a selective PPAR-γ antagonist, 100 µl/paw). The volume of the paw was evaluated using a plethysmometer, and the hot plate test was employed to assess the pain threshold in the animals. Finally, TNF-α, IL-1ß, IL-6, and myeloperoxidase (MPO) activity status were evaluated in the hind paw tissue. Naproxen and pioglitazone demonstrated analgesic and anti-inflammatory activity. Concurrent injection of an ineffective dose of naproxen (1 mg/kg) with an ineffective dose of pioglitazone (3 mg/kg) caused augmented analgesic and anti-inflammatory activity, significantly (p≤0.001 and p≤0.01, respectively). Additionally, intra-plantar injection of GW-9662 before naproxen or pioglitazone significantly suppressed their analgesic (p≤0.001) and anti-inflammatory activity (p≤0.01). Also, naproxen and pioglitazone (10 mg/kg) significantly (p≤0.001) reduced carrageenan-induced MPO activity and TNF-α, IL-6, and IL-1ß releasing. Furthermore, PPAR-γ blockade significantly prevented suppressive effects of naproxen and pioglitazone on the MPO activity and inflammatory cytokines. Pioglitazone significantly increased analgesic and anti-inflammatory effects of naproxen. This study proposes that concurrent treatment with naproxen and pioglitazone may be a substitute for overcome pain and inflammation clinically, in the future, particularly in patients with cardiovascular disorders and diabetes.


Subject(s)
Naproxen , Thiazolidinediones , Humans , Rats , Animals , Pioglitazone/pharmacology , Naproxen/pharmacology , Thiazolidinediones/pharmacology , Thiazolidinediones/therapeutic use , Tumor Necrosis Factor-alpha , Interleukin-6 , PPAR gamma , Ligands , Carrageenan , Analgesics/pharmacology , Analgesics/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/chemically induced , Inflammation/drug therapy
14.
Leg Med (Tokyo) ; 67: 102335, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37951808

ABSTRACT

The effects of a PPAR-γ agonist, pioglitazone and Zataria multiflora (Z. multiflora) on inhaled paraquat (PQ)-induced lung oxidative stress, inflammation, pathological changes and tracheal responsiveness were examined. The study was carried out in control rats exposed to normal aerosol of saline, PQl and PQh groups exposed to aerosols of 27 and 54 mg/m3 PQ, groups exposed to high PQ concentration (PQh) and treated with 200 and 800 mg/kg/day Z. multiflora, 5 and 10 mg/kg/day pioglitazone, low doses of Z. multiflora + pioglitazone, and 0.03 mg/kg/day dexamethasone. Increased tracheal responsiveness, transforming growth factor beta (TGF-ß) and lung pathological changes due to PQh were significantly improved by high doses of Z. multiflora and pioglitazone, dexamethasone and extract + pioglitazone, (p < 0.05 to p < 0.001). In group treated with low doses of the extract + pioglitazone, the improvements of most measured variables were significantly higher than the low dose of two agents alone (p < 0.05 to p < 0.001). Z. multiflora improved lung injury induced by inhaled PQ similar to dexamethasone and pioglitazone which could be mediated by PPAR-γ receptor.


Subject(s)
Lung Injury , Paraquat , Animals , Rats , Dexamethasone/pharmacology , Lung/metabolism , Lung Injury/drug therapy , Lung Injury/metabolism , Lung Injury/pathology , Paraquat/toxicity , Pioglitazone/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , PPAR gamma/agonists , PPAR gamma/metabolism
15.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958504

ABSTRACT

Excessive renal TGF-ß production and pro-fibrotic miRNAs are important drivers of kidney fibrosis that lack any efficient treatment. Dysfunctional autophagy might play an important role in the pathogenesis. We aimed to study the yet unknown effects of peroxisome proliferator-activated receptor-γ (PPARγ) agonist pioglitazone (Pio) on renal autophagy and miRNA dysregulation during fibrosis. Mouse primary tubular epithelial cells (PTEC) were isolated, pre-treated with 5 µM pioglitazone, and then stimulated with 10 ng/mL TGF-ß1 for 24 h. Male 10-week-old C57Bl6 control (CTL) and TGF-ß overexpressing mice were fed with regular chow (TGF) or Pio-containing chow (20 mg/kg/day) for 5 weeks (TGF + Pio). PTEC and kidneys were evaluated for mRNA and protein expression. In PTEC, pioglitazone attenuated (p < 0.05) the TGF-ß-induced up-regulation of Col1a1 (1.4-fold), Tgfb1 (2.2-fold), Ctgf (1.5-fold), Egr2 (2.5-fold) mRNAs, miR-130a (1.6-fold), and miR-199a (1.5-fold), inhibited epithelial-to-mesenchymal transition, and rescued autophagy function. In TGF mice, pioglitazone greatly improved kidney fibrosis and related dysfunctional autophagy (increased LC3-II/I ratio and reduced SQSTM1 protein content (p < 0.05)). These were accompanied by 5-fold, 3-fold, 12-fold, and 2-fold suppression (p < 0.05) of renal Ccl2, Il6, C3, and Lgals3 mRNA expression, respectively. Our results implicate that pioglitazone counteracts multiple pro-fibrotic processes in the kidney, including autophagy dysfunction and miRNA dysregulation.


Subject(s)
Kidney Diseases , MicroRNAs , Male , Mice , Animals , Pioglitazone/pharmacology , Transforming Growth Factor beta/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/etiology , Kidney Diseases/metabolism , Kidney/metabolism , Transforming Growth Factor beta1/metabolism , RNA, Messenger/genetics , Fibrosis , Autophagy , Epithelial Cells/metabolism
16.
Molecules ; 28(21)2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37959843

ABSTRACT

Oxidative stress and neuroinflammation play a pivotal role in triggering the neurodegenerative pathological cascades which characterize neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. In search for potential efficient treatments for these pathologies, that are still considered unmet medical needs, we started from the promising properties of the antidiabetic drug pioglitazone, which has been repositioned as an MAO-B inhibitor, characterized by promising neuroprotective properties. Herein, with the aim to broaden its neuroprotective profile, we tried to enrich pioglitazone with direct and indirect antioxidant properties by hanging polyphenolic and electrophilic features that are able to trigger Nrf2 pathway and the resulting cytoprotective genes' transcription, as well as serve as radical scavengers. After a preliminary screening on MAO-B inhibitory properties, caffeic acid derivative 2 emerged as the best inhibitor for potency and selectivity over MAO-A, characterized by a reversible mechanism of inhibition. Furthermore, the same compound proved to activate Nrf2 pathway by potently increasing Nrf2 nuclear translocation and strongly reducing ROS content, both in physiological and stressed conditions. Although further biological investigations are required to fully clarify its neuroprotective properties, we were able to endow the pioglitazone scaffold with potent antioxidant properties, representing the starting point for potential future pioglitazone-based therapeutics for neurodegenerative disorders.


Subject(s)
Antioxidants , Neurodegenerative Diseases , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , NF-E2-Related Factor 2/metabolism , Pioglitazone/pharmacology , Oxidative Stress , Neurodegenerative Diseases/metabolism , Monoamine Oxidase/metabolism
17.
Mol Biol Rep ; 50(12): 10219-10233, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37934372

ABSTRACT

BACKGROUND: Tamoxifen (TAM) is a chemotherapeutic drug widely utilized to treat breast cancer. On the other hand, it exerts deleterious cellular effects in clinical applications as an antineoplastic agent, such as liver damage and cirrhosis. TAM-induced hepatic toxicity is mainly attributed to oxidative stress and inflammation. Pioglitazone (PIO), a peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonist, is utilized to treat diabetes mellitus type-2. PIO has been reported to exert anti-inflammatory and antioxidant effects in different tissues. This research assessed the impact of PIO against TAM-induced hepatic intoxication. METHODS: Rats received PIO (10 mg/kg) and TAM (45 mg/kg) orally for 10 days. RESULTS: TAM increased aspartate aminotransferase (AST) and alanine aminotransferase (ALT), triggered several histopathological alterations, NF-κB p65, increased hepatic oxidative stress, and pro-inflammatory cytokines. PIO protects against TAM-induced liver dysfunction, reduced malondialdehyde (MDA), and pro-inflammatory markers along with improved hepatic antioxidants. Moreover, PIO, increased hepatic Bcl-2 expression while reducing Bax expression and caspase-3 levels. In addition, PIO decreased Keap-1, Notch1, and Hes-1 while upregulated HO-1, Nrf2, and SIRT1. Molecular docking showed the binding affinity of PIO for Keap-1, NF-κB, and SIRT1. CONCLUSION: PIO mitigated TAM hepatotoxicity by decreasing apoptosis, inflammation, and oxidative stress. The protecting ability of PIO was accompanied by reducing Keap-1 and NF-κB and regulating Keap1/Nrf2/HO-1 and Sirt1/Notch1 signaling. A schematic diagram illustrating the protective effect of PIO against TAM hepatotoxicity. PIO prevented TAM-induced liver injury by regulating Nrf2/HO-1 and SIRT1/Notch1 signaling and mitigating oxidative stress, inflammation, and apoptosis.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver Diseases , Rats , Animals , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Molecular Docking Simulation , NF-kappa B/metabolism , Pioglitazone/pharmacology , Pioglitazone/metabolism , Pioglitazone/therapeutic use , NF-E2-Related Factor 2/metabolism , Sirtuin 1/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Signal Transduction , Antioxidants/metabolism , Liver/metabolism , Oxidative Stress , Inflammation/metabolism , Liver Diseases/metabolism , Chemical and Drug Induced Liver Injury/metabolism
18.
Sci Rep ; 13(1): 18983, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923895

ABSTRACT

The antidiabetic drug pioglitazone ameliorates insulin resistance by activating the transcription factor PPARγ. In addition to its blood glucose-lowering action, pioglitazone exerts pleiotropic effects including amelioration of nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). The mechanism by which pioglitazone achieves this latter effect has remained unclear, however. We here show that pioglitazone administration increases the amount of linoleic acid (LA) metabolites in adipose tissue of KK-Ay mice. These metabolites are produced by lactic acid bacteria in the gut, and pioglitazone also increased the fraction of Lactobacillus in the gut microbiota. Administration of the LA metabolite HYA (10-hydroxy-cis-12-octadecenoic acid) to C57BL/6 J mice fed a high-fat diet improved liver histology including steatosis, inflammatory cell infiltration, and fibrosis. Gene ontology analysis of RNA-sequencing data for the liver revealed that the top category for genes downregulated by HYA treatment was related to extracellular matrix, and the expression of individual genes related to fibrosis was confirmed to be attenuated by HYA treatment. Mechanistically, HYA suppressed TGF-ß-induced Smad3 phosphorylation and fibrosis-related gene expression in human hepatic stellate cells (LX-2). Our results implicate LA metabolites in the mechanism by which pioglitazone ameliorates liver fibrosis, and they suggest that HYA is a potential therapeutic for NAFLD/NASH.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Mice , Humans , Animals , Non-alcoholic Fatty Liver Disease/pathology , Pioglitazone/pharmacology , Linoleic Acid/metabolism , Hepatic Stellate Cells/metabolism , Mice, Inbred C57BL , Liver/metabolism , Liver Cirrhosis/pathology , Fibrosis , Diet, High-Fat/adverse effects , Transforming Growth Factor beta/metabolism
19.
Int J Nanomedicine ; 18: 5871-5890, 2023.
Article in English | MEDLINE | ID: mdl-37873552

ABSTRACT

Background: Hyaluronic acid (HA) is a popular biological material for osteoarthritis (OA) treatment. Pioglitazone, a PPAR-γ agonist, has been found to inhibit OA, but its use is limited because achieving the desired local drug concentration after administration is challenging. Purpose: Herein, we constructed HA-based cartilage-targeted nanomicelles (C-HA-DOs) to deliver pioglitazone in a sustained manner and evaluated their efficacy in vitro and in vivo. Methods: C-HA-DOs were chemically synthesized with HA and the WYRGRL peptide and dodecylamine. The products were characterized by FT-IR, 1H NMR, zeta potential and TEM. The drug loading rate and cumulative, sustained drug release from Pio@C-HA-DOs were determined, and their biocompatibility and effect on oxidative stress in chondrocytes were evaluated. The uptake of C-HA-DOs by chondrocytes and their effect on OA-related genes were examined in vitro. The nanomicelle distribution in the joint cavity was observed by in vivo small animal fluorescence imaging (IVIS). The therapeutic effects of C-HA-DOs and Pio@C-HA-DOs in OA rats were analysed histologically. Results: The C-HA-DOs had a particle size of 198.4±2.431 nm, a surface charge of -8.290±0.308 mV, and a critical micelle concentration of 25.66 mg/Land were stable in solution. The cumulative drug release from the Pio@C-HA-DOs was approximately 40% at pH 7.4 over 24 hours and approximately 50% at pH 6.4 over 4 hours. Chondrocytes rapidly take up C-HA-DOs, and the uptake efficiency is higher under oxidative stress. In chondrocytes, C-HA-DOs, and Pio@C-HA-DOs inhibited H2O2-induced death, reduced intracellular ROS levels, and restored the mitochondrial membrane potential. The IVIS images confirmed that the micelles target cartilage. Pio@C-HA-DOs reduced the degradation of collagen II and proteoglycans by inhibiting the expression of MMP and ADAMTS, ultimately delaying OA progression in vitro and in vivo. Conclusion: Herein, C-HA-DOs provided targeted drug delivery to articular cartilage and improved the role of pioglitazone in the treatment of OA.


Subject(s)
Cartilage, Articular , Osteoarthritis , Rats , Animals , Hyaluronic Acid/chemistry , Pioglitazone/pharmacology , Pioglitazone/metabolism , Pioglitazone/therapeutic use , Hydrogen Peroxide/metabolism , Spectroscopy, Fourier Transform Infrared , Osteoarthritis/pathology , Chondrocytes
20.
Eur J Med Chem ; 261: 115826, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37793328

ABSTRACT

Diabetes mellitus is a metabolic disorder characterized by elevated blood sugar levels and related complications. This study focuses on harnessing and integrating fragment-based drug design and virtual screening techniques to explore the antidiabetic potential of newly synthesized thiazolidine-2,4-dione derivatives. The research involves the design of novel variations of thiazolidine-2,4-dione compounds by Fragment-Based Drug Design. The screening process involves pharmacophore based virtual screening through docking algorithms, and the identification of newly twelve top-scoring compounds. The molecular docking analysis revealed that compounds SP4e, SP4f showed highest docking scores of -9.082 and -10.345. The binding free energies of the compounds SP4e, SP4f and pioglitazone was found to be -19.9, -16.1 and -13 respectively, calculated using the Prime MM/GBSA approach. The molecular dynamic study validates the docking results. Furthermore, In the Swiss albino mice model, both SP4e and SP4f exhibited significant hypoglycaemic effects, comparable to the reference drug pioglitazone. Furthermore, these compounds demonstrated favorable effects on the lipid profile, reducing total cholesterol, triglycerides, and LDL levels while increasing HDL levels. In mice tissue, the disease control group showed PPAR-γ expression of 4.200 ± 0.24, while compound SP4f displayed higher activation at 7.84 ± 0.431 compared to compound SP4e with an activation of 7.68 ± 0.65. In zebrafish model, SP4e and SP4f showed significant reductions in blood glucose levels and lipid peroxidation, along with increased glutathione levels and catalase activity. These findings highlighted the potential of SP4e and SP4f as antidiabetic agents, warranting further exploration for therapeutic applications. The in vitro study was performed in HEK-2 cell line, the pioglitazone group demonstrated PPAR-γ expression of EC50 = 575.2, while compound SP4f exhibited enhanced activation at EC50 = 739.0 in contrast to compound SP4e activation of EC50 = 826.7.


Subject(s)
Diabetes Mellitus, Experimental , Thiazolidinediones , Mice , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/chemistry , Pioglitazone/pharmacology , Pioglitazone/therapeutic use , Thiazolidines/therapeutic use , Molecular Docking Simulation , Zebrafish/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Thiazolidinediones/chemistry , PPAR gamma/metabolism , Drug Design
SELECTION OF CITATIONS
SEARCH DETAIL
...