Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.540
Filter
1.
Genome Med ; 16(1): 75, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822427

ABSTRACT

BACKGROUND: Congenital hypopituitarism (CH) and its associated syndromes, septo-optic dysplasia (SOD) and holoprosencephaly (HPE), are midline defects that cause significant morbidity for affected people. Variants in 67 genes are associated with CH, but a vast majority of CH cases lack a genetic diagnosis. Whole exome and whole genome sequencing of CH patients identifies sequence variants in genes known to cause CH, and in new candidate genes, but many of these are variants of uncertain significance (VUS). METHODS: The International Mouse Phenotyping Consortium (IMPC) is an effort to establish gene function by knocking-out all genes in the mouse genome and generating corresponding phenotype data. We used mouse embryonic imaging data generated by the Deciphering Mechanisms of Developmental Disorders (DMDD) project to screen 209 embryonic lethal and sub-viable knockout mouse lines for pituitary malformations. RESULTS: Of the 209 knockout mouse lines, we identified 51 that have embryonic pituitary malformations. These genes not only represent new candidates for CH, but also reveal new molecular pathways not previously associated with pituitary organogenesis. We used this list of candidate genes to mine whole exome sequencing data of a cohort of patients with CH, and we identified variants in two unrelated cases for two genes, MORC2 and SETD5, with CH and other syndromic features. CONCLUSIONS: The screening and analysis of IMPC phenotyping data provide proof-of-principle that recessive lethal mouse mutants generated by the knockout mouse project are an excellent source of candidate genes for congenital hypopituitarism in children.


Subject(s)
Hypopituitarism , Mice, Knockout , Pituitary Gland , Hypopituitarism/genetics , Animals , Humans , Pituitary Gland/metabolism , Pituitary Gland/abnormalities , Pituitary Gland/pathology , Mice , Phenotype , Female , Male , Disease Models, Animal , Exome Sequencing , Septo-Optic Dysplasia/genetics
2.
Anim Biotechnol ; 35(1): 2346808, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38739483

ABSTRACT

This study aimed to evaluate the effect of miR-23b-3p on growth hormone (GH) in pituitary cells of Yanbian yellow cattle. The mRNA and protein levels of GH and miR-23b-3p target genes were measured by real time fluorescence quantitative PCR (qPCR) and Western blot, respectively. The target relationship of miR-23b-3p was validated by double luciferase reporter gene system. The results showed that GH mRNA and protein levels in pituitary cells of Yanbian yellow cattle were significantly lower in the miR-23b-3p-mi group than in the NC group (P<0.01), while GH mRNA and protein levels were higher in the miR-23b-3p-in group than in the iNC group (P<0.05). The result of bioinformatics analysis and double luciferase reporter gene system validation proved that miR-23b-3p targeted 3'UTR of pituitary specific transcription factor 1 (POU1F1). POU1F1 mRNA and protein levels were lower miR-23b-3p-mi group than in the NC group (P<0.01), while POU1F1 mRNA and protein levels were higher in the miR-23b-3p-in group than in the iNC group (P<0.01). These results demonstrated that miR-23b-3p could regulate GH expression in pituitary cells by regulating POU1F1 gene.


Subject(s)
Growth Hormone , MicroRNAs , Transcription Factor Pit-1 , Animals , Cattle/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Growth Hormone/genetics , Growth Hormone/metabolism , Transcription Factor Pit-1/genetics , Transcription Factor Pit-1/metabolism , Pituitary Gland/metabolism , Gene Expression Regulation , 3' Untranslated Regions/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Reprod Domest Anim ; 59(5): e14586, 2024 May.
Article in English | MEDLINE | ID: mdl-38757644

ABSTRACT

The current study aimed to explore the molecular mechanism by which the cholecystokinin (CCK)-mediated CCKAR and CCKBR, as well as the molecular mechanisms of CCK-mediated insulin signalling pathway, regulate oestrogen in the granulosa cells. Also, the expression of CCK in ovaries, uterus, hypothalamus and pituitary gland was investigated in Camelus bactrianus. Ovaries, uterus, hypothalamus and pituitary gland were collected from six, three before ovulation (control) and three after ovulation, slaughtered Camelus bactrianus. Ovulation was induced by IM injection of seminal plasma before slaughtering in the ovulated group. The results showed that there were differences in the transcription and protein levels of CCK in various tissues before and after ovulation (p < .05, p < .01). After transfection with p-IRES2-EGFP-CCK, the mRNA and protein levels of CCK, CCKAR, CCKBR and ER in follicular granulosa cells were significantly upregulated (p < .05, p < .01), and the content of E2 was significantly upregulated (p < .01); On the contrary, after transfection with si-CCK, the mRNA and protein levels of CCK, CCKAR, CCKBR and ER in follicular granulosa cells were significantly downregulated (p < .05, p < .01), and the content of E2 was significantly downregulated (p < .01). Regulating CCK can affect the mRNA levels of INS, INSR, IGF and IGF-R. In summary, regulating the expression level of CCK can activate insulin-related signalling pathways by CCKR, thereby regulating the steroidogenic activity of granulosa cells.


Subject(s)
Cholecystokinin , Granulosa Cells , Insulin , Signal Transduction , Animals , Female , Granulosa Cells/metabolism , Cholecystokinin/metabolism , Cholecystokinin/genetics , Insulin/metabolism , Ovulation , Uterus/metabolism , Ovary/metabolism , Pituitary Gland/metabolism , Hypothalamus/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics
4.
Front Endocrinol (Lausanne) ; 15: 1379103, 2024.
Article in English | MEDLINE | ID: mdl-38800483

ABSTRACT

Background: Previous studies have revealed the sex-specific features of pituitary-thyroid hormone (TH) actions and the prevalence of thyroid nodules (TNs) in children and adolescents. However, it was unclear in adults. We aimed to investigate the features of pituitary-TH actions in women and men at different ages, and the associations of thyrotropin (TSH), THs, and central sensitivity to THs indices including the thyroid feedback quantile-based index by FT4 (TFQIFT4) and the thyroid feedback quantile-based index by FT3(TFQIFT3) with of TNs in Chinese euthyroid adults. Methods: 8771 euthyroid adults from the communities in China were involved. Demographic, behavioral, and anthropometric data were gathered through the questionnaires. Ultrasound was performed to evaluate the TNs. TSH and THs levels were measured. The multivariable logistic regression and multivariable ordinal logistic regression were conducted. Results: TFQIFT3 among both genders, except women aged 43 to 59 years, where it increased slightly. Additionally, there was an age-related decline in TFQIFT4 levels in both women and men at ages < 50 and < 53, respectively, but a marked increase after that. Lower TSH levels were significantly associated with a higher prevalence and lower odds of having fewer TNs using multiple nodules as the base category in both men and women (both P for trend < 0.05). Additionally, lower TFQIFT3 and TFQIFT4 levels were significantly associated with a higher prevalence of TNs in women (both P for trend < 0.05), and lower TFQIFT3 levels were significantly associated with a higher prevalence of TNs in men. Both higher TFQIFT3 and TFQIFT4 levels were significantly associated with higher odds of having fewer TNs using multiple nodules as the base category in women. However, the relationships between TFQIFT4 and the prevalence or number of TNs in men were not found. Conclusions: The trends of THs, TSH, TFQIFT4, and TFQIFT3 at different ages were sex-dependent. Both TFQIFT4 and TFQIFT3 levels were negatively associated with the prevalence and number of TNs in women. The present results may lead to a better understanding of the sex-specific relationships between the development of the pituitary-TH axis and the formation of TNs.


Subject(s)
Thyroid Hormones , Thyroid Nodule , Humans , Male , Female , Thyroid Nodule/epidemiology , Thyroid Nodule/blood , Adult , Cross-Sectional Studies , Middle Aged , China/epidemiology , Thyroid Hormones/blood , Pituitary Gland/metabolism , Thyrotropin/blood , Thyroid Gland , Aged , Sex Factors , Young Adult , Prevalence , Sex Characteristics , East Asian People
5.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731915

ABSTRACT

The mammalian pituitary gland drives highly conserved physiological processes such as somatic cell growth, pubertal transformation, fertility, and metabolism by secreting a variety of hormones. Recently, single-cell transcriptomics techniques have been used in pituitary gland research. However, more studies have focused on adult pituitary gland tissues from different species or different sexes, and no research has yet resolved cellular differences in pituitary gland tissue before and after sexual maturation. Here, we identified a total of 15 cell clusters and constructed single-cell transcriptional profiles of rats before and after sexual maturation. Furthermore, focusing on the gonadotrope cluster, 106 genes were found to be differentially expressed before and after sexual maturation. It was verified that Spp1, which is specifically expressed in gonadotrope cells, could serve as a novel marker for this cell cluster and has a promotional effect on the synthesis and secretion of follicle-stimulating hormone. The results provide a new resource for further resolving the regulatory mechanism of pituitary gland development and pituitary hormone synthesis and secretion.


Subject(s)
Gonadotrophs , Pituitary Gland , Sexual Maturation , Single-Cell Analysis , Animals , Rats , Sexual Maturation/genetics , Pituitary Gland/metabolism , Gonadotrophs/metabolism , Single-Cell Analysis/methods , Male , Female , Biomarkers/metabolism , Transcriptome , Gene Expression Profiling , Follicle Stimulating Hormone/metabolism
6.
Sci Rep ; 14(1): 10045, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698013

ABSTRACT

Chronic stress has been implicated in mental illnesses and depressive behaviors. Somatostatin 4 receptor (SSTR4) has been shown to mediate anxiolytic and depression-like effects. Here, we aimed to explore the potential of SSTR4 as a diagnostic marker for chronic stress in mice. The mice were divided into single stress, chronic restraint stress, and control groups, and Sstr4 mRNA expression in the pituitary, lungs, and thymus, its protein expression in the thymus, were analyzed. Compared to controls, Sstr4 mRNA expression decreased significantly in the pituitary gland of the chronic and single-stress groups (P = 0.0181 and 0.0022, respectively) and lungs of the single-stress group (P = 0.0124), whereas it significantly increased in the thymus of the chronic-stress group (P = 0.0313). Thymic SSTR4 expression did not decrease significantly in stress groups compared to that in the control group (P = 0.0963). These results suggest that SSTR4 expression fluctuates in response to stress. Furthermore, Sstr4 mRNA expression dynamics in each organ differed based on single or chronic restraint stress-loading periods. In conclusion, this study suggests that investigating SSTR4 expression in each organ could allow for its use as a stress marker to estimate the stress-loading period and aid in diagnosing chronic stress.


Subject(s)
Biomarkers , Receptors, Somatostatin , Stress, Psychological , Thymus Gland , Animals , Receptors, Somatostatin/metabolism , Receptors, Somatostatin/genetics , Mice , Stress, Psychological/metabolism , Male , Biomarkers/metabolism , Thymus Gland/metabolism , Pituitary Gland/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Lung/metabolism , Chronic Disease , Stress, Physiological , Restraint, Physical
7.
Front Immunol ; 15: 1368572, 2024.
Article in English | MEDLINE | ID: mdl-38698852

ABSTRACT

Introduction: Interferon-gamma (IFN-γ) is pivotal in orchestrating immune responses during healthy pregnancy. However, its dysregulation, often due to autoimmunity, infections, or chronic inflammatory conditions, is implicated in adverse reproductive outcomes such as pregnancy failure or infertility. Additionally, the underlying immunological mechanisms remain elusive. Methods: Here, we explore the impact of systemic IFN-γ elevation on cytotoxic T cell responses in female reproduction utilizing a systemic lupus-prone mouse model with impaired IFN-γ degradation. Results: Our findings reveal that heightened IFN-γ levels triggered the infiltration of CD8+T cells in the pituitary gland and female reproductive tract (FRT), resulting in prolactin deficiency and subsequent infertility. Furthermore, we demonstrate that chronic IFN-γ elevation increases effector memory CD8+T cells in the murine ovary and uterus. Discussion: These insights broaden our understanding of the role of elevated IFN-γ in female reproductive dysfunction and suggest CD8+T cells as potential immunotherapeutic targets in female reproductive disorders associated with chronic systemic IFN-γ elevation.


Subject(s)
CD8-Positive T-Lymphocytes , Interferon-gamma , Animals , Female , Mice , Pregnancy , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Infertility, Female/immunology , Interferon-gamma/metabolism , Lupus Erythematosus, Systemic/immunology , Mice, Inbred C57BL , Ovary/immunology , Pituitary Gland/immunology , Pituitary Gland/metabolism , Prolactin/metabolism , Uterus/immunology
8.
BMC Genomics ; 25(1): 392, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649819

ABSTRACT

BACKGROUND: The pituitary directly regulates the reproductive process through follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Transcriptomic research on the pituitaries of ewes with different FecB (fecundity Booroola) genotypes has shown that some key genes and lncRNAs play an important role in pituitary function and sheep fecundity. Our previous study found that ewes with FecB + + genotypes (without FecB mutation) still had individuals with more than one offspring per birth. It is hoped to analyze this phenomenon from the perspective of the pituitary transcriptome. RESULTS: The 12 Small Tail Han Sheep were equally divided into polytocous sheep in the follicular phase (PF), polytocous sheep in the luteal phase (PL), monotocous sheep in the follicular phase (MF), and monotocous sheep in the luteal phase (ML). Pituitary tissues were collected after estrus synchronous treatment for transcriptomic analysis. A total of 384 differentially expressed genes (DEGs) (182 in PF vs. MF and 202 in PL vs. ML) and 844 differentially expressed lncRNAs (DELs) (427 in PF vs. MF and 417 in PL vs. ML) were obtained from the polytocous-monotocous comparison groups in the two phases. Functional enrichment analysis showed that the DEGs in the two phases were enriched in signaling pathways known to play an important role in sheep fecundity, such as calcium ion binding and cAMP signaling pathways. A total of 1322 target relationship pairs (551 pairs in PF vs. MF and 771 pairs in PL vs. ML) were obtained for the target genes prediction of DELs, of which 29 DEL-DEG target relationship pairs (nine pairs in PF vs. MF and twenty pairs in PL vs. ML). In addition, the competing endogenous RNA (ceRNA) networks were constructed to explore the regulatory relationships of DEGs, and some important regulatory relationship pairs were obtained. CONCLUSION: According to the analysis results, we hypothesized that the pituitary first receives steroid hormone signals from the ovary and uterus and that VAV3 (Vav Guanine Nucleotide Exchange Factor 3), GABRG1 (Gamma-Aminobutyric Acid A Receptor, Gamma 1), and FNDC1 (Fibronectin Type III Domain Containing 1) played an important role in this process. Subsequently, the reproductive process was regulated by gonadotropins, and IGFBP1 (Insulin-like Growth Factor Binding Protein 1) was directly involved in this process, ultimately affecting litter size. In addition, TGIF1 (Transforming Growth Factor-Beta-Induced Factor 1) and TMEFF2 (Transmembrane Protein With EGF Like And Two Follistatin Like Domains 2) compensated for the effect of the FecB mutation and function by acting on TGF-ß/SMAD signaling pathway, an important pathway for sheep reproduction. These results provided a reference for understanding the mechanism of multiple births in Small Tail Han Sheep without FecB mutation.


Subject(s)
Pituitary Gland , RNA, Long Noncoding , RNA, Messenger , Animals , Sheep/genetics , Pituitary Gland/metabolism , Female , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Fertility/genetics , Reproduction/genetics , Gene Expression Profiling , Transcriptome
9.
Sci Rep ; 14(1): 8989, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38637687

ABSTRACT

In mammals reproduction is regulated by many factors, among others by the peptides belonging to the RFamide peptide family. However, the knowledge concerning on the impact of recently identified member of this family (QRFP43) on the modulation of the gonadotrophic axis activity is still not fully understood and current research results are ambiguous. In the present study we tested the in vivo effect of QRFP43 on the secretory activity of the gonadotrophic axis at the hypothalamic-pituitary level in Polish Merino sheep. The animals (n = 48) were randomly divided into three experimental groups: controls receiving an icv infusion of Ringer-Locke solution, group receiving icv infusion of QRFP43 at 10 µg per day and 50 µg per day. All sheep received four 50 min icv infusions at 30 min intervals, on each of three consecutive days. Hypothalamic and pituitaries were collected and secured for further immunohistochemical and molecular biological analysis. In addition, during the experiment a blood samples have been collected for subsequent RIA determinations. QRFP43 was found to downregulate Kiss mRNA expression in the MBH and reduce the level of IR material in ME. This resulted in a reduction of GnRH IR material in the ME. QRFP43 increased plasma FSH levels while decreasing LH levels. Our findings indicate that QRFP43 inhibits the activity of the gonadotropic axis in the ovine at the level of the hypothalamus and may represent another neuromodulator of reproductive processes in animals.


Subject(s)
Gonadotrophs , Luteinizing Hormone , Female , Sheep , Animals , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Pituitary Gland/metabolism , Gonadotrophs/metabolism , Follicle Stimulating Hormone , Mammals/metabolism
10.
Gen Comp Endocrinol ; 353: 114512, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38582176

ABSTRACT

Eels are gonochoristic species whose gonadal differentiation initiates at the yellow eel stage and is influenced by environmental factors. We revealed some sex-related genes were sex dimorphically expressed in gonads during gonadal sex differentiation of Japanese eel (Anguilla japonica); however, the expression of sex-related genes in the brain-pituitary during gonadal sex differentiation in eels is still unclear. This study aimed to investigate the sex-related gene expressions in the brain-pituitary and tried to clarify their roles in the brain and gonads during gonadal sex differentiation. Based on our previous histological study, the control eels developed as males, and estradiol-17ß (E2) was used for feminization. Our results showed that during testicular differentiation, the brain cyp19a1 transcripts and aromatase proteins were increased significantly; moreover, the cyp19a1, sf-1, foxl2s, and esrs (except gperb) transcripts in the midbrain/pituitary also were increased significantly. Forebrain gnrh1 transcripts increased slightly during gonadal differentiation of both sexes, but the gnrhr1b and gnrhr2 transcripts in the midbrain/pituitary were stable during gonadal differentiation. The expression levels of gths and gh in the midbrain/pituitary were significantly increased during testicular differentiation and were much higher in males than in E2-feminized females. These results implied that endogenous estrogens might play essential roles in the brain/pituitary during testicular differentiation, sf-1, foxl2s, and esrs may have roles in cyp19a1 regulation in the midbrain/pituitary of Japanese eels. For the GnRH-GTH axis, gths, especially fshb, may be regulated by esrs and involved in regulating testicular differentiation and development in Japanese eels.


Subject(s)
Aromatase , Brain , Pituitary Gland , Sex Differentiation , Animals , Sex Differentiation/genetics , Sex Differentiation/physiology , Male , Aromatase/genetics , Aromatase/metabolism , Female , Brain/metabolism , Pituitary Gland/metabolism , Anguilla/genetics , Anguilla/metabolism , Anguilla/growth & development , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism , Testis/metabolism , Gonads/metabolism , Gonads/growth & development
11.
Peptides ; 176: 171213, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604379

ABSTRACT

Glucagon is best known for its contribution to glucose regulation through activation of the glucagon receptor (GCGR), primarily located in the liver. However, glucagon's impact on other organs may also contribute to its potent effects in health and disease. Given that glucagon-based medicine is entering the arena of anti-obesity drugs, elucidating extrahepatic actions of glucagon are of increased importance. It has been reported that glucagon may stimulate secretion of arginine-vasopressin (AVP)/copeptin, growth hormone (GH) and adrenocorticotrophic hormone (ACTH) from the pituitary gland. Nevertheless, the mechanisms and whether GCGR is present in human pituitary are unknown. In this study we found that intravenous administration of 0.2 mg glucagon to 14 healthy subjects was not associated with increases in plasma concentrations of copeptin, GH, ACTH or cortisol over a 120-min period. GCGR immunoreactivity was present in the anterior pituitary but not in cells containing GH or ACTH. Collectively, glucagon may not directly stimulate secretion of GH, ACTH or AVP/copeptin in humans but may instead be involved in yet unidentified pituitary functions.


Subject(s)
Adrenocorticotropic Hormone , Glucagon , Glycopeptides , Humans , Glycopeptides/metabolism , Glucagon/metabolism , Glucagon/blood , Adrenocorticotropic Hormone/blood , Adrenocorticotropic Hormone/metabolism , Male , Adult , Female , Pituitary Gland/metabolism , Pituitary Gland/drug effects , Hydrocortisone/blood , Receptors, Glucagon/metabolism , Human Growth Hormone/metabolism , Growth Hormone/metabolism , Growth Hormone/blood , Middle Aged
12.
Anim Reprod Sci ; 265: 107457, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677100

ABSTRACT

The anterior pituitary plays a critical role in the endocrine system, contains gonadotrophs, which regulate reproductive efficiency by secreting follicle-stimulating hormone (FSH) and luteinizing hormone (LH). PPP2R2A is a serine-threonine phosphatase that regulates reproductive functions in both females and males, its function in pituitary cells remain unclear. Hu sheep is a highly prolific breed, which makes it suitable for studying reproductive mechanisms. In this study, the relative abundances of PPP2R2A mRNA expression were higher in the pituitary of high-prolificacy (HF) Hu sheep compared to those of low-prolificacy (LF) Hu sheep. Additionally, we demonstrated that PPP2R2A promotes pituitary cell proliferation and gonadotropin secretion using the EdU assay and ELISA, respectively. Moreover, it inhibits pituitary cell apoptosis using flow cytometry. Furthermore, PPP2R2A may affect pituitary cell function by regulating the AKT/mTOR signaling pathway. In summary, our findings suggest that PPP2R2A may play a role in regulating pituitary function and influencing the secretion of gonadotropins.


Subject(s)
Cell Proliferation , Pituitary Gland , Protein Phosphatase 2 , Animals , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Sheep/physiology , Pituitary Gland/metabolism , Pituitary Gland/cytology , Female , Cell Proliferation/physiology , Gonadotropins/metabolism , Male , Gene Expression Regulation/physiology
13.
J Endocrinol ; 262(1)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38579764

ABSTRACT

The pituitary gland orchestrates multiple endocrine organs by secreting tropic hormones, and therefore plays a significant role in a myriad of physiological processes, including skeletal modeling and remodeling, fat and glucose metabolism, and cognition. Expression of receptors for each pituitary hormone and the hormone itself in the skeleton, fat, immune cells, and the brain suggest that their role is much broader than the traditionally attributed functions. FSH, believed solely to regulate gonadal function is also involved in fat and bone metabolism, as well as in cognition. Our emerging understanding of nonreproductive functions of FSH, thus, opens potential therapeutic opportunities to address detrimental health consequences during and after menopause, namely, osteoporosis, obesity, and dementia. In this review, we outline current understanding of the cross-talk between the pituitary, bone, adipose tissue, and brain through FSH. Preclinical evidence from genetic and pharmacologic interventions in rodent models, and human data from population-based observations, genetic studies, and a small number of interventional studies provide compelling evidence for independent functions of FSH in bone loss, fat gain, and congnitive impairment.


Subject(s)
Bone and Bones , Brain , Follicle Stimulating Hormone , Humans , Brain/metabolism , Brain/physiology , Animals , Follicle Stimulating Hormone/metabolism , Bone and Bones/metabolism , Bone and Bones/physiology , Adipose Tissue/metabolism , Adipose Tissue/physiology , Pituitary Gland/metabolism , Pituitary Gland/physiology , Osteoporosis/metabolism
14.
Toxicol Appl Pharmacol ; 486: 116919, 2024 May.
Article in English | MEDLINE | ID: mdl-38580201

ABSTRACT

BACKGROUND: Idiopathic intracranial hypertension (IIH) is a disease characterized by elevated intracranial pressure (ICP) and is a disease of young females. The first line pharmacological treatments include acetazolamide and topiramate and given the nature of IIH patients and the dosing regimen of these drugs, their effect on the endocrine system is important to evaluate. We aimed to assess the effects of acetazolamide and topiramate on steroid profiles in relevant endocrine tissues. METHODS: Female Sprague Dawley rats received chronic clinically equivalent doses of acetazolamide or topiramate by oral gavage and were sacrificed in estrus. Tissue specific steroid profiles of lateral ventricle CP, 4th ventricle CP, CSF, serum, uterine horn and fundus, ovaries, adrenal glands and pituitary glands were assessed by quantitative targeted LC-MS/MS. We determined luteinizing hormone (LH) and follicle stimulating hormones (FSH) levels in paired serum by ELISA. RESULTS: Topiramate increased the concentration of estradiol and decreased the concentration of DHEA in lateral choroid plexus. Moreover, it decreased the concentration of androstenediol in the pituitary gland. Topiramate increased serum LH. Acetazolamide decreased progesterone levels in serum and uterine fundus and increased corticosteroid levels in the adrenal glands. CONCLUSION: These results demonstrate that both acetazolamide and topiramate have endocrine disrupting effects in rats. Topiramate primarily targeted the choroid plexus and the pituitary gland while acetazolamide had broader systemic effects. Furthermore, topiramate predominantly targeted sex hormones, whereas acetazolamide widely affected all classes of hormones. A similar effect in humans has not yet been documented but these concerning findings warrants further investigations.


Subject(s)
Acetazolamide , Endocrine Disruptors , Estrus , Rats, Sprague-Dawley , Topiramate , Animals , Female , Topiramate/pharmacology , Acetazolamide/pharmacology , Acetazolamide/toxicity , Endocrine Disruptors/toxicity , Rats , Estrus/drug effects , Luteinizing Hormone/blood , Fructose/toxicity , Fructose/analogs & derivatives , Pituitary Gland/drug effects , Pituitary Gland/metabolism , Progesterone/blood , Follicle Stimulating Hormone/blood , Gonadal Steroid Hormones/blood , Estradiol/blood , Ovary/drug effects , Ovary/metabolism
15.
Poult Sci ; 103(6): 103742, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670056

ABSTRACT

Unlike other poultry, parent pigeons produce "pigeon milk" in their crops to nurture their squabs, which is mainly controlled by prolactin (PRL). Exception for PRL, the pituitary gland may also release various other peptide and protein hormones. However, whether these hormones change during pigeon crop lactation and their potential physiological functions remain unclear. Here, to identify potential peptide or protein hormone genes that regulate crop lactation, we conducted transcriptome analysis of pigeon pituitary glands at 3 different breeding stages (the ceased stage-nonincubation and non-nurturing stage, the 11th d of the incubation, and the 1st d of the nurturing stage) using RNA sequencing (RNA-Seq). Our analysis identified a total of 15,191 mRNAs and screened out 297 differentially expressed genes (DEG), including PRL, VIP, etc. The expression abundance of PRL mRNA on the 1st d of the nurturing stage was respectively 4.93 and 3.62 folds higher when compared to the ceased stage and the 11th d of the incubation stage. Additionally, the expression abundance of VIP is higher in the 1st d of the nurturing stage than in the ceased stage. Protein-protein interaction (PPI) network and Molecular Complex Detection (MCODE) analysis identified several vital DEGs (e.g., GHRHR, VIP, etc.), being closely linked with hormone and enriched in neuropeptide signaling pathway and response to the hormone. Expression pattern analysis revealed that these DEGs exhibited 4 distinct expression patterns (profile 10, 16, 18, 19). Genes in profile 10 and 19 presented a trend with the highest expression level on 1st d of the nurturing stage, and functional enrichment analysis indicated that these genes are involved in neuropeptide hormone activity, receptor-ligand activity, and the extracellular matrix, etc. Taken together, being consistent with PRL, some genes encoding peptide and protein hormones (e.g., VIP) presented differentially expressed in different breeding stages. It suggests that these hormones may be involved in regulation of the crop lactation process or corresponding behavior in domestic pigeons. The results of this study help to gain new insights into the role of pituitary gland in regulating pigeon lactation.


Subject(s)
Columbidae , Gene Expression Profiling , Pituitary Gland , Animals , Columbidae/genetics , Columbidae/physiology , Columbidae/metabolism , Pituitary Gland/metabolism , Gene Expression Profiling/veterinary , Female , Avian Proteins/genetics , Avian Proteins/metabolism , Peptide Hormones/genetics , Peptide Hormones/metabolism , Transcriptome , Lactation/genetics , Prolactin/genetics , Prolactin/metabolism
16.
Sci Total Environ ; 927: 172381, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38604374

ABSTRACT

BACKGROUND: In fisheries, hypoxia stress is one of the most common environmental stresses that often lead to the death of large numbers of fish and cause significant economic losses. The pituitary, an important endocrine gland, lies below the hypothalamus region of the brain. It plays a crucial part in controlling vital physiological functions in fish, such as growth, reproduction, and responses to stress. However, the detailed mechanisms of how hypoxia affects these physiological processes via the pituitary remain largely unknown. METHODS: Fat greenlings (Hexagrammous otakii) were exposed to different dissolved oxygen (DO = 7. 6 mg/L and DO = 2 mg/L) for 24 h. miRNA-mRNA association analysis of H. otakii pituitary after hypoxia stress. Detecting apoptosis in H. otakii pituitary using Tunel and qPCR. Subsequent detection of hormones in H. otakii liver, gonads and serum by ELISA. RESULTS: In this study, hypoxia causes immune system disorders and inflammatory responses through the combined analysis of miRNAs and mRNAs. Subsequent verification indicated a significant accumulation of reactive oxygen species (ROS) subsequent to hypoxia treatment. The overproduction of ROS cause oxidative stress and apoptosis in the pituitary, ultimately causing pituitary damage and reduced growth hormone and luteinising hormone release. CONCLUSIONS: According to the association study of miRNA-mRNA, apoptosis problems caused by hypoxia stress result in H. otakii pituitary damage. In the meantime, this work clarifies the possible impact of hypoxia-stress on the pituitary cells, as well as on the gonadal development and growth of H. otakii.


Subject(s)
Pituitary Gland , Animals , Pituitary Gland/metabolism , Hypoxia , Apoptosis , Reactive Oxygen Species/metabolism
17.
BMC Genomics ; 25(1): 309, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528494

ABSTRACT

BACKGROUND: Incubation behaviour, an instinct for natural breeding in poultry, is strictly controlled by the central nervous system and multiple neuroendocrine hormones and neurotransmitters, and is closely associated with the cessation of egg laying. Therefore, it is essential for the commercial poultry industry to clarify the molecular regulation mechanism of incubation behaviour. Here, we used high-throughput sequencing technology to examine the pituitary transcriptome of Changshun green-shell laying hen, a local breed from Guizhou province, China, with strong broodiness, in two reproductive stages, including egg-laying phase (LP) and incubation phase (BP). We also analyze the differences in gene expression during the transition from egg-laying to incubation, and identify critical pathways and candidate genes involved in controlling the incubation behaviour in the pituitary. RESULTS: In this study, we demonstrated that a total of 2089 differently expressed genes (DEGs) were identified in the pituitary, including 842 up-regulated and 1247 down-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that steroid biosynthesis pathway and neuroactive ligand-receptor interaction were significantly enriched based on DEGs commonly identified in pituitary. Further analysis revealed that SRC, ITGB4, ITGB3, PIK3R3 and DRD2 may play crucial roles in the regulation of incubation behaviour. CONCLUSIONS: We identified 2089 DEGs and the key signaling pathways which may be closely correlated with incubation in Changshun green-shell laying hens, and clarified the molecular regulation mechanism of incubation behaviour. Our results indicate the complexity and variety of differences in reproductive behaviour of different chicken breeds.


Subject(s)
Chickens , Transcriptome , Animals , Female , Chickens/metabolism , Gene Expression Profiling , Pituitary Gland/metabolism , Hormones/metabolism
19.
J Cell Biochem ; 125(5): e30551, 2024 May.
Article in English | MEDLINE | ID: mdl-38465779

ABSTRACT

Neuregulin-4 (Nrg4) and melatonin play vital roles in endocrine diseases. However, there is little discussion about the function and potential mechanism of Nrg4 and melatonin in prolactin (PRL) regulation. The human normal pituitary data from Gene Expression Profiling Interactive Analysis (GEPIA) database was used to explore the correlation between NRG4 and PRL. The expression and correlation of NRG4 and PRL were determined by Immunofluorescence staining (IF) and human normal pituitary tissue microarray. Western Blot (WB) was used to detect the expression of PRL, p-ErbB2/3/4, ErbB2/3/4, p-Erk1/2, Erk1/2, p-Akt and Akt in PRL-secreting pituitary GH3 and RC-4B/C cells treated by Nrg4, Nrg4-small interfering RNA, Erk1/2 inhibitor FR180204 and melatonin. The expression of NRG4 was significantly positively correlated with that of PRL in the GEPIA database and normal human pituitary tissues. Nrg4 significantly increased the expression and secretion of PRL and p-Erk1/2 expression in GH3 cells and RC-4B/C cells. Inhibition of Nrg4 significantly inhibited PRL expression. The increased levels of p-Erk1/2 and PRL induced by Nrg4 were abolished significantly in response to FR180204 in GH3 and RC-4B/C cells. Additionally, Melatonin promotes the expression of Nrg4, p-ErbB4, p-Erk1/2, and PRL and can further promote the expression of p-Erk1/2 and PRL in combination with Nrg4. Further investigation into the function of Nrg4 and melatonin on PRL expression and secretion may provide new clues to advance the clinical control of prolactinomas and hyperprolactinemia.


Subject(s)
MAP Kinase Signaling System , Melatonin , Neuregulins , Prolactin , Receptor, ErbB-4 , Melatonin/pharmacology , Humans , Prolactin/metabolism , Receptor, ErbB-4/metabolism , Receptor, ErbB-4/genetics , Neuregulins/metabolism , Neuregulins/genetics , MAP Kinase Signaling System/drug effects , Pituitary Gland/metabolism , Pituitary Gland/cytology , Animals , Rats
20.
Sci Rep ; 14(1): 5918, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38467682

ABSTRACT

The pituitary functions as a master endocrine gland that secretes hormones critical for regulation of a wide variety of physiological processes including reproduction, growth, metabolism and stress responses. The distinct hormone-producing cell lineages within the pituitary display remarkable levels of cell plasticity that allow remodeling of the relative proportions of each hormone-producing cell population to meet organismal demands. The molecular mechanisms governing pituitary cell plasticity have not been fully elucidated. Our recent studies have implicated a role for the Musashi family of sequence-specific mRNA binding proteins in the control of pituitary hormone production, pituitary responses to hypothalamic stimulation and modulation of pituitary transcription factor expression in response to leptin signaling. To date, these actions of Musashi in the pituitary appear to be mediated through translational repression of the target mRNAs. Here, we report Musashi1 directs the translational activation, rather than repression, of the Prop1, Gata2 and Nr5a1 mRNAs which encode key pituitary lineage specification factors. We observe that Musashi1 further directs the translational activation of the mRNA encoding the glycolipid Neuronatin (Nnat) as determined both in mRNA reporter assays as well as in vivo. Our findings suggest a complex bifunctional role for Musashi1 in the control of pituitary cell function.


Subject(s)
Pituitary Gland , RNA-Binding Proteins , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Pituitary Gland/metabolism , Protein Processing, Post-Translational , Pituitary Hormones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...