Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.978
Filter
1.
BMJ Open Diabetes Res Care ; 12(3)2024 May 06.
Article in English | MEDLINE | ID: mdl-38719505

ABSTRACT

INTRODUCTION: There has been increasing evidence that the gut microbiota is closely related to type 2 diabetes (T2D). Metformin (Met) is often used in combination with saxagliptin (Sax) and repaglinide (Rep) for the treatment of T2D. However, little is known about the effects of these combination agents on gut microbiota in T2D. RESEARCH DESIGN AND METHODS: A T2D mouse model induced by a high-fat diet (HFD) and streptozotocin (STZ) was employed. The T2D mice were randomly divided into six groups, including sham, Met, Sax, Rep, Met+Sax and Met+Rep, for 4 weeks. Fasting blood glucose level, serum biochemical index, H&E staining of liver, Oil red O staining of liver and microbiota analysis by 16s sequencing were used to access the microbiota in the fecal samples. RESULTS: These antidiabetics effectively prevented the development of HFD/STZ-induced high blood glucose, and the combination treatment had a better effect in inhibiting lipid accumulation. All these dosing regimens restored the decreasing ratio of the phylum Bacteroidetes: Firmicutes, and increasing abundance of phylum Desulfobacterota, expect for Met. At the genus level, the antidiabetics restored the decreasing abundance of Muribaculaceae in T2D mice, but when Met was combined with Rep or Sax, the abundance of Muribaculaceae was decreased. The combined treatment could restore the reduced abundance of Prevotellaceae_UCG-001, while Met monotherapy had no such effect. In addition, the reduced Lachnospiraceae_NK4A136_group was well restored in the combination treatment groups, and the effect was much greater than that in the corresponding monotherapy group. Therefore, these dosing regimens exerted different effects on the composition of gut microbiota, which might be associated with the effect on T2D. CONCLUSIONS: Supplementation with specific probiotics may further improve the hypoglycemic effects of antidiabetics and be helpful for the development of new therapeutic drugs for T2D.


Subject(s)
Adamantane , Blood Glucose , Carbamates , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diet, High-Fat , Dipeptides , Gastrointestinal Microbiome , Hypoglycemic Agents , Metformin , Piperidines , Animals , Gastrointestinal Microbiome/drug effects , Metformin/pharmacology , Metformin/therapeutic use , Mice , Diet, High-Fat/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/microbiology , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Carbamates/pharmacology , Dipeptides/pharmacology , Male , Adamantane/analogs & derivatives , Adamantane/pharmacology , Adamantane/therapeutic use , Piperidines/pharmacology , Piperidines/therapeutic use , Blood Glucose/analysis , Blood Glucose/drug effects , Mice, Inbred C57BL , Drug Therapy, Combination , Streptozocin
2.
Cells ; 13(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38727296

ABSTRACT

Derangement of the epidermal barrier lipids and dysregulated immune responses are key pathogenic features of atopic dermatitis (AD). The Th2-type cytokines interleukin IL-4 and IL-13 play a prominent role in AD by activating the Janus Kinase/Signal Transduction and Activator of Transcription (JAK/STAT) intracellular signaling axis. This study aimed to investigate the role of JAK/STAT in the lipid perturbations induced by Th2 signaling in 3D epidermal equivalents. Tofacitinib, a low-molecular-mass JAK inhibitor, was used to screen for JAK/STAT-mediated deregulation of lipid metabolism. Th2 cytokines decreased the expression of elongases 1, 3, and 4 and serine-palmitoyl-transferase and increased that of sphingolipid delta(4)-desaturase and carbonic anhydrase 2. Th2 cytokines inhibited the synthesis of palmitoleic acid and caused depletion of triglycerides, in association with altered phosphatidylcholine profiles and fatty acid (FA) metabolism. Overall, the ceramide profiles were minimally affected. Except for most sphingolipids and very-long-chain FAs, the effects of Th2 on lipid pathways were reversed by co-treatment with tofacitinib. An increase in the mRNA levels of CPT1A and ACAT1, reduced by tofacitinib, suggests that Th2 cytokines promote FA beta-oxidation. In conclusion, pharmacological inhibition of JAK/STAT activation prevents the lipid disruption caused by the halted homeostasis of FA metabolism.


Subject(s)
Cytokines , Janus Kinases , Lipid Metabolism , STAT Transcription Factors , Th2 Cells , Humans , Th2 Cells/metabolism , Th2 Cells/drug effects , STAT Transcription Factors/metabolism , Janus Kinases/metabolism , Cytokines/metabolism , Lipid Metabolism/drug effects , Epidermis/metabolism , Epidermis/drug effects , Signal Transduction/drug effects , Piperidines/pharmacology , Pyrimidines/pharmacology , Janus Kinase Inhibitors/pharmacology , Interleukin-4/metabolism , Fatty Acids/metabolism
3.
J Med Chem ; 67(10): 8099-8121, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38722799

ABSTRACT

Nicotinamide phosphoribosyltransferase (NAMPT) is an attractive therapeutic target for treating select cancers. There are two forms of NAMPT: intracellular NAMPT (iNAMPT, the rate-limiting enzyme in the mammalian NAD+ main synthetic pathway) and extracellular NAMPT (eNAMPT, a cytokine with protumorigenic function). Reported NAMPT inhibitors only inhibit iNAMPT and show potent activities in preclinical studies. Unfortunately, they failed to show efficacy due to futility and toxicity. We developed a series of FK866-based NAMPT-targeting PROTACs and identified LYP-8 as a potent and effective NAMPT degrader that simultaneously diminished iNAMPT and eNAMPT. Importantly, LYP-8 demonstrated superior efficacy and safety in mice when compared to the clinical candidate, FK866. This study highlights the importance and feasibility of applying PROTACs as a superior strategy for interfering with both the enzymatic function of NAMPT (iNAMPT) and nonenzymatic function of NAMPT (eNAMPT), which is difficult to achieve with conventional NAMPT inhibitors.


Subject(s)
Acrylamides , Drug Design , Nicotinamide Phosphoribosyltransferase , Piperidines , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/metabolism , Acrylamides/pharmacology , Acrylamides/chemistry , Acrylamides/chemical synthesis , Animals , Humans , Piperidines/pharmacology , Piperidines/chemistry , Mice , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Cytokines/metabolism , Cell Line, Tumor , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
4.
FASEB J ; 38(10): e23692, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38786655

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection involves an initial viral infection phase followed by a host-response phase that includes an eicosanoid and cytokine storm, lung inflammation and respiratory failure. While vaccination and early anti-viral therapies are effective in preventing or limiting the pathogenic host response, this latter phase is poorly understood with no highly effective treatment options. Inhibitors of soluble epoxide hydrolase (sEH) increase levels of anti-inflammatory molecules called epoxyeicosatrienoic acids (EETs). This study aimed to investigate the impact of sEH inhibition on the host response to SARS-CoV-2 infection in a mouse model with human angiotensin-converting enzyme 2 (ACE2) expression. Mice were infected with SARS-CoV-2 and treated with either vehicle or the sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU). At day 5 post-infection, SARS-CoV-2 induced weight loss, clinical signs, a cytokine storm, an eicosanoid storm, and severe lung inflammation with ~50% mortality on days 6-8 post-infection. SARS-CoV-2 infection induced lung expression of phospholipase A2 (PLA2), cyclooxygenase (COX) and lipoxygenase (LOX) pathway genes, while suppressing expression of most cytochrome P450 genes. Treatment with the sEH inhibitor TPPU delayed weight loss but did not alter clinical signs, lung cytokine expression or overall survival of infected mice. Interestingly, TPPU treatment significantly reversed the eicosanoid storm and attenuated viral-induced elevation of 39 fatty acids and oxylipins from COX, LOX and P450 pathways, which suggests the effects at the level of PLA2 activation. The suppression of the eicosanoid storm by TPPU without corresponding changes in lung cytokines, lung inflammation or mortality reveals a surprising dissociation between systemic oxylipin and cytokine signaling pathways during SARS-CoV-2 infection and suggests that the cytokine storm is primarily responsible for morbidity and mortality in this animal model.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Cytokine Release Syndrome , Eicosanoids , Epoxide Hydrolases , SARS-CoV-2 , Animals , Mice , Eicosanoids/metabolism , COVID-19/immunology , COVID-19/virology , COVID-19/metabolism , SARS-CoV-2/drug effects , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Cytokine Release Syndrome/drug therapy , Piperidines/pharmacology , Piperidines/therapeutic use , Cytokines/metabolism , Humans , Lung/virology , Lung/metabolism , Lung/pathology , Lung/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Disease Models, Animal , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Female
5.
Eur J Pharmacol ; 975: 176635, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38734296

ABSTRACT

BACKGROUND: Degeneration of the nigrostriatal dopaminergic pathway has been seen as a significant cause of movement disability in Parkinson's disease (PD) patients. However, the exact reason for these degenerative changes has remained obscure. In recent years, incretins have been neuroprotective in various pathologies. In the current study, we have investigated the neuroprotective potential of alogliptin (Alo), a dipeptidyl peptidase-IV (DPP-IV) inhibitor, in a lipopolysaccharide (LPS) induced experimental model of PD. EXPERIMENTAL APPROACH: LPS (5µg/5 µl) was infused intranigrally to induce PD in experimental rats. Post-LPS infusion, these animals were treated with Alo for 21 days in three successive dosages of 10, 20, and 40 mg/kg/day/per oral. The study is well supported with the determinations of motor functions biochemical, neurochemical, and histological analysis. KEY RESULTS: Intranigral infusion of LPS in rats produced motor deficit. It was accompanied by oxidative stress, elevation in neuroinflammatory cytokines, altered neurochemistry, and degenerative changes in the striatal brain region. While Alo abrogated LPS-induced biochemical/neurochemical alterations, improved motor functions, and preserved neuronal morphology in LPS-infused rats. CONCLUSION: The observed neuroprotective potential of Alo may be due to its antioxidant and anti-inflammatory actions and its ability to modulate monoaminergic signals. Nonetheless, current findings suggest that improving the availability of incretins through DPP-IV inhibition is a promising strategy for treating Parkinson's disease.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors , Lipopolysaccharides , Neuroprotective Agents , Oxidative Stress , Piperidines , Uracil , Animals , Uracil/analogs & derivatives , Uracil/pharmacology , Uracil/therapeutic use , Piperidines/pharmacology , Piperidines/therapeutic use , Male , Rats , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Oxidative Stress/drug effects , Rats, Wistar , Disease Models, Animal , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Cytokines/metabolism , Motor Activity/drug effects , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Corpus Striatum/pathology
6.
Biomed Pharmacother ; 175: 116421, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719708

ABSTRACT

Tofacitinib can effectively improve the clinical symptoms of rheumatoid arthritis (RA) patients. In this current study, a recombinant human CYP2C19 and CYP3A4 system was operated to study the effects of recombinant variants on tofacitinib metabolism. Moreover, the interaction between tofacitinib and myricetin was analyzed in vitro. The levels of M9 (the main metabolite of tofacitinib) was detected by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The findings revealed that 11 variants showed significant changes in the levels of M9 compared to CYP3A4.1, while the other variants didn't reveal any remarkable significances. Compared with CYP2C19.1, 11 variants showed increases in the levels of M9, and 10 variants showed decreases. Additionally, it was demonstrated in vitro that the inhibition of tofacitinib by myricetin was a non-competitive type in rat liver microsomes (RLM) and human liver microsomes (HLM). However, the inhibitory mechanism was a competitive type in CYP3A4.18, and mixed type in CYP3A4.1 and .28, respectively. The data demonstrated that gene polymorphisms and myricetin had significant effects on the metabolism of tofacitinib, contributing to important clinical data for the precise use.


Subject(s)
Cytochrome P-450 CYP2C19 , Cytochrome P-450 CYP3A , Drug Interactions , Flavonoids , Microsomes, Liver , Piperidines , Pyrimidines , Humans , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Flavonoids/pharmacology , Flavonoids/metabolism , Pyrimidines/pharmacology , Pyrimidines/metabolism , Animals , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Rats , Piperidines/pharmacology , Piperidines/pharmacokinetics , Piperidines/metabolism , Polymorphism, Genetic , Pyrroles/pharmacology , Pyrroles/metabolism
7.
Front Biosci (Landmark Ed) ; 29(5): 201, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38812314

ABSTRACT

BACKGROUND: Ibrutinib could increase the risk of atrial fibrillation (AF) in chronic lymphocytic leukemia (CLL) patients. However, the precise mechanism underlying ibrutinib-induced AF remains incompletely elucidated. METHODS: We investigated the proportion of ibrutinib-treated CLL patients with new-onset AF. Optical mapping was conducted to reveal the proarrhythmic effect of ibrutinib on HL-1 cells. Fluorescence staining and western blot were used to compare connexins 43 and 40 expression in ibrutinib-treated and control groups. To identify autophagy phenotypes, we used western blot to detect autophagy-related proteins, transmission electron microscopy to picture autophagosomes, and transfected mCherry-GFP-LC3 virus to label autophagosomes and lysosomes. Hydroxychloroquine as an autophagy inhibitor was administered to rescue ibrutinib-induced Cx43 and Cx40 degradation. RESULTS: About 2.67% of patients developed atrial arrhythmias after ibrutinib administration. HL-1 cells treated with ibrutinib exhibited diminished conduction velocity and a higher incidence of reentry-like arrhythmias compared to controls. Cx43 and Cx40 expression reduced along with autophagy markers increased in HL-1 cells treated with ibrutinib. Inhibiting autophagy upregulated Cx43 and Cx40. CONCLUSIONS: The off-target effect of ibrutinib on the PI3K-AKT-mTOR signaling pathway caused connexin degradation and atrial arrhythmia via promoting autophagy. CLINICAL TRIAL REGISTRATION: ChiCTR2100046062, https://clin.larvol.com/trial-detail/ChiCTR2100046062.


Subject(s)
Adenine , Atrial Fibrillation , Autophagy , Connexin 43 , Connexins , Phosphatidylinositol 3-Kinases , Piperidines , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Humans , Adenine/analogs & derivatives , Adenine/pharmacology , Adenine/adverse effects , TOR Serine-Threonine Kinases/metabolism , Autophagy/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Piperidines/pharmacology , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Connexin 43/metabolism , Connexin 43/genetics , Female , Atrial Fibrillation/metabolism , Atrial Fibrillation/chemically induced , Connexins/metabolism , Connexins/genetics , Male , Aged , Middle Aged , Gap Junction alpha-5 Protein , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/chemically induced
8.
Rev Assoc Med Bras (1992) ; 70(5): e20231333, 2024.
Article in English | MEDLINE | ID: mdl-38775505

ABSTRACT

OBJECTIVE: In this study, the effects of leptin, cannabinoid-1 (CB1) receptor agonist ACEA and antagonist AM251, and the interactions between leptin and CB1 receptor agonist/antagonist on oxidant and antioxidant enzymes in the cerebrum, cerebellum, and pedunculus cerebri tissue samples were investigated in the penicillin-induced epileptic model. METHODS: Male Wistar albino rats (n=56) were included in this study. In anesthetized animals, 500 IU penicillin-G potassium was injected into the cortex to induce epileptiform activity. Leptin (1 µg), ACEA (7.5 µg), AM251 (0.25 µg), and the combinations of the leptin+ACEA and leptin+AM251 were administered intracerebroventricularly (i.c.v.) after penicillin injections. Malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels were measured in the cerebral tissue samples and plasma with the ELISA method. RESULTS: MDA levels increased, while SOD and GPx levels decreased after penicillin injection in the cerebrum and cerebellum. The efficacy of penicillin on SOD, MDA and GPx levels was further enhanced after leptin or AM251 injections. Whereas, ACEA decreased the MDA levels and increased GPx levels compared with the penicillin group. Administration of AM251+leptin did not change any oxidation parameter compared with the AM251. Furthermore, co-administration of ACEA and leptin significantly increased oxidative stress compared with the ACEA-treated group by increasing MDA and decreasing GPx levels. CONCLUSION: It was concluded that leptin reversed the effect of ACEA on oxidative stress. Co-administration of AM251 and leptin did not change oxidative stress compared with the AM251-treated group suggesting AM251 and leptin affect oxidative stress using the same pathways.


Subject(s)
Epilepsy , Leptin , Malondialdehyde , Piperidines , Pyrazoles , Rats, Wistar , Receptor, Cannabinoid, CB1 , Superoxide Dismutase , Animals , Leptin/pharmacology , Male , Receptor, Cannabinoid, CB1/agonists , Epilepsy/drug therapy , Epilepsy/chemically induced , Malondialdehyde/analysis , Superoxide Dismutase/metabolism , Superoxide Dismutase/analysis , Piperidines/pharmacology , Pyrazoles/pharmacology , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/analysis , Arachidonic Acids/pharmacology , Rats , Oxidative Stress/drug effects , Disease Models, Animal , Penicillins , Cerebellum/drug effects , Cerebellum/metabolism , Cerebrum/drug effects , Cerebrum/metabolism , Enzyme-Linked Immunosorbent Assay , Cannabinoid Receptor Agonists/pharmacology
9.
Phytomedicine ; 129: 155670, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704915

ABSTRACT

BACKGROUND: Anaplastic thyroid carcinoma (ATC) is recognized as the most aggressive and malignant form of thyroid cancer, underscoring the critical need for effective therapeutic strategies to curb its progression and improve patient prognosis. Halofuginone (HF), a derivative of febrifugine, has displayed antitumor properties across various cancer types. However, there is a paucity of published research focused on the potential of HF to enhance the clinical efficacy of treating ATC. OBJECTIVE: In this study, we thoroughly investigated the antitumor effects and mechanisms of HF in ATC, aiming to discover lead compounds for treating ATC and reveal novel therapeutic targets for ATC tumors. METHODS: A series of assays, including CCK8, colony formation, tumor xenograft models, and ATC tumor organoid experiments, were conducted to evaluate the anticancer properties of HF both in vitro and in vivo. Techniques such as drug affinity responsive target stability (DARTS), western blot, immunofluorescence, and immunohistochemistry were employed to pinpoint HF target proteins within ATC. Furthermore, we harnessed the GEPIA and GEO databases and performed immunohistochemistry to validate the therapeutic potential of the glutamyl-prolyl-tRNA-synthetase (EPRS)- activating transcription factor 4 (ATF4)- type I collagen (COLI) pathway axis in the context of ATC. The study also incorporated RNA sequencing analysis, confocal imaging, and flow cytometry to delve into the molecular mechanisms of HF in ATC. RESULTS: HF exhibited a substantial inhibitory impact on cell proliferation in vitro and on tumor growth in vivo. The DARTS results highlighted HF's influence on EPRS within ATC cells, triggering an amino acid starvation response (AASR) by suppressing EPRS expression, consequently leading to a reduction in COLI expression in ATC cells. The introduction of proline mitigated the effect of HF on ATF4 and COLI expression, indicating that the EPRS-ATF4-COLI pathway axis was a focal target of HF in ATC. Analysis of the expression levels of the EPRS, ATF4, and COLI proteins in thyroid tumors, along with an examination of the relationship between COLI expression and thyroid tumor stage, revealed that HF significantly inhibited the growth of ATC tumor organoids, demonstrating the therapeutic potential of targeting the EPRS-ATF4-COLI pathway axis in ATC. RNA sequencing analysis revealed significant differences in the pathways associated with metastasis and apoptosis between control and HF-treated cells. Transwell assays and flow cytometry experiments provided evidence of the capacity of HF to impede cell migration and induce apoptosis in ATC cells. Furthermore, HF hindered cell metastasis by suppressing the epithelial-mesenchymal transition (EMT) pathway, acting through the inhibition of FAK-AKT-NF-κB/Wnt-ß-catenin signaling and restraining angiogenesis via the VEGF pathway. HF also promoted apoptosis through the mitochondrial apoptotic pathway. CONCLUSION: This study provided inaugural evidence suggesting that HF could emerge as a promising therapeutic agent for the treatment of ATC. The EPRS-ATF4-COLI pathway axis stood out as a prospective biomarker and therapeutic target for ATC.


Subject(s)
Activating Transcription Factor 4 , Piperidines , Quinazolinones , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Thyroid Carcinoma, Anaplastic/drug therapy , Activating Transcription Factor 4/metabolism , Humans , Animals , Cell Line, Tumor , Thyroid Neoplasms/drug therapy , Piperidines/pharmacology , Quinazolinones/pharmacology , Mice , Mice, Nude , Xenograft Model Antitumor Assays , Signal Transduction/drug effects , Cell Proliferation/drug effects , Mice, Inbred BALB C
10.
Front Public Health ; 12: 1333487, 2024.
Article in English | MEDLINE | ID: mdl-38699428

ABSTRACT

Background: Iruplinalkib is a second-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) with efficacy in patients with ALK-positive crizotinib-resistant advanced non-small cell lung cancer (NSCLC), which is independently developed by a Chinese pharmaceutical company. This study examined the cost-effectiveness of iruplinalkib versus alectinib in the Chinese healthcare setting. Methods: A partitioned survival model was developed to project the economic and health outcomes. Efficacy was derived using unanchored matching-adjusted indirect comparison (MAIC). Cost and utility values were obtained from the literature and experts' opinions. Deterministic and probabilistic sensitivity analyses (PSA) were carried out to evaluate the model's robustness. Results: Treatment with iruplinalkib versus alectinib resulted in a gain of 0.843 quality-adjusted life years (QALYs) with incremental costs of $20,493.27, resulting in an incremental cost-effectiveness ratio (ICER) of $24,313.95/QALY. Parameters related to relative efficacy and drug costs were the main drivers of the model outcomes. From the PSA, iruplinalkib had a 90% probability of being cost-effective at a willingness-to-pay threshold of $37,863.56/QALY. Conclusion: Compared to alectinib, iruplinalkib is a cost-effective therapy for patients with ALK-positive crizotinib-resistant advanced NSCLC.


Subject(s)
Anaplastic Lymphoma Kinase , Carbazoles , Carcinoma, Non-Small-Cell Lung , Cost-Benefit Analysis , Crizotinib , Drug Resistance, Neoplasm , Lung Neoplasms , Piperidines , Quality-Adjusted Life Years , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carbazoles/therapeutic use , Carbazoles/economics , China , Crizotinib/therapeutic use , Piperidines/therapeutic use , Piperidines/pharmacology , Anaplastic Lymphoma Kinase/metabolism , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/economics , Male , Female , Middle Aged
11.
Theranostics ; 14(7): 2794-2815, 2024.
Article in English | MEDLINE | ID: mdl-38773984

ABSTRACT

Rationale: Idiopathic pulmonary fibrosis (IPF) is an irreversible, fatal interstitial lung disease lacking specific therapeutics. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the nicotinamide adenine dinucleotide (NAD) salvage biosynthesis pathway and a cytokine, has been previously reported as a biomarker for lung diseases; however, the role of NAMPT in pulmonary fibrosis has not been elucidated. Methods: We identified the NAMPT level changes in pulmonary fibrosis by analyzing public RNA-Seq databases, verified in collected clinical samples and mice pulmonary fibrosis model by Western blotting, qRT-PCR, ELISA and Immunohistochemical staining. We investigated the role and mechanism of NAMPT in lung fibrosis by using pharmacological inhibition on NAMPT and Nampt transgenic mice. In vivo macrophage depletion by clodronate liposomes and reinfusion of IL-4-induced M2 bone marrow-derived macrophages (BMDMs) from wild-type mice, combined with in vitro cell experiments, were performed to further validate the mechanism underlying NAMPT involving lung fibrosis. Results: We found that NAMPT increased in the lungs of patients with IPF and mice with bleomycin (BLM)-induced pulmonary fibrosis. NAMPT inhibitor FK866 alleviated BLM-induced pulmonary fibrosis in mice and significantly reduced NAMPT levels in bronchoalveolar lavage fluid (BALF). The lung single-cell RNA sequencing showed that NAMPT expression in monocytes/macrophages of IPF patients was much higher than in other lung cells. Knocking out NAMPT in mouse monocytes/macrophages (Namptfl/fl;Cx3cr1CreER) significantly alleviated BLM-induced pulmonary fibrosis in mice, decreased NAMPT levels in BALF, reduced the infiltration of M2 macrophages in the lungs and improved mice survival. Depleting monocytes/macrophages in Namptfl/fl;Cx3cr1CreER mice by clodronate liposomes and subsequent pulmonary reinfusion of IL-4-induced M2 BMDMs from wild-type mice, reversed the protective effect of monocyte/macrophage NAMPT-deletion on lung fibrosis. In vitro experiments confirmed that the mechanism of NAMPT engaged in pulmonary fibrosis is related to the released NAMPT by macrophages promoting M2 polarization in a non-enzyme-dependent manner by activating the STAT6 signal pathway. Conclusions: NAMPT prompts bleomycin-induced pulmonary fibrosis by driving macrophage M2 polarization in mice. Targeting the NAMPT of monocytes/macrophages is a promising strategy for treating pulmonary fibrosis.


Subject(s)
Bleomycin , Cytokines , Idiopathic Pulmonary Fibrosis , Macrophages , Mice, Inbred C57BL , Nicotinamide Phosphoribosyltransferase , Animals , Nicotinamide Phosphoribosyltransferase/metabolism , Mice , Macrophages/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Cytokines/metabolism , Humans , Disease Models, Animal , Lung/pathology , Lung/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Mice, Transgenic , Male , Piperidines/pharmacology , Female , Acrylamides
12.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791284

ABSTRACT

Bruton's Tyrosine Kinase (BTK) inhibitors have become one of the most vital drugs in the therapy of chronic lymphocytic leukemia (CLL). Inactivation of BTK disrupts the B-cell antigen receptor (BCR) signaling pathway, which leads to the inhibition of the proliferation and survival of CLL cells. BTK inhibitors (BTKi) are established as leading drugs in the treatment of both treatment-naïve (TN) and relapsed or refractory (R/R) CLL. Furthermore, BTKi demonstrate outstanding efficacy in high-risk CLL, including patients with chromosome 17p deletion, TP53 mutations, and unmutated status of the immunoglobulin heavy-chain variable region (IGHV) gene. Ibrutinib is the first-in-class BTKi which has changed the treatment landscape of CLL. Over the last few years, novel, covalent (acalabrutinib, zanubrutinib), and non-covalent (pirtobrutinib) BTKi have been approved for the treatment of CLL. Unfortunately, continuous therapy with BTKi contributes to the acquisition of secondary resistance leading to clinical relapse. In recent years, it has been demonstrated that the predominant mechanisms of resistance to BTKi are mutations in BTK or phospholipase Cγ2 (PLCG2). Some differences in the mechanisms of resistance to covalent BTKi have been identified despite their similar mechanism of action. Moreover, novel mutations resulting in resistance to non-covalent BTKi have been recently suggested. This article summarizes the clinical efficacy and the latest data regarding resistance to all of the registered BTKi.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Drug Resistance, Neoplasm , Leukemia, Lymphocytic, Chronic, B-Cell , Protein Kinase Inhibitors , Humans , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Drug Resistance, Neoplasm/genetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Pyrimidines/therapeutic use , Pyrimidines/pharmacology , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Piperidines/therapeutic use , Piperidines/pharmacology , Adenine/analogs & derivatives , Phospholipase C gamma/metabolism , Phospholipase C gamma/genetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Mutation
13.
ACS Chem Neurosci ; 15(8): 1669-1683, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38575140

ABSTRACT

The cannabinoid receptor 1 (CB1) is famous as the target of Δ9-tetrahydrocannabinol (THC), which is the active ingredient of marijuana. Suppression of CB1 is frequently suggested as a drug target or gene therapy for many conditions (e.g., obesity, Parkinson's disease). However, brain networks affected by CB1 remain elusive, and unanticipated psychological effects in a clinical trial had dire consequences. To better understand the whole brain effects of CB1 suppression we performed in vivo imaging on mice under complete knockout of the gene for CB1 (cnr1-/-) and also under the CB1 inverse agonist rimonabant. We examined white matter structural changes and brain function (network activity and directional uniformity) in cnr1-/- mice. In cnr1-/- mice, white matter (in both sexes) and functional directional uniformity (in male mice) were altered across the brain but network activity was largely unaltered. Conversely, under rimonabant, functional directional uniformity was not altered but network activity was altered in cortical regions, primarily in networks known to be altered by THC (e.g., neocortex, hippocampal formation). However, rimonabant did not alter many brain regions found in both our cnr1-/- results and previous behavioral studies of cnr1-/- mice (e.g., thalamus, infralimbic area). This suggests that chronic loss of cnr1 is substantially different from short-term suppression, subtly rewiring the brain but largely maintaining the network activity. Our results help explain why pathological mutations in CB1 (e.g., chronic pain) do not always provide insight into the side effects of CB1 suppression (e.g., clinical depression), and thus urge more preclinical studies for any drugs that suppress CB1.


Subject(s)
Drug Inverse Agonism , Piperidines , Female , Mice , Male , Animals , Rimonabant/pharmacology , Piperidines/pharmacology , Pyrazoles/pharmacology , Mice, Knockout , Brain , Receptors, Cannabinoid , Receptor, Cannabinoid, CB1/genetics , Dronabinol/pharmacology
14.
Sci Rep ; 14(1): 9598, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671063

ABSTRACT

Allergic conjunctivitis (AC) is the most common form of allergic eye disease and an increasingly prevalent condition. Topical eye drop treatments are the usual approach for managing AC, although their impact on the ocular surface is not frequently investigated. The aim of this study was to perform a comparative physicochemical characterization, and in vitro biological evaluations in primary conjunctival and corneal epithelial cells of the new multidose preservative-free bilastine 0.6% and main commercially available eye drops. MTT assay was used to measure cell viability; oxidative stress was analyzed with a ROS-sensitive probe; and apoptosis was evaluated monitoring caspase 3/7 activation. Differences in pH value, osmolarity, viscosity and phosphate levels were identified. Among all formulations, bilastine exhibited pH, osmolarity and viscosity values closer to tear film (7.4, 300 mOsm/l and ~ 1.5-10 mPa·s, respectively), and was the only phosphates-free solution. Single-dose ketotifen did not induce ROS production, and single-dose azelastine and bilastine only induced a mild increase. Bilastine and single-dose ketotifen and azelastine showed high survival rates attributable to the absence of preservative in its formulation, not inducing caspase-3/7-mediated apoptosis after 24 h. Our findings support the use of the new bilastine 0.6% for treating patients with AC to preserve and maintain the integrity of the ocular surface.


Subject(s)
Apoptosis , Benzimidazoles , Caspase 3 , Cell Survival , Ophthalmic Solutions , Preservatives, Pharmaceutical , Ophthalmic Solutions/pharmacology , Humans , Preservatives, Pharmaceutical/pharmacology , Cell Survival/drug effects , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Caspase 3/metabolism , Apoptosis/drug effects , Piperidines/pharmacology , Oxidative Stress/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Conjunctiva/drug effects , Conjunctiva/metabolism , Conjunctiva/pathology , Caspase 7/metabolism , Reactive Oxygen Species/metabolism , Conjunctivitis, Allergic/drug therapy , Conjunctivitis, Allergic/pathology , Conjunctivitis, Allergic/metabolism , Phthalazines/pharmacology , Osmolar Concentration , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Cells, Cultured , Viscosity
15.
Phys Chem Chem Phys ; 26(17): 13420-13431, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38647171

ABSTRACT

Autoimmune inflammatory diseases, such as rheumatoid arthritis (RA) and ulcerative colitis, are associated with an uncontrolled production of cytokines leading to the pronounced inflammatory response of these disorders. Their therapy is currently focused on the inhibition of cytokine receptors, such as the Janus kinase (JAK) protein family. Tofacitinib and peficitinib are JAK inhibitors that have been recently approved to treat rheumatoid arthritis. In this study, an in-depth analysis was carried out through quantum biochemistry to understand the interactions involved in the complexes formed by JAK1 and tofacitinib or peficitinib. Computational analyses provided new insights into the binding mechanisms between tofacitinib or peficitinib and JAK1. The essential amino acid residues that support the complex are also identified and reported. Additionally, we report new interactions, such as van der Waals; hydrogen bonds; and alkyl, pi-alkyl, and pi-sulfur forces, that stabilize the complexes. The computational results revealed that peficitinib presents a similar affinity to JAK1 compared to tofacitinib based on their interaction energies.


Subject(s)
Adamantane/analogs & derivatives , Janus Kinase 1 , Niacinamide , Niacinamide/analogs & derivatives , Piperidines , Pyrimidines , Pyrimidines/chemistry , Pyrimidines/pharmacology , Piperidines/chemistry , Piperidines/pharmacology , Piperidines/therapeutic use , Niacinamide/chemistry , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Janus Kinase 1/chemistry , Humans , Quantum Theory , Autoimmune Diseases/drug therapy , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Hydrogen Bonding , Janus Kinase Inhibitors/chemistry , Janus Kinase Inhibitors/therapeutic use , Janus Kinase Inhibitors/pharmacology , Adamantane/chemistry , Pyrroles/chemistry , Pyrroles/pharmacology , Molecular Docking Simulation
16.
Nat Commun ; 15(1): 3422, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653965

ABSTRACT

Targeting Anaplastic lymphoma kinase (ALK) is a promising therapeutic strategy for aberrant ALK-expressing malignancies including neuroblastoma, but resistance to ALK tyrosine kinase inhibitors (ALK TKI) is a distinct possibility necessitating drug combination therapeutic approaches. Using high-throughput, genome-wide CRISPR-Cas9 knockout screens, we identify miR-1304-5p loss as a desensitizer to ALK TKIs in aberrant ALK-expressing neuroblastoma; inhibition of miR-1304-5p decreases, while mimics of this miRNA increase the sensitivity of neuroblastoma cells to ALK TKIs. We show that miR-1304-5p targets NRAS, decreasing cell viability via induction of apoptosis. It follows that the farnesyltransferase inhibitor (FTI) lonafarnib in addition to ALK TKIs act synergistically in neuroblastoma, inducing apoptosis in vitro. In particular, on combined treatment of neuroblastoma patient derived xenografts with an FTI and an ALK TKI complete regression of tumour growth is observed although tumours rapidly regrow on cessation of therapy. Overall, our data suggests that combined use of ALK TKIs and FTIs, constitutes a therapeutic approach to treat high risk neuroblastoma although prolonged therapy is likely required to prevent relapse.


Subject(s)
Anaplastic Lymphoma Kinase , Dibenzocycloheptenes , Farnesyltranstransferase , GTP Phosphohydrolases , MicroRNAs , Neuroblastoma , Piperidines , Protein Kinase Inhibitors , Pyridines , Animals , Female , Humans , Mice , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Farnesyltranstransferase/antagonists & inhibitors , Farnesyltranstransferase/metabolism , Gene Expression Regulation, Neoplastic/drug effects , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Mutation , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/metabolism , Piperidines/pharmacology , Piperidines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Xenograft Model Antitumor Assays
17.
Photodermatol Photoimmunol Photomed ; 40(3): e12970, 2024 May.
Article in English | MEDLINE | ID: mdl-38685665

ABSTRACT

OBJECTIVE: Both piperine and a 308-nm excimer laser have significant curative effects on vitiligo. This study mainly explored the molecular mechanism of a 308-nm excimer combined with piperine in regulating melanocyte proliferation. METHODS: Epidermal melanocytes were cultured in piperine solution, and the cells were irradiated by an XTRAC excimer laser treatment system at 308-nm output monochromatic light. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were for detecting the expression levels of genes or proteins. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and Transwell method was for assessing cell viability and migration capacity. The content of melanin was also detected. RESULTS: The combination of the 308-nm excimer laser and piperine enhanced the cell proliferation, migration, and melanin production of melanocytes and upregulated the level of miR-328, and restraint of miR-328 reversed the influence of the 308-nm excimer laser and piperine. Secreted frizzled-related protein 1 (SFRP1) is a direct target gene of miR-328, and miR-328 can inhibit the expression of SFRP1 and elevate the protein level of the Wnt/ß-catenin signaling pathway. CONCLUSION: The 308-nm excimer laser combined with piperine may be more efficient than piperine alone in the remedy of vitiligo, and the miR-328/SFRP1 and Wnt/ß-catenin pathways are participated in the proliferation, migration, and melanin synthesis of melanocytes.


Subject(s)
Benzodioxoles , Cell Movement , Cell Proliferation , Melanins , Piperidines , Humans , Alkaloids/pharmacology , Benzodioxoles/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , Melanins/biosynthesis , Melanocytes/metabolism , Melanocytes/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Lasers , Vitiligo/drug therapy , Vitiligo/therapy
18.
J Integr Neurosci ; 23(4): 80, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38682215

ABSTRACT

Parkinson's disease is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms, including hallucinations. The use of antipsychotic medications is a common strategy to manage hallucinations associated with Parkinson's disease psychosis (PDP). However, careful consideration is necessary when selecting the most appropriate drug due to the potential risks associated with the available treatment options. Atypical antipsychotics (AAPs), such as Pimavanserin and Clozapine, have effectively controlled PDP symptoms. On the contrary, the support for utilizing quetiapine is not as substantial as other antipsychotics because research studies specifically investigating its application are still emerging and relatively recent. The broad mechanisms of action of AAPs, involving dopamine and serotonin receptors, provide improved outcomes and fewer side effects than typical antipsychotics. Conversely, other antipsychotics, including risperidone, olanzapine, aripiprazole, ziprasidone, and lurasidone, have been found to worsen motor symptoms and are generally not recommended for PDP. While AAPs offer favorable benefits, they are associated with specific adverse effects. Extrapyramidal symptoms, somnolence, hypotension, constipation, and cognitive impairment are commonly observed with AAP use. Clozapine, in particular, carries a risk of agranulocytosis, necessitating close monitoring of blood counts. Pimavanserin, a selective serotonin inverse agonist, avoids receptor-related side effects but has been linked to corrected QT (QTc) interval prolongation, while quetiapine has been reported to be associated with an increased risk of mortality. This review aims to analyze the benefits, risks, and mechanisms of action of antipsychotic medications to assist clinicians in making informed decisions and enhance patient care.


Subject(s)
Antipsychotic Agents , Clozapine , Hallucinations , Parkinson Disease , Piperidines , Quetiapine Fumarate , Urea , Urea/analogs & derivatives , Humans , Antipsychotic Agents/adverse effects , Antipsychotic Agents/pharmacology , Antipsychotic Agents/administration & dosage , Parkinson Disease/drug therapy , Parkinson Disease/complications , Clozapine/adverse effects , Clozapine/administration & dosage , Clozapine/pharmacology , Hallucinations/chemically induced , Hallucinations/etiology , Piperidines/adverse effects , Piperidines/pharmacology , Piperidines/administration & dosage , Quetiapine Fumarate/adverse effects , Quetiapine Fumarate/pharmacology , Quetiapine Fumarate/administration & dosage , Urea/pharmacology , Urea/adverse effects
19.
Sci Rep ; 14(1): 9483, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664520

ABSTRACT

The present study predicts the molecular targets and druglike properties of the phyto-compound piperine (PIP) by in silico studies including molecular docking simulation, druglikeness prediction and ADME analysis for prospective therapeutic benefits against diabetic complications. PIP was encapsulated in biodegradable polymer poly-lactide-co-glycolide (PLGA) to form nanopiperine (NPIP) and their physico-chemical properties were characterized by AFM and DLS. ∼ 30 nm sized NPIP showed 86.68% encapsulation efficiency and - 6 mV zeta potential, demonstrated great interactive stability and binding with CT-DNA displaying upsurge in molar ellipticity during CD spectroscopy. NPIP lowered glucose levels in peripheral circulation by > 65 mg/dL compared to disease model and improved glucose influx in alloxan-induced in vivo and in vitro diabetes models concerted with 3-folds decrease in ROS production, ROS-induced DNA damage and 27.24% decrease in nuclear condensation. The 25% increase in % cell viability and inhibition in chromosome aberration justified the initiation of p53 and PARP DNA repairing protein expression and maintenance of Hsp90. Thus, the experimental study corroborated well with in silico predictions of modulating the p53/PARP-1/Hsp90 axis, with predicted dock score value of - 8.72, - 8.57, - 8.76 kcal/mol respectively, validated docking-based preventive approaches for unravelling the intricacies of molecular signalling and nano-drug efficacy as therapeutics for diabetics.


Subject(s)
Alkaloids , Benzodioxoles , HSP90 Heat-Shock Proteins , Hyperglycemia , Molecular Docking Simulation , Piperidines , Poly (ADP-Ribose) Polymerase-1 , Polylactic Acid-Polyglycolic Acid Copolymer , Polyunsaturated Alkamides , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , HSP90 Heat-Shock Proteins/metabolism , Animals , Piperidines/pharmacology , Piperidines/chemistry , Benzodioxoles/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/administration & dosage , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Alloxan , Rats , Humans , Male , Reactive Oxygen Species/metabolism , Mice , Nanoparticles/chemistry , DNA Damage/drug effects
20.
Acta Neuropathol ; 147(1): 75, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656399

ABSTRACT

In multiple sclerosis (MS), persisting disability can occur independent of relapse activity or development of new central nervous system (CNS) inflammatory lesions, termed chronic progression. This process occurs early and it is mostly driven by cells within the CNS. One promising strategy to control progression of MS is the inhibition of the enzyme Bruton's tyrosine kinase (BTK), which is centrally involved in the activation of both B cells and myeloid cells, such as macrophages and microglia. The benefit of BTK inhibition by evobrutinib was shown as we observed reduced pro-inflammatory activation of microglia when treating chronic experimental autoimmune encephalomyelitis (EAE) or following the adoptive transfer of activated T cells. Additionally, in a model of toxic demyelination, evobrutinib-mediated BTK inhibition promoted the clearance of myelin debris by microglia, leading to an accelerated remyelination. These findings highlight that BTK inhibition has the potential to counteract underlying chronic progression of MS.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Encephalomyelitis, Autoimmune, Experimental , Microglia , Myelin Sheath , Piperidines , Pyrimidines , Animals , Female , Mice , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Biphenyl Compounds/pharmacology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice, Inbred C57BL , Microglia/pathology , Microglia/drug effects , Microglia/metabolism , Myelin Sheath/pathology , Myelin Sheath/metabolism , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Remyelination/physiology , Remyelination/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...