Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.230
Filter
1.
Dev Psychobiol ; 66(5): e22491, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38698633

ABSTRACT

Developmental plasticity is particularly important for humans and other primates because of our extended period of growth and maturation, during which our phenotypes adaptively respond to environmental cues. The hypothalamus-pituitary-gonadal (HPG) and hypothalamus-pituitary-adrenal (HPA) axes are likely to be principal targets of developmental "programming" given their roles in coordinating fitness-relevant aspects of the phenotype, including sexual development, adult reproductive and social strategies, and internal responses to the external environment. In social animals, including humans, the social environment is believed to be an important source of cues to which these axes may adaptively respond. The effects of early social environments on the HPA axis have been widely studied in humans, and to some extent, in other primates, but there are still major gaps in knowledge specifically relating to males. There has also been relatively little research examining the role that social environments play in developmental programming of the HPG axis or the HPA/HPG interface, and what does exist disproportionately focuses on females. These topics are likely understudied in males in part due to the difficulty of identifying developmental milestones in males relative to females and the general quiescence of the HPG axis prior to maturation. However, there are clear indicators that early life social environments matter for both sexes. In this review, we examine what is known about the impact of social environments on HPG and HPA axis programming during male development in humans and nonhuman primates, including the role that epigenetic mechanisms may play in this programming. We conclude by highlighting important next steps in this research area.


Subject(s)
Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Primates , Social Environment , Animals , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology , Male , Primates/physiology , Humans , Female
2.
Dev Psychobiol ; 66(5): e22494, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38698641

ABSTRACT

Though considerable work supports the Dimensional Model of Adversity and Psychopathology, prior research has not tested whether the dimensions-threat (e.g., abuse) and deprivation (e.g., neglect)-are uniquely related to salivary trait indicators of hypothalamic pituitary adrenal (HPA) axis activity. We examined the unique and interactive effects of threat and deprivation on latent trait cortisol (LTC)-and whether these effects were modified by co-occurring adversities. Emerging adults (n = 90; Mage = 19.36 years; 99.88% cisgender women) provided salivary cortisol samples four times a day (waking, 30 min and 45 min postwaking, bedtime) over three 3-day measurement waves over 13 weeks. Contextual life stress interviews assessed early adversity. Though the effects varied according to the conceptualization of early adversity, overall, threat-but not deprivation, nor other co-occurring adversities-was uniquely associated with the across-wave LTC. Specifically, the incidence and frequency of threat were each negatively related to the across-wave LTC. Threat severity was also associated with the across-wave LTC, but only among those with no deprivation. Finally, the effects of threat were modified by other co-occurring adversities. Findings suggest that threat has unique implications for individual differences in HPA axis activity among emerging adults, and that co-occurring adversities modify such effects.


Subject(s)
Hydrocortisone , Hypothalamo-Hypophyseal System , Saliva , Humans , Female , Male , Hydrocortisone/metabolism , Young Adult , Adult , Saliva/metabolism , Saliva/chemistry , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiopathology , Adolescent , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiopathology , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Adverse Childhood Experiences , Psychosocial Deprivation
3.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732064

ABSTRACT

In recent years, there has been a marked increase in interest in the role of the kynurenine pathway (KP) in mechanisms associated with addictive behavior. Numerous reports implicate KP metabolism in influencing the immune system, hypothalamic-pituitary-adrenal (HPA) axis, and neurotransmission, which underlie the behavioral patterns characteristic of addiction. An in-depth analysis of the results of these new studies highlights interesting patterns of relationships, and approaching alcohol use disorder (AUD) from a broader neuroendocrine-immune system perspective may be crucial to better understanding this complex phenomenon. In this review, we provide an up-to-date summary of information indicating the relationship between AUD and the KP, both in terms of changes in the activity of this pathway and modulation of this pathway as a possible pharmacological approach for the treatment of AUD.


Subject(s)
Alcoholism , Hypothalamo-Hypophyseal System , Immune System , Kynurenine , Pituitary-Adrenal System , Synaptic Transmission , Humans , Kynurenine/metabolism , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Alcoholism/metabolism , Alcoholism/immunology , Animals , Immune System/metabolism , Immune System/immunology , Signal Transduction
4.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791468

ABSTRACT

Maternal type 2 diabetes mellitus (T2DM) has been shown to result in foetal programming of the hypothalamic-pituitary-adrenal (HPA) axis, leading to adverse foetal outcomes. T2DM is preceded by prediabetes and shares similar pathophysiological complications. However, no studies have investigated the effects of maternal prediabetes on foetal HPA axis function and postnatal offspring development. Hence, this study investigated the effects of pregestational prediabetes on maternal HPA axis function and postnatal offspring development. Pre-diabetic (PD) and non-pre-diabetic (NPD) female Sprague Dawley rats were mated with non-prediabetic males. After gestation, male pups born from the PD and NPD groups were collected. Markers of HPA axis function, adrenocorticotropin hormone (ACTH) and corticosterone, were measured in all dams and pups. Glucose tolerance, insulin and gene expressions of mineralocorticoid (MR) and glucocorticoid (GR) receptors were further measured in all pups at birth and their developmental milestones. The results demonstrated increased basal concentrations of ACTH and corticosterone in the dams from the PD group by comparison to NPD. Furthermore, the results show an increase basal ACTH and corticosterone concentrations, disturbed MR and GR gene expression, glucose intolerance and insulin resistance assessed via the Homeostasis Model Assessment (HOMA) indices in the pups born from the PD group compared to NPD group at all developmental milestones. These observations reveal that pregestational prediabetes is associated with maternal dysregulation of the HPA axis, impacting offspring HPA axis development along with impaired glucose handling.


Subject(s)
Adrenocorticotropic Hormone , Corticosterone , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Prediabetic State , Rats, Sprague-Dawley , Animals , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Female , Pregnancy , Prediabetic State/metabolism , Rats , Adrenocorticotropic Hormone/blood , Adrenocorticotropic Hormone/metabolism , Corticosterone/blood , Corticosterone/metabolism , Male , Receptors, Glucocorticoid/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Mineralocorticoid/metabolism , Receptors, Mineralocorticoid/genetics , Prenatal Exposure Delayed Effects/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin Resistance
5.
Pharmacol Res Perspect ; 12(3): e1205, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38764237

ABSTRACT

This study aimed to examine the effect of acute exogenous melatonin administration on salivary cortisol and alpha-amylase (sCort and sAA) as representatives of the HPA axis and the sympathetic nervous system, respectively. A single-dose prolonged-release melatonin (2 mg) or a placebo tablet was given to healthy volunteers (n = 64) at 20:00 h in a crossover design. The saliva was collected at six time points (20:00, 21:00, awakening, 30 min after awakening, 10:00, and 12:00 h) and was measured for sCort, sAA, and salivary melatonin (sMT) levels. Pulse rates and sleep parameters were also collected. Melatonin was effective in improving sleep onset latency by 7:04 min (p = .037) and increasing total sleep time by 24 min (p = .006). Participants with poor baseline sleep quality responded more strongly to melatonin than participants with normal baseline sleep quality as they reported more satisfaction in having adequate sleep (p = .017). Melatonin administration resulted in higher sCort levels at awakening time point (p = .023) and a tendency of lower sAA levels but these were not significant. Melatonin ingestion at 20:00 h resulted in a marked increase in sMT levels at 21:00 h and remained higher than baseline up to at least 10:00 h (p < .001). Melatonin increases sCort levels at certain time point with a tendency to lower sAA levels. These opposing effects of melatonin suggested a complex interplay between melatonin and these biomarkers. Also, the results confirmed the positive acute effect of a single-dose melatonin on sleep quality.


Subject(s)
Cross-Over Studies , Hydrocortisone , Melatonin , Saliva , Humans , Melatonin/administration & dosage , Melatonin/pharmacology , Saliva/chemistry , Saliva/metabolism , Hydrocortisone/metabolism , Male , Adult , Female , Young Adult , alpha-Amylases/metabolism , Sleep/drug effects , Sleep Quality , Double-Blind Method , Healthy Volunteers , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/metabolism , Delayed-Action Preparations
6.
Ann Med ; 56(1): 2356667, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38776237

ABSTRACT

BACKGROUND: The lack of association between serum testosterone levels and symptoms suggestive of hypogonadism is a significant barrier in the determination of late-onset hypogonadism (LOH) in men. This study explored whether testosterone levels increase after morning awakening, likewise the cortisol awakening response (CAR) in the hypothalamic-pituitary-adrenal (HPA) axis, and whether testosterone levels during the post-awakening period are associated with age and symptoms suggestive of late-onset hypogonadism (LOH) in men. METHODS: Testosterone and cortisol levels were determined in saliva samples collected immediately upon awakening and 30 and 60 min after awakening, and scores of the Aging Males' Symptoms (AMS) questionnaire were obtained from 225 healthy adult men. RESULTS: A typical CAR (an increase in cortisol level ≥ 2.5 nmol/L above individual baseline) was observed in 155 participants (the subgroup exhibiting typical CAR). In the subgroup exhibiting CAR, testosterone levels sharply increased during the post-awakening period, showing a significant negative correlation with age, total AMS score, and the scores of 11 items on the somatic, psychological, and sexual AMS subscales. Of these items, three sexual items (AMS items #15-17) were correlated with age. Meanwhile, there was no notable increase in testosterone levels and no significant correlation of testosterone levels with age and AMS score in the subgroup exhibiting no typical CAR (n = 70). CONCLUSIONS: The results indicate that the hypothalamus-pituitary-gonad (HPG) axis responds to morning awakening, and determining testosterone levels during the post-awakening period in men with typical CAR may be useful for assessing HPG axis function and LOH.


The present study found that the HPG axis in healthy adult men responds to the morning awakening, characterized by increased salivary testosterone levels after the awakening period.The levels of salivary testosterone during the first hour after awakening are negatively associated with age and the severity of symptoms suggestive of LOH in adult men with typical CAR.


Subject(s)
Hydrocortisone , Hypogonadism , Hypothalamo-Hypophyseal System , Saliva , Testosterone , Humans , Male , Testosterone/analysis , Testosterone/blood , Testosterone/metabolism , Saliva/chemistry , Saliva/metabolism , Hypogonadism/metabolism , Hypogonadism/blood , Hypogonadism/diagnosis , Middle Aged , Adult , Hydrocortisone/metabolism , Hydrocortisone/blood , Hydrocortisone/analysis , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiopathology , Aged , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiopathology , Aging/metabolism , Aging/physiology , Surveys and Questionnaires , Age Factors , Young Adult , Wakefulness/physiology
7.
Front Endocrinol (Lausanne) ; 15: 1272270, 2024.
Article in English | MEDLINE | ID: mdl-38689729

ABSTRACT

During parturition and the immediate post-partum period there are two opposite, yet interdependent and intertwined systems that are highly active and play a role in determining lifelong health and behaviour in both the mother and her infant: the stress and the anti-stress (oxytocin) system. Before attempting to understand how the environment around birth determines long-term health trajectories, it is essential to understand how these two systems operate and how they interact. Here, we discuss together the hormonal and neuronal arms of both the hypothalamic-pituitary-adrenal (HPA) axis and the oxytocinergic systems and how they interact. Although the HPA axis and glucocorticoid stress axis are well studied, the role of oxytocin as an extremely powerful anti-stress hormone deserves more attention. It is clear that these anti-stress effects depend on oxytocinergic nerves emanating from the supraoptic nucleus (SON) and paraventricular nucleus (PVN), and project to multiple sites at which the stress system is regulated. These, include projections to corticotropin releasing hormone (CRH) neurons within the PVN, to the anterior pituitary, to areas involved in sympathetic and parasympathetic nervous control, to NA neurons in the locus coeruleus (LC), and to CRH neurons in the amygdala. In the context of the interaction between the HPA axis and the oxytocin system birth is a particularly interesting period as, for both the mother and the infant, both systems are very strongly activated within the same narrow time window. Data suggest that the HPA axis and the oxytocin system appear to interact in this early-life period, with effects lasting many years. If mother-child skin-to-skin contact occurs almost immediately postpartum, the effects of the anti-stress (oxytocin) system become more prominent, moderating lifelong health trajectories. There is clear evidence that HPA axis activity during this time is dependent on the balance between the HPA axis and the oxytocin system, the latter being reinforced by specific somatosensory inputs, and this has long-term consequences for stress reactivity.


Subject(s)
Hypothalamo-Hypophyseal System , Oxytocin , Pituitary-Adrenal System , Animals , Female , Humans , Pregnancy , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Oxytocin/metabolism , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology , Stress, Physiological/physiology , Stress, Psychological/metabolism , Yin-Yang
8.
BMC Psychiatry ; 24(1): 269, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600448

ABSTRACT

OBJECTIVE: The purpose of this study was to investigate the effects of escitalopram on the peripheral expression of hypothalamic-pituitary-adrenal (HPA) axis-related genes (FKBP51, HSP90, NR3C1 and POMC) and HPA-axis hormones in patients with panic disorder (PD). METHODS: Seventy-seven patients with PD were treated with escitalopram for 12 weeks. All participants were assessed for the severity of panic symptoms using the Panic Disorder Severity Scale (PDSS). The expression of HPA-axis genes was measured using real-time quantitative fluorescent PCR, and ACTH and cortisol levels were measured using chemiluminescence at baseline and after 12 weeks of treatment. RESULTS: At baseline, patients with PD had elevated levels of ACTH and cortisol, and FKBP51 expression in comparison to healthy controls (all p < 0.01). Correlation analysis revealed that FKBP51 expression levels were significantly positively related to cortisol levels and the severity of PD (all p < 0.01). Furthermore, baseline ACTH and cortisol levels, and FKBP51 expression levels were significantly reduced after 12 weeks of treatment, and the change in the PDSS score from baseline to post-treatment was significantly and positively related to the change in cortisol (p < 0.01). CONCLUSIONS: The results suggest that PD may be associated with elevated levels of ACTH and cortisol, and FKBP51 expression, and that all three biomarkers are substantially decreased in patients who have received escitalopram treatment.


Subject(s)
Panic Disorder , Humans , Panic Disorder/drug therapy , Panic Disorder/genetics , Panic Disorder/diagnosis , Adrenocorticotropic Hormone/metabolism , Adrenocorticotropic Hormone/pharmacology , Hydrocortisone/metabolism , Escitalopram , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , RNA, Messenger
9.
Front Endocrinol (Lausanne) ; 15: 1373748, 2024.
Article in English | MEDLINE | ID: mdl-38660512

ABSTRACT

Chronic fatigue syndrome (CFS) causes great harm to individuals and society. Elucidating the pathogenesis of CFS and developing safe and effective treatments are urgently needed. This paper reviews the functional changes in the hypothalamus-pituitary-adrenal (HPA) axis in patients with CFS and the associated neuroendocrine mechanisms. Despite some controversy, the current mainstream research evidence indicates that CFS patients have mild hypocortisolism, weakened daily variation in cortisol, a weakened response to the HPA axis, and an increase in negative feedback of the HPA axis. The relationship between dysfunction of the HPA axis and the typical symptoms of CFS are discussed, and the current treatment methods are reviewed.


Subject(s)
Fatigue Syndrome, Chronic , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Humans , Fatigue Syndrome, Chronic/therapy , Fatigue Syndrome, Chronic/metabolism , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Hydrocortisone/metabolism
10.
Brain Res ; 1834: 148913, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38580046

ABSTRACT

Hypothalamic-pituitary-adrenal (HPA) axis dysregulation is linked to the pathophysiology of depression. Although exogenous adrenocorticotropic hormone (ACTH) is associated with a depressive-like phenotype in rodents, comprehensive neurobehavioral and mechanistic evidence to support these findings are limited. Sprague-Dawley rats (male, n = 30; female, n = 10) were randomly assigned to the control (male, n = 10) or ACTH (male, n = 20; female n = 10) groups that received saline (0.1 ml, sc.) or ACTH (100 µg/day, sc.), respectively, for two weeks. Thereafter, rats in the ACTH group were subdivided to receive ACTH plus saline (ACTH_S; male, n = 10; female, n = 5; 0.2 ml, ip.) or ACTH plus imipramine (ACTH_I; male, n = 10; female, n = 5;10 mg/kg, ip.) for a further four weeks. Neurobehavioral changes were assessed using the forced swim test (FST), the sucrose preference test (SPT), and the open field test (OFT). Following termination, the brain regional mRNA expression of BDNF and CREB was determined using RT-PCR. After two-weeks, ACTH administration significantly increased immobility in the FST (p = 0.03), decreased interaction with the center of the OFT (p < 0.01), and increased sucrose consumption (p = 0.03) in male, but not female rats. ACTH administration significantly increased the expression of BDNF in the hippocampus and CREB in all brain regions in males (p < 0.05), but not in female rats. Imipramine treatment did not ameliorate these ACTH-induced neurobehavioral or molecular changes. In conclusion, ACTH administration resulted in a sex-specific onset of depressive-like symptoms and changes in brain regional expression of neurotrophic factors. These results suggest sex-specific mechanisms underlying the development of depressive-like behavior in a model of ACTH-induced HPA axis dysregulation.


Subject(s)
Adrenocorticotropic Hormone , Brain-Derived Neurotrophic Factor , Disease Models, Animal , Hypothalamo-Hypophyseal System , Imipramine , Pituitary-Adrenal System , Rats, Sprague-Dawley , Animals , Male , Female , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/drug effects , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Imipramine/pharmacology , Rats , Depression/metabolism , Behavior, Animal/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism
11.
PLoS One ; 19(4): e0298553, 2024.
Article in English | MEDLINE | ID: mdl-38568926

ABSTRACT

The pervasive use of social media has raised concerns about its potential detrimental effects on physical and mental health. Others have demonstrated a relationship between social media use and anxiety, depression, and psychosocial stress. In light of these studies, we examined physiological indicators of stress (heart rate to measure autonomic nervous system activation and cortisol to assess activity of the hypothalamic-pituitary-adrenal axis) associated with social media use and investigated possible moderating influences of sex, age, and psychological parameters. We collected physiological data from 59 subjects ranging in age from 13 to 55 across two cell phone treatments: social media use and a pre-selected YouTube playlist. Heart rate was measured using arm-band heart rate monitors before and during cell phone treatments, and saliva was collected for later cortisol analysis (by enzyme immunoassay) before and after each of the two cell phone treatments. To disentangle the effects of cell phone treatment from order of treatment, we used a crossover design in which participants were randomized to treatment order. Our study uncovered a significant period effect suggesting that both heart rate and cortisol decreased over the duration of our experiment, irrespective of the type of cell phone activity or the order of treatments. There was no indication that age, sex, habits of social media use, or psychometric parameters moderated the physiological response to cell phone activities. Our data suggest that 20-minute bouts of social media use or YouTube viewing do not elicit a physiological stress response.


Subject(s)
Cell Phone Use , Social Media , Humans , Heart Rate/physiology , Hydrocortisone/metabolism , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Saliva/metabolism , Stress, Physiological , Stress, Psychological/psychology , Male , Female , Adolescent , Young Adult , Adult , Middle Aged
12.
Dev Psychobiol ; 66(5): e22490, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38680082

ABSTRACT

Psychological stress is a ubiquitous facet of modern life, impacting individuals across diverse contexts and demographics. Understanding its physiological manifestations through biomarkers has gained substantial attention within the scientific community. A comprehensive search was conducted across multiple databases for peer-reviewed articles published within the past decade. Preliminary findings reveal many biomarkers associated with psychological stress across different biological systems, including the hypothalamic-pituitary-adrenal axis, immune system, cardiovascular system, and central nervous system. This systematic review explores psychological, physiological, and biochemical biomarkers associated with stress. Analyzing recent literature, it synthesizes findings across these three categories, elucidating their respective roles in stress response mechanisms. Psychological markers involve subjective assessments like self-reported stress levels, perceived stress scales, or psychometric evaluations measuring anxiety, depression, or coping mechanisms. Physiological markers include heart rate variability, blood pressure, and immune system responses such as cytokine levels or inflammatory markers. Biochemical markers involve hormones or chemicals linked to stress. It includes cortisol, catecholamines, copeptin, salivary amylase, IL-6, and C-reactive protein.


Subject(s)
Biomarkers , Stress, Psychological , Humans , Biomarkers/analysis , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiopathology , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiopathology , Stress, Psychological/metabolism , Stress, Psychological/physiopathology
13.
Eur J Neurosci ; 59(11): 3134-3146, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38602078

ABSTRACT

Early life stress (ELS) exposure alters stress susceptibility in later life and affects vulnerability to stress-related disorders, but how ELS changes the long-lasting responsiveness of the stress system is not well understood. Zebrafish provides an opportunity to study conserved mechanisms underlying the development and function of the stress response that is regulated largely by the neuroendocrine hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis, with glucocorticoids (GC) as the final effector. In this study, we established a method to chronically elevate endogenous GC levels during early life in larval zebrafish. To this end, we employed an optogenetic actuator, beggiatoa photoactivated adenylyl cyclase, specifically expressed in the interrenal cells of zebrafish and demonstrate that its chronic activation leads to hypercortisolaemia and dampens the acute-stress evoked cortisol levels, across a variety of stressor modalities during early life. This blunting of stress-response was conserved in ontogeny at a later developmental stage. Furthermore, we observe a strong reduction of proopiomelanocortin (pomc)-expression in the pituitary as well as upregulation of fkbp5 gene expression. Going forward, we propose that this model can be leveraged to tease apart the mechanisms underlying developmental programming of the HPA/I axis by early-life GC exposure and its implications for vulnerability and resilience to stress in adulthood.


Subject(s)
Glucocorticoids , Hypothalamo-Hypophyseal System , Larva , Optogenetics , Zebrafish , Animals , Optogenetics/methods , Glucocorticoids/metabolism , Glucocorticoids/pharmacology , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/drug effects , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/drug effects , Hydrocortisone/metabolism , Stress, Psychological/metabolism , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/genetics , Interrenal Gland/metabolism , Interrenal Gland/drug effects , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/genetics
14.
Horm Behav ; 162: 105538, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574447

ABSTRACT

Environmental enrichment (EE) is a paradigm that offers the animal a plethora of stimuli, including physical, cognitive, sensory, and social enrichment. Exposure to EE can modulate both anxiety responses and plasma corticosterone. In this study, our objective was to explore how chronic unpredictable stress (CUS) impacts anxiety-related behaviors in male Swiss mice raised in EE conditions. Additionally, we investigated corticosterone and adrenocorticotropic hormone (ACTH) levels to assess the involvement of the hypothalamic-pituitary-adrenal (HPA) axis in mediating these responses. Mice were housed under either EE or standard housing conditions for 21 days. Afterward, they were exposed to 11 days of CUS while still reared in their distinct housing conditions, with half of the mice receiving daily pretreatment with the vehicle and the other half receiving daily metyrapone (MET) injections, an inhibitor of steroid synthesis, 30 mins before CUS exposure. Blood samples were obtained to assess plasma corticosterone and ACTH levels. The 11-day CUS protocol induced anxiety-like phenotype and elevated ACTH levels in EE mice. Chronic MET pretreatment prevented anxiety-like behavior in the EE-CUS groups, by mechanisms involving increased plasma corticosterone levels and decreased ACTH. These results suggest a role of the HPA axis in the mechanism underlying the anxiogenic phenotype induced by CUS in EE mice and shed light on the complex interplay between environmental factors, stress, and the HPA axis in anxiety regulation.


Subject(s)
Adrenocorticotropic Hormone , Anxiety , Corticosterone , Environment , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Stress, Psychological , Animals , Male , Hypothalamo-Hypophyseal System/metabolism , Mice , Pituitary-Adrenal System/metabolism , Stress, Psychological/metabolism , Adrenocorticotropic Hormone/blood , Corticosterone/blood , Metyrapone/pharmacology , Behavior, Animal/physiology , Housing, Animal , Maze Learning/physiology
15.
Psychoneuroendocrinology ; 165: 107039, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38581748

ABSTRACT

OBJECTIVE: Childhood trauma may contribute to poor lifelong health in part through programming of the HPA-axis response to future life stressors. To date, empirical evidence shows an association of childhood trauma with dysregulation of the HPA-axis and blunted cortisol reactivity to acute stressors. Here, we conduct an initial examination of childhood trauma as a moderator of changes over time in perceived stress levels and HPA-axis response to a major chronic stressor in adulthood. METHODS: Participants were 83 maternal caregivers of children newly diagnosed with cancer who completed the Childhood Trauma Questionnaire (CTQ), and who, over the year following their child's cancer diagnosis, had hair samples collected up to 7 times for the assessment of cortisol and completed monthly measures of perceived stress. RESULTS: CTQ scores were in the expected range for a community sample and associated with changes in perceived stress and cortisol concentration over time (γ =.003, p =.002; γ = -.0004, p =.008, respectively) independently of age, education, treatment intensity and randomization to stress management intervention. Maternal caregivers who endorsed lower childhood trauma showed a steeper decline in perceived stress and a larger increase in cortisol levels across the year than caregivers who recalled more childhood trauma. CONCLUSIONS: Findings extend animal models and studies that examine cortisol reactivity to acute stressors and suggest that childhood trauma may program a phenotype that is more psychologically reactive but shows a blunted HPA-axis response to chronic stress. While adaptive in the short-term, this early life programming may incur long-term costs for health. Further work is warranted to examine this possibility.


Subject(s)
Adverse Childhood Experiences , Hair , Hydrocortisone , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Stress, Psychological , Humans , Hair/chemistry , Hair/metabolism , Hydrocortisone/metabolism , Hydrocortisone/analysis , Female , Stress, Psychological/metabolism , Adult , Hypothalamo-Hypophyseal System/metabolism , Male , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiopathology , Life Change Events , Middle Aged , Child , Surveys and Questionnaires , Caregivers/psychology , Mothers/psychology
16.
Psychoneuroendocrinology ; 165: 107049, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657340

ABSTRACT

BACKGROUND: Past studies on schizophrenia (SCZ) and the stress-sensitive neuroendocrine systems have mostly focused on a single system and traditionally utilized acute biomarkers (e.g., biomarkers from blood, urine and saliva) that poorly match the chronic course of schizophrenia in time span. Using eight biomarkers in hair, this study aimed to explore the functional characteristics of SCZ patients in the hypothalamic-pituitary-adrenocortical (HPA) and hypothalamic-pituitary-gonadal (HPG) axes and the interaction between the two axes. METHODS: Hair samples were taken from 137 SCZ patients and 73 controls. The SCZ patients were diagnosed by their attending physician according to the Diagnostic and Statistical Manual of Mental Disorders IV and were clinically stable after treatment. Gender, age, BMI, frequency of hair washing, marital status, education level, family history of mental illness and clozapine dosage were concurrently collected as covariates. The 10-item perceived stress scale (PSS-10) and the social readjustment rating scale were used to assess chronic stress status in SCZ patients. Eight hair biomarkers, cortisol, cortisone, dehydroepiandrosterone (DHEA), testosterone, progesterone, cortisol/cortisone, cortisol/DHEA and cortisol/testosterone, were measured by high performance liquid chromatography tandem mass spectrometer. Among them, cortisol, cortisone, DHEA and cortisol/DHEA reflected the functional activity of the HPA axis, and testosterone and progesterone reflected the functional activity of the HPG axis, and cortisol/cortisone reflected the activity of 11ß-hydroxysteroid dehydrogenase types 2 (11ß-HSD 2), and cortisol/testosterone reflected the HPA-HPG interaction. RESULTS: SCZ patients showed significantly higher cortisone and cortisol/testosterone than controls (p<0.001, η²p=0.180 and p=0.015, η²p=0.031), lower testosterone (p=0.009, η²p=0.034), progesterone (p<0.001, η²p=0.069) and cortisol/cortisone (p=0.001, η²p=0.054). There were significant intergroup differences in male and female progesterone (p=0.003, η²p=0.088 and p=0.030, η²p=0.049) and female testosterone (p=0.028, η²p=0.051). In SCZ patients, cortisol, cortisol/cortisone, cortisol/DHEA and cortisol/testosterone were positively associated with PSS-10 score (ps<0.05, 0.212

Subject(s)
Biomarkers , Cortisone , Dehydroepiandrosterone , Hair , Hydrocortisone , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Schizophrenia , Stress, Psychological , Testosterone , Humans , Female , Male , Hypothalamo-Hypophyseal System/metabolism , Schizophrenia/metabolism , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiopathology , Hair/chemistry , Hair/metabolism , Biomarkers/metabolism , Adult , Hydrocortisone/metabolism , Hydrocortisone/analysis , Cortisone/metabolism , Cortisone/analysis , Testosterone/metabolism , Testosterone/analysis , Dehydroepiandrosterone/metabolism , Dehydroepiandrosterone/analysis , Stress, Psychological/metabolism , Middle Aged , Progesterone/metabolism , Progesterone/analysis , Case-Control Studies
17.
Psychoneuroendocrinology ; 165: 107048, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657341

ABSTRACT

INTRODUCTION: The dynamic capacity of the hypothalamic-pituitary-adrenal (HPA) axis supports healthy adaptions to stress and play a key role in maintaining mental health. Perinatal adaptations in the HPA-axis dynamics in terms of the Cortisol Awakening Response (CAR), may be involved in dysregulation of perinatal mental health. We aimed to determine if CAR and absolute evening cortisol early postpartum differed from non-perinatal women and evaluate the association between the CAR and maternal mental well-being. METHODS: The CAR was computed as the area under the curve with respect to increase from baseline from serial home-sampling of saliva across 0-60 minutes from awakening. We evaluated differences in CAR and absolute evening cortisol between postpartum women (N=50, mean postpartum days: 38, SD: ±11) and non-perinatal women (N=91) in a multiple linear regression model. We also evaluated the association between CAR and maternal mental well-being in a multiple linear regression model. RESULTS: We found that healthy postpartum women had a blunted CAR (p<0.001) corresponding to 84% reduction and 80% lower absolute evening cortisol (p<0.001) relative to non-perinatal healthy women. In the postpartum group, there was a trend-level association between lower CAR and higher scores on the WHO Well-Being Index (WHO-5) (p=0.048) and lower Edinburgh Postnatal Depression Scale (EPDS) scores (p=0.04). CONCLUSION: Our data emphasize the unique hormonal landscape during the postpartum period in terms of blunted CAR and lower absolute evening cortisol in healthy women early postpartum compared to non-perinatal. Our findings show a potential association between a reduced CAR and improved mental well-being during early motherhood, which suggests that reduced CAR might reflect healthy adjustment to early motherhood.


Subject(s)
Circadian Rhythm , Hydrocortisone , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Postpartum Period , Saliva , Wakefulness , Humans , Female , Hydrocortisone/metabolism , Hydrocortisone/analysis , Postpartum Period/metabolism , Postpartum Period/physiology , Adult , Saliva/chemistry , Saliva/metabolism , Circadian Rhythm/physiology , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology , Wakefulness/physiology , Pregnancy , Mental Health , Stress, Psychological/metabolism , Stress, Psychological/physiopathology
18.
Psychoneuroendocrinology ; 165: 107041, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38581747

ABSTRACT

BACKGROUND: The risk of preterm birth (PTB) increases when experiencing stress during pregnancy. Chronic stress has been associated with a dysregulation of the hypothalamic-pituitary-adrenal axis, for which hair cortisol concentration (HCC) is a promising biomarker. However, previous studies on the association between HCC and PTB yielded inconsistent results. This systematic review and meta-analysis synthesized previous studies on the association between maternal HCC before and during pregnancy and spontaneous PTB. METHODS: Data was extracted from N = 11 studies with k = 19 effect sizes retrieved from PubMed, Embase, Web of Science, CINAHL and citation searching by hand in June 2023 and updated in October 2023. Standardized mean differences were calculated, and a random-effects three-level meta-analysis was conducted. Effect heterogeneity was assessed using Q and I2. RESULTS: HCC during pregnancy was higher among PTB than term groups, but effects were not statistically significant (z = 0.11, 95% CI: - 0.28, 0.51, p = .54) and total heterogeneity was high (Q16 = 60.01, p < .001, I2Total = 92.30%). After leaving out two possible outlier studies in sensitivity analyses, HCC was lower among preterm compared to term delivering groups, although not statistically significant (z = - 0.06, 95% CI: - 0.20, 0.08, p = .39) but with a substantially reduced total heterogeneity (Q12 = 16.45, p = .17, I2Total = 42.15%). No moderators affected the estimates significantly, but an effect of trimester and gestational age at delivery is likely. CONCLUSION: There is currently no evidence of prenatal HCC differences between PTB and term groups as effects were small, imprecise, and not significant. Low statistical power and methodological weaknesses of the small-scale studies challenge possible biological inferences from the small effects, but further research on HCC during pregnancy is highly encouraged.


Subject(s)
Hair , Hydrocortisone , Premature Birth , Humans , Pregnancy , Female , Hair/chemistry , Premature Birth/metabolism , Hydrocortisone/analysis , Hydrocortisone/metabolism , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Infant, Newborn , Stress, Psychological/metabolism , Biomarkers/analysis , Biomarkers/metabolism , Adult
19.
Neurobiol Dis ; 195: 106499, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38588753

ABSTRACT

The gut-brain axis is a bidirectional communication network linking the gut and the brain, overseeing digestive functions, emotional responses, body immunity, brain development, and overall health. Substantial research highlights a connection between disruptions of the gut-brain axis and various psychiatric and neurological conditions, including depression and Alzheimer's disease. Given the impact of the gut-brain axis on behavior, cognition, and brain diseases, some studies have started to pay attention to the role of the axis in sepsis-associated encephalopathy (SAE), where cognitive impairment is the primary manifestation. SAE emerges as the primary and earliest form of organ dysfunction following sepsis, potentially leading to acute cognitive impairment and long-term cognitive decline in patients. Notably, the neuronal damage in SAE does not stem directly from the central nervous system (CNS) infection but rather from an infection occurring outside the brain. The gut-brain axis is posited as a pivotal factor in this process. This review will delve into the gut-brain axis, exploring four crucial pathways through which inflammatory signals are transmitted and elevate the incidence of SAE. These pathways encompass the vagus nerve pathway, the neuroendocrine pathway involving the hypothalamic-pituitary-adrenal (HPA) axis and serotonin (5-HT) regulation, the neuroimmune pathway, and the microbial regulation. These pathways can operate independently or collaboratively on the CNS to modulate brain activity. Understanding how the gut affects and regulates the CNS could offer the potential to identify novel targets for preventing and treating this condition, ultimately enhancing the prognosis for individuals with SAE.


Subject(s)
Brain-Gut Axis , Brain , Sepsis-Associated Encephalopathy , Humans , Brain-Gut Axis/physiology , Sepsis-Associated Encephalopathy/physiopathology , Sepsis-Associated Encephalopathy/metabolism , Animals , Brain/physiopathology , Brain/metabolism , Gastrointestinal Microbiome/physiology , Hypothalamo-Hypophyseal System/physiopathology , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/physiopathology , Pituitary-Adrenal System/metabolism , Sepsis/physiopathology , Sepsis/complications
20.
Psychoneuroendocrinology ; 165: 107037, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38613946

ABSTRACT

The present pilot study assessed the effects of multi-session intermittent theta-burst stimulation (iTBS) applied to the left dorsolateral prefrontal cortex in 17 treatment resistant depressed inpatients (TRDs) showing cortisol non-suppression to the overnight dexamethasone suppression test (DST) at baseline (i.e., maximum post-DST cortisol [CORmax] level > 130 nmol/L). After 20 iTBS sessions, the DST was repeated in all TRDs. At baseline, post-DST CORmax levels were higher in TRDs compared to healthy control subjects (HCs; n = 17) (p < 0.0001). After 20 iTBS sessions, post-DST CORmax levels decreased from baseline (p < 0.03) and were comparable to HCs. Decreases in post-DST CORmax levels were related to decreases in 17-item Hamilton Depression Rating Scale (HAMD-17) scores (ρ = 0.53; p < 0.03). At endpoint, 10 TRDs showed DST normalization (among them 7 were responders [i.e., HAMD-17 total score > 50% decrease from baseline]), and 7 did not normalize their DST (among them 6 were non-responders) (p < 0.05). Our results suggest that successful iTBS treatment may restore normal glucocorticoid receptor feedback inhibition at the pituitary level.


Subject(s)
Depressive Disorder, Treatment-Resistant , Dexamethasone , Hydrocortisone , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Transcranial Magnetic Stimulation , Humans , Male , Female , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiopathology , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiopathology , Adult , Hydrocortisone/metabolism , Hydrocortisone/analysis , Transcranial Magnetic Stimulation/methods , Middle Aged , Depressive Disorder, Treatment-Resistant/therapy , Depressive Disorder, Treatment-Resistant/physiopathology , Depressive Disorder, Treatment-Resistant/metabolism , Pilot Projects , Dorsolateral Prefrontal Cortex/metabolism , Dorsolateral Prefrontal Cortex/physiology , Theta Rhythm/physiology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...