Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 25(22): 21420-21429, 2018 Aug.
Article in English | MEDLINE | ID: mdl-28386892

ABSTRACT

The study of different renewable energy sources has been intensifying due to the current climate changes; therefore, the present work had the objective to characterize physicochemically the pistachio shell waste and evaluate kinetic parameters of its combustion. The pistachio shell was characterized through proximate analysis, ultimate analysis, SEM, and FTIR. The thermal and kinetic behaviors were evaluated by a thermogravimetric analyzer under oxidant atmosphere between room temperature and 1000 °C, in which the process was performed in three different heating rates (20, 30, and 40 °C min-1). The combustion of the pistachio shell presented two regions in the derivative thermogravimetric curves, where the first represents the devolatilization of volatile matter compounds and the second one is associated to the biochar oxidation. These zones were considered for the evaluation of the kinetic parameters E a , A, and f(α) by the modified method of Coats-Redfern, compensation effect, and master plot, respectively. The kinetic parameters for zone 1 were E a1 = 84.11 kJ mol-1, A 1 = 6.39 × 106 min-1, and f(α)1 = 3(1 - α)2/3, while for zone 2, the kinetic parameters were E a2 = 37.47 kJ mol-1, A 2 = 57.14 min-1, and f(α)2 = 2(1 - α)1/2.


Subject(s)
Pistacia/chemistry , Renewable Energy , Charcoal , Garbage , Heating , Hot Temperature , Kinetics , Pistacia/ultrastructure , Thermogravimetry
2.
Microsc Res Tech ; 70(10): 837-46, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17576128

ABSTRACT

A comparative analysis was undertaken to conduct a micromorphological study of Pistacia atlantica leaves by comparing different populations grown under different climatic conditions. Leaf epidermis of eight wild populations was investigated under scanning electron microscope. Micromorphological characteristics (epidermis ornament, stomata type, waxes as well as trichomes) of the adaxial and abaxial leaf surfaces were examined. The epidermis ornament varied among populations and leaf surface, the abaxial leaf surface is reticulate with a striate surface. Messaad site shows a smooth uneven surface. The adaxial leaf surface is smooth but several ornamentations can be seen. The leaflet is amphistomatic; the stomata appeared to be slightly sunken. A variety of stomatal types were recorded; actinocytic and anomocytic types are the most frequent. The indumentum consisted of glandular and nonglandular trichomes. Unicellular glandular trichomes are recorded for P. atlantica leaves in this study. Their density is higher in Oued safene site, located at the highest altitude in comparison with the other populations. The wax occurred in all the sites and its pattern varied according to the populations studied, particularly between Berriane and Messaad. The morphological variability exhibited by the eight populations of P. atlantica may be interpreted as relevant to the ecological plasticity and the physiological mechanisms involved are discussed in this report.


Subject(s)
Pistacia/ultrastructure , Plant Epidermis/ultrastructure , Plant Leaves/ultrastructure , Microscopy, Electron, Scanning , Waxes
3.
Environ Pollut ; 132(2): 321-31, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15312944

ABSTRACT

An open-top chamber study was conducted to investigate the tissue and cellular-level foliar effects of ozone (O3) on a Mediterranean evergreen species, the mastic plant (Pistacia lentiscus L.). Plants were exposed at three different O3 levels, and leaf samples were collected periodically from the beginning of the exposure. Although no visible foliar injury was evident, alterations of the plastids and vacuoles in the mesophyll were observed. Senescence processes were accelerated with an anomalous stacking of tannin vacuoles, and a reduction in the size and number of the chloroplasts. Overall, most of the modifications induced by O3 were consistent with previously reported observations on deciduous broadleaf species, with the exception of alterations in the cells covering the secretory channels, reported here as a new finding. Comments on the feasibility of using microscopy to validate O3 related field observations and subtle foliar injury are also given.


Subject(s)
Air Pollutants/toxicity , Ozone/toxicity , Pistacia/drug effects , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Microscopy, Electron, Scanning , Pistacia/anatomy & histology , Pistacia/ultrastructure , Plant Leaves/anatomy & histology , Plant Leaves/drug effects , Plant Leaves/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...