Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.694
Filter
1.
Eur J Med Res ; 29(1): 285, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745325

ABSTRACT

INTRODUCTION: Hydrogen (H2) is regarded as a novel therapeutic agent against several diseases owing to its inherent biosafety. Bronchopulmonary dysplasia (BPD) has been widely considered among adverse pregnancy outcomes, without effective treatment. Placenta plays a role in defense, synthesis, and immunity, which provides a new perspective for the treatment of BPD. This study aimed to investigate if H2 reduced the placental inflammation to protect the neonatal rat against BPD damage and potential mechanisms. METHODS: We induced neonatal BPD model by injecting lipopolysaccharide (LPS, 1 µg) into the amniotic fluid at embryonic day 16.5 as LPS group. LPS + H2 group inhaled 42% H2 gas (4 h/day) until the samples were collected. We primarily analyzed the neonatal outcomes and then compared inflammatory levels from the control group (CON), LPS group and LPS + H2 group. HE staining was performed to evaluate inflammatory levels. RNA sequencing revealed dominant differentially expressed genes. Bioinformatics analysis (GO and KEGG) of RNA-seq was applied to mine the signaling pathways involved in protective effect of H2 on the development of LPS-induced BPD. We further used qRT-PCR, Western blot and ELISA methods to verify differential expression of mRNA and proteins. Moreover, we verified the correlation between the upstream signaling pathways and the downstream targets in LPS-induced BPD model. RESULTS: Upon administration of H2, the inflammatory infiltration degree of the LPS-induced placenta was reduced, and infiltration significantly narrowed. Hydrogen normalized LPS-induced perturbed lung development and reduced the death ratio of the fetus and neonate. RNA-seq results revealed the importance of inflammatory response biological processes and Toll-like receptor signaling pathway in protective effect of hydrogen on BPD. The over-activated upstream signals [Toll-like receptor 4 (TLR4), nuclear factor kappa-B p65 (NF-κB p65), Caspase1 (Casp1) and NLR family pyrin domain containing 3 (NLRP3) inflammasome] in LPS placenta were attenuated by H2 inhalation. The downstream targets, inflammatory cytokines/chemokines [interleukin (IL)-6, IL-18, IL-1ß, C-C motif chemokine ligand 2 (CCL2) and C-X-C motif chemokine ligand 1 (CXCL1)], were decreased both in mRNA and protein levels by H2 inhalation in LPS-induced placentas to rescue them from BPD. Correlation analysis displayed a positive association of TLR4-mediated signaling pathway both proinflammatory cytokines and chemokines in placenta. CONCLUSION: H2 inhalation ameliorates LPS-induced BPD by inhibiting excessive inflammatory cytokines and chemokines via the TLR4-NFκB-IL6/NLRP3 signaling pathway in placenta and may be a potential therapeutic strategy for BPD.


Subject(s)
Bronchopulmonary Dysplasia , Hydrogen , Inflammation , Lipopolysaccharides , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Placenta , Signal Transduction , Toll-Like Receptor 4 , Female , Pregnancy , Lipopolysaccharides/toxicity , Hydrogen/pharmacology , Hydrogen/therapeutic use , Animals , Placenta/metabolism , Placenta/drug effects , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Signal Transduction/drug effects , Rats , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NF-kappa B/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Administration, Inhalation , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/chemically induced , Bronchopulmonary Dysplasia/drug therapy , Bronchopulmonary Dysplasia/prevention & control , Interleukin-6/metabolism , Interleukin-6/genetics , Rats, Sprague-Dawley , Disease Models, Animal
2.
Environ Pollut ; 352: 124126, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38735460

ABSTRACT

Human exposure to chromium (Cr) is common but little is known about its adverse effects on pregnancy outcomes. This study aimed to explore the association between Cr exposure and the risk of neural tube defects (NTDs) and the underlying mechanisms of Cr-induced NTDs. 593 controls and 408 NTD cases with placentas were included in this study. Chromium trichloride (Cr(III)) and potassium dichromate (Cr(VI)) were intragastrically administered to pregnant mice and the number of NTDs was recorded. The odds ratio for total NTDs in the highest exposure group in placenta was 4.18 (95% confidence interval (CI), 1.97-8.84). The incidence of fetal NTDs in mice administered with Cr(III) showed a dose-response relationship. Cr(VI) didn't show teratogenicity of NTDs whereas increased the stillbirth rate. Prenatal exposure to Cr(III) increased levels of oxidative stress and apoptosis in fetal mice. RNA-sequencing results indicated significant enrichment of the MAPK pathway. RT-qPCR and Western blot analysis revealed that Cr(III) induced increased expression of p-JNK, p-P38, and Casp3. Toxicological effects can be partly antagonized by antioxidant supplementation. High chromium exposure was associated with increased human NTD risks. Excessive Cr(III) exposure can induce NTDs in fetal mice by increasing apoptosis through upgrading oxidative stress and then activating JNK/P38 MAPK signaling pathway.


Subject(s)
Chromium , Neural Tube Defects , Placenta , Female , Neural Tube Defects/chemically induced , Animals , Pregnancy , Chromium/toxicity , Mice , Placenta/metabolism , Placenta/drug effects , Humans , Apoptosis/drug effects , Oxidative Stress/drug effects , Maternal Exposure
3.
Nutrients ; 16(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38794647

ABSTRACT

Fetal growth restriction is a hallmark of Fetal Alcohol Syndrome (FAS) and is accompanied by maternal uterine circulatory maladaptation. FAS is the most severe form of Fetal Alcohol Spectrum Disorder (FASD), a term for the range of conditions that can develop in a fetus when their pregnant mother consumes alcohol. Alcohol exerts specific direct effects on lipids that control fundamental developmental processes. We previously demonstrated that direct in vitro application of phosphatidic acid (PA, the simplest phospholipid and a direct target of alcohol exposure) to excised uterine arteries from alcohol-exposed rats improved vascular function, but it is unknown if PA can rescue end organ phenotypes in our FASD animal model. Pregnant Sprague-Dawley rats (n = 40 total dams) were gavaged daily from gestational day (GD) 5 to GD 19 with alcohol or maltose dextrin, with and without PA supplementation, for a total of four unique groups. To translate and assess the beneficial effects of PA, we hypothesized that in vivo administration of PA concomitant with chronic binge alcohol would reverse uterine artery dysfunction and fetal growth deficits in our FASD model. Mean fetal weights and placental efficiency were significantly lower in the binge alcohol group compared with those in the control (p < 0.05). However, these differences between the alcohol and the control groups were completely abolished by auxiliary in vivo PA administration with alcohol, indicating a reversal of the classic FAS growth restriction phenotype. Acetylcholine (ACh)-induced uterine artery relaxation was significantly impaired in the uterine arteries of chronic in vivo binge alcohol-administered rats compared to the controls (p < 0.05). Supplementation of PA in vivo throughout pregnancy reversed the alcohol-induced vasodilatory deficit; no differences were detected following in vivo PA administration between the pair-fed control and PA alcohol groups. Maximal ACh-induced vasodilation was significantly lower in the alcohol group compared to all the other treatments, including control, control PA, and alcohol PA groups (p < 0.05). When analyzing excitatory vasodilatory p1177-eNOS, alcohol-induced downregulation of p1177-eNOS was completely reversed following in vivo PA supplementation. In summary, these novel data utilize a specific alcohol target pathway (PA) to demonstrate a lipid-based preventive strategy and provide critical insights important for the development of translatable interventions.


Subject(s)
Disease Models, Animal , Ethanol , Fetal Alcohol Spectrum Disorders , Fetal Growth Retardation , Phosphatidic Acids , Rats, Sprague-Dawley , Uterine Artery , Animals , Female , Pregnancy , Fetal Growth Retardation/drug therapy , Fetal Growth Retardation/physiopathology , Uterine Artery/drug effects , Fetal Alcohol Spectrum Disorders/physiopathology , Phosphatidic Acids/pharmacology , Rats , Binge Drinking/complications , Placenta/blood supply , Placenta/drug effects , Placenta/metabolism
4.
Lancet Planet Health ; 8(5): e297-e308, 2024 May.
Article in English | MEDLINE | ID: mdl-38723642

ABSTRACT

BACKGROUND: Pregnancy air pollution exposure (PAPE) has been linked to a wide range of adverse birth and childhood outcomes, but there is a paucity of data on its influence on the placental epigenome, which can regulate the programming of physiological functions and affect child development. This study aimed to investigate the association between prenatal air pollutant exposure concentrations and changes in placental DNA methylation patterns, and to explore the potential windows of susceptibility and sex-specific alterations. METHODS: This multi-site study used three prospective population-based mother-child cohorts: EDEN, PELAGIE, and SEPAGES, originating from four French geographical regions (Nancy, Poitiers, Brittany, and Grenoble). Pregnant women were included between 2003 and 2006 for EDEN and PELAGIE, and between 2014 and 2017 for SEPAGES. The main eligibility criteria were: being older than 18 years, having a singleton pregnancy, and living and planning to deliver in one of the maternity clinics in one of the study areas. A total of 1539 mother-child pairs were analysed, measuring placental DNA methylation using Illumina BeadChips. We used validated spatiotemporally resolved models to estimate PM2·5, PM10, and NO2 exposure over each trimester of pregnancy at the maternal residential address. We conducted a pooled adjusted epigenome-wide association study to identify differentially methylated 5'-C-phosphate-G-3' (CpG) sites and regions (assessed using the Infinium HumanMethylationEPIC BeadChip array, n=871), including sex-specific and sex-linked alterations, and independently validated our results (assessed using the Infinium HumanMethylation450 BeadChip array, n=668). FINDINGS: We identified four CpGs and 28 regions associated with PAPE in the total population, 469 CpGs and 87 regions in male infants, and 150 CpGs and 66 regions in female infants. We validated 35% of the CpGs available. More than 30% of the identified CpGs were related to one (or more) birth outcome and most significant alterations were enriched for neural development, immunity, and metabolism related genes. The 28 regions identified for both sexes overlapped with imprinted genes (four genes), and were associated with neurodevelopment (nine genes), immune system (seven genes), and metabolism (five genes). Most associations were observed for the third trimester for female infants (134 of 150 CpGs), and throughout pregnancy (281 of 469 CpGs) and the first trimester (237 of 469 CpGs) for male infants. INTERPRETATION: These findings highlight the molecular pathways through which PAPE might affect child health in a widespread and sex-specific manner, identifying the genes involved in the major physiological functions of a developing child. Further studies are needed to elucidate whether these epigenetic changes persist and affect health later in life. FUNDING: French Agency for National Research, Fondation pour la Recherche Médicale, Fondation de France, and the Plan Cancer.


Subject(s)
Air Pollutants , Air Pollution , DNA Methylation , Maternal Exposure , Placenta , Humans , Female , Pregnancy , Placenta/drug effects , Placenta/metabolism , Prospective Studies , Maternal Exposure/adverse effects , Adult , Air Pollution/adverse effects , Male , Air Pollutants/adverse effects , Air Pollutants/analysis , France , Prenatal Exposure Delayed Effects/genetics , Pregnancy Outcome , Infant, Newborn , Young Adult
5.
Ecotoxicol Environ Saf ; 278: 116427, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38733803

ABSTRACT

BACKGROUND: Neighborhood walkability may influence maternal-fetal exposure to environmental hazards and maternal-fetal health (e.g., fetal growth restriction, reproductive toxicity). However, few studies have explored the association between neighborhood walkability and hormones in pregnant women. METHODS: We included 533 pregnant women from the Hangzhou Birth Cohort Study II (HBCS-II) with testosterone (TTE) and estradiol (E2) measured for analysis. Neighborhood walkability was evaluated by calculating a walkability index based on geo-coded addresses. Placental metals were measured using inductively coupled plasma mass spectrometry (ICP-MS). TTE and E2 levels in umbilical cord blood were measured using chemiluminescence microparticle immunoassay (CMIA). Linear regression model was used to estimate the relationship between the walkability index, placental metals, and sex steroid hormones. Effect modification was also assessed to estimate the effect of placental metals on the associations of neighborhood walkability with TTE and E2. RESULTS: Neighborhood walkability was significantly linked to increased E2 levels (P trend=0.023). Compared with participants at the first quintile (Q1) of walkability index, those at the third quintiles (Q3) had lower chromium (Cr) levels (ß = -0.212, 95% CI = -0.421 to -0.003). Arsenic (As), cobalt (Co), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), antimony (Sb), selenium (Se), tin (Sn), and vanadium (V) were linked to decreased TTE levels, and cadmium (Cd) was linked to increased TTE levels. No metal was significantly associated with E2 levels in trend analysis. In the analysis of effect modification, the associations of neighborhood walkability with TTE and E2 were significantly modified by Mn (P = 0.005) and Cu (P = 0.049) respectively. CONCLUSION: Neighborhood walkability could be a favorable factor for E2 production during pregnancy, which may be inhibited by maternal exposure to heavy metals.


Subject(s)
Residence Characteristics , Walking , Humans , Female , Pregnancy , Adult , China , Cohort Studies , Estradiol/blood , Estradiol/analysis , Testosterone/blood , Fetal Blood/chemistry , Maternal Exposure/statistics & numerical data , Environmental Pollutants/analysis , Environmental Pollutants/blood , Metals/analysis , Metals/blood , Gonadal Steroid Hormones/blood , Gonadal Steroid Hormones/analysis , Placenta/chemistry , Placenta/drug effects , Metals, Heavy/analysis , Young Adult
6.
Cell Biol Toxicol ; 40(1): 35, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771546

ABSTRACT

Neural tube defects (NTDs) represent a prevalent and severe category of congenital anomalies in humans. Cadmium (Cd) is an environmental teratogen known to cause fetal NTDs. However, its underlying mechanisms remain elusive. This study aims to investigate the therapeutic potential of lipophagy in the treatment of NTDs, providing valuable insights for future strategies targeting lipophagy activation as a means to mitigate NTDs.We successfully modeled NTDs by Cd exposure during pregnancy. RNA sequencing was employed to investigate the transcriptomic alterations and functional enrichment of differentially expressed genes in NTD placental tissues. Subsequently, pharmacological/genetic (Atg5-/- placentas) experiments confirmed that inducing placental lipophagy can alleviate Cd induced-NTDs. We found that Cd exposure caused NTDs. Further analyzed transcriptomic data from the placentas with NTDs which revealed significant downregulation of low-density lipoprotein receptor associated protein 1(Lrp1) gene expression responsible for positive regulation of low-density lipoprotein cholesterol (LDL-C) transport. Correspondingly, there was an increase in maternal serum/placenta/amniotic fluid LDL-C content. Subsequently, we have discovered that Cd exposure activated placental lipophagy. Pharmacological/genetic (Atg5-/- placentas) experiments confirmed that inducing placental lipophagy can alleviate Cd induced-NTDs. Furthermore, our findings demonstrate that activation of placental lipophagy effectively counteracts the Cd-induced elevation in LDL-C levels. Lipophagy serves to mitigate Cd-induced NTDs by reducing LDL-C levels within mouse placentas.


Subject(s)
Cadmium , Cholesterol, LDL , Neural Tube Defects , Placenta , Female , Animals , Pregnancy , Placenta/metabolism , Placenta/drug effects , Neural Tube Defects/genetics , Neural Tube Defects/chemically induced , Neural Tube Defects/metabolism , Mice , Cadmium/toxicity , Cholesterol, LDL/blood , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Mice, Inbred C57BL , Mice, Knockout
7.
Reprod Toxicol ; 126: 108607, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734317

ABSTRACT

Ethion is a class II moderately toxic organothiophosphate pesticide. The main objective of this study was to evaluate the maternal and foetal toxicity of ethion in rats. Pregnant rats were divided into 5 groups. Group I served as control. Group II, III, IV, and V were orally administered with 0.86, 1.71, 3.43, and 6.9 mg/kg of ethion respectively, from gestational day (GD) 6-19. Dams were sacrificed on GD 20. Maternal toxicity was assessed by body weight gain, foetal resorptions, oxidative stress, liver and kidney function tests, and histopathology. Foetal toxicity was assessed by physical status, gross, teratological and histopathological examination. Ethion caused dose-dependent reduction in maternal body weight gain, increased resorptions, and reduced gravid uterine weights. Elevated MDA levels and altered levels of GSH, SOD and catalase were recorded in pregnant dam serum and tissues. SGOT, SGPT, total bilirubin, urea, uric acid, and creatinine were elevated in ethion groups indicating liver and kidney toxicity. Histology of uterus revealed myometrial degeneration and mucosal gland atrophy in uterus of pregnant dams and degenerative changes in placenta. It showed histological alterations in liver, kidney, and lungs. There was reduction in the foetal body weights and placental weights, and degenerative changes in the foetal liver and kidney. Gross evaluation of foetuses showed subcutaneous hematoma. Skeletal evaluation showed partial ossification of skull bones, costal separation, and agenesis of tail vertebrae, sternebrae, metacarpals and metatarsals. The findings reveal that prenatal exposure to ethion caused maternal and foetal toxicity in rats.


Subject(s)
Kidney , Liver , Animals , Female , Pregnancy , Rats , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Uterus/drug effects , Uterus/pathology , Oxidative Stress/drug effects , Ethylenethiourea/toxicity , Maternal Exposure , Fetus/drug effects , Fetus/pathology , Organ Size/drug effects , Rats, Wistar , Insecticides/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Placenta/drug effects , Placenta/pathology , Fetal Resorption/chemically induced , Maternal-Fetal Exchange , Fetal Development/drug effects
8.
Reprod Toxicol ; 126: 108605, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735594

ABSTRACT

Paternal alcohol use is emerging as a plausible driver of alcohol-related growth and patterning defects. Studies from our lab using an inbred C57Bl/6 J mouse model suggest that these paternally-inherited phenotypes result from paternally programmed deficits in the formation and function of the placenta. The 129S1/SvImJ genetic background is typically more susceptible to fetoplacental growth defects due to strain-specific differences in placental morphology. We hypothesized that these placental differences would sensitize 129S1/SvImJ-C57Bl/6 J hybrid offspring to paternally-inherited fetoplacental growth phenotypes induced by paternal alcohol exposure. Using a limited access model, we exposed C57Bl/6 J males to alcohol and bred them to naïve 129S1/SvImJ dams. We then assayed F1 hybrid offspring for alterations in fetoplacental growth and used micro-CT imaging to contrast placental histological patterning between the preconception treatments. F1 hybrid placentae exhibit larger placental weights than pure C57Bl/6 J offspring but display a proportionally smaller junctional zone with increased glycogen content. The male F1 hybrid offspring of alcohol-exposed sires exhibit modest placental hyperplasia but, unlike pure C57Bl/6 J offspring, do not display observable changes in placental histology, glycogen content, or measurable impacts on fetal growth. Although F1 hybrid female offspring do not exhibit any measurable alterations in fetoplacental growth, RT-qPCR analysis of placental gene expression reveals increased expression of genes participating in the antioxidant response. The reduced placental junctional zone but increased glycogen stores of 129S1/SvImJ-C57Bl/6 J F1 hybrid placentae ostensibly attenuate the previously observed placental patterning defects and fetal growth restriction induced by paternal alcohol use in the C57Bl/6 J strain.


Subject(s)
Ethanol , Mice, Inbred C57BL , Paternal Exposure , Phenotype , Placenta , Female , Animals , Pregnancy , Male , Placenta/drug effects , Placenta/metabolism , Ethanol/toxicity , Paternal Exposure/adverse effects , Mice , Mice, 129 Strain
9.
Sci Rep ; 14(1): 11366, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762543

ABSTRACT

Placental leptin may impact foetal development. Maternal overnutrition has been linked to increased plasma leptin levels and adverse effects on offspring, whereas choline, an essential nutrient for foetal development, has shown promise in mitigating some negative impacts of maternal obesity. Here, we investigate whether a maternal obesogenic diet alters foetal growth and leptin levels in the foetal stomach, amniotic fluid (AF), and placenta in late gestation and explore the potential modulating effects of maternal choline supplementation. Female rats were fed a control (CD) or a western diet (WD) four weeks before mating and during gestation, half of them supplemented with choline (pregnancy days 11-17). Leptin levels (in foetal stomach, AF, and placenta) and leptin gene expression (in placenta) were assessed on gestation days 20 and 21. At day 20, maternal WD feeding resulted in greater leptin levels in foetal stomach, placenta, and AF. The increased AF leptin levels were associated with a premature increase in foetal weight in both sexes. Maternal choline supplementation partially prevented these alterations, but effects differed in CD dams, causing increased AF leptin levels and greater weight in male foetuses at day 20. Maternal choline supplementation effectively mitigates premature foetal overgrowth induced by an obesogenic diet, potentially linked to increased AF leptin levels. Further research is needed to explore the sex-specific effects.


Subject(s)
Amniotic Fluid , Choline , Dietary Supplements , Leptin , Animals , Female , Leptin/blood , Leptin/metabolism , Pregnancy , Choline/administration & dosage , Amniotic Fluid/metabolism , Rats , Male , Placenta/metabolism , Placenta/drug effects , Fetal Development/drug effects , Obesity/metabolism , Obesity/etiology , Fetal Weight/drug effects , Rats, Sprague-Dawley , Diet, Western/adverse effects
10.
Endocrinology ; 165(6)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38717933

ABSTRACT

CYP19A1 encodes aromatase, which converts testosterone to estrogen, and is induced during placental maturation. To elucidate the molecular mechanism underlying this function, histone methylation was analyzed using the placental cytotrophoblast cell line, JEG3. Treatment of JEG3 cells with 3-deazaneplanocin A, an inhibitor of several methyltransferases, resulted in increased CYP19A1 expression, accompanied by removal of the repressive mark H3K27me3 from the CYP19A1 promoter. However, this increase was not observed in cells treated with GSK126, another specific inhibitor for H3K27me3 methylation. Expression of TFAP2C, which encodes AP-2γ, a transcription factor that regulates CYP19A1, was also elevated on 3-deazaneplanocin A treatment. Interestingly, TFAP2C messenger RNA (mRNA) was readily degraded in JEG3 cells but protected from degradation in the presence of 3-deazaneplanocin A. TFAP2C mRNA contained N6-methyladenosines, which were reduced on drug treatment. These observations indicate that the TFAP2C mRNA undergoes adenosine methylation and rapid degradation, whereas 3-deazaneplanocin A suppresses methylation, resulting in an increase in AP-2γ levels. We conclude that the increase in AP-2γ expression via stabilization of the TFAP2C mRNA is likely to underlie the increased CYP19A1 expression.


Subject(s)
Aromatase , Placenta , RNA Stability , Transcription Factor AP-2 , Humans , Transcription Factor AP-2/metabolism , Transcription Factor AP-2/genetics , Aromatase/genetics , Aromatase/metabolism , Female , Placenta/metabolism , Placenta/drug effects , Pregnancy , RNA Stability/drug effects , Adenosine/analogs & derivatives , Adenosine/pharmacology , RNA, Messenger/metabolism , RNA, Messenger/genetics , Cell Line, Tumor , Histones/metabolism
11.
Exp Mol Med ; 56(5): 1206-1220, 2024 May.
Article in English | MEDLINE | ID: mdl-38760513

ABSTRACT

The etiology of preeclampsia (PE), a severe complication of pregnancy with several clinical manifestations and a high incidence of maternal and fetal morbidity and mortality, remains unclear. This issue is a major hurdle for effective treatment strategies. We recently demonstrated that PE exhibits an Alzheimer-like etiology of impaired autophagy and proteinopathy in the placenta. Targeting of these pathological pathways may be a novel therapeutic strategy for PE. Stimulation of autophagy with the natural disaccharide trehalose and its lacto analog lactotrehalose in hypoxia-exposed primary human trophoblasts restored autophagy, inhibited the accumulation of toxic protein aggregates, and restored the ultrastructural features of autophagosomes and autolysosomes. Importantly, trehalose and lactotrehalose inhibited the onset of PE-like features in a humanized mouse model by normalizing autophagy and inhibiting protein aggregation in the placenta. These disaccharides restored the autophagy-lysosomal biogenesis machinery by increasing nuclear translocation of the master transcriptional regulator TFEB. RNA-seq analysis of the placentas of mice with PE indicated the normalization of the PE-associated transcriptome profile in response to trehalose and lactotrehalose. In summary, our results provide a novel molecular rationale for impaired autophagy and proteinopathy in patients with PE and identify treatment with trehalose and its lacto analog as promising therapeutic options for this severe pregnancy complication.


Subject(s)
Autophagy , Lysosomes , Pre-Eclampsia , Trehalose , Autophagy/drug effects , Pre-Eclampsia/drug therapy , Pre-Eclampsia/metabolism , Female , Humans , Pregnancy , Animals , Lysosomes/metabolism , Lysosomes/drug effects , Trehalose/analogs & derivatives , Trehalose/pharmacology , Trehalose/therapeutic use , Mice , Trophoblasts/metabolism , Trophoblasts/drug effects , Trophoblasts/pathology , Placenta/metabolism , Placenta/drug effects , Disease Models, Animal
12.
Toxicology ; 505: 153810, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653377

ABSTRACT

Black phosphorus (BP) is a new type of nanomaterial, which has been widely used in many biomedical fields due to its superior properties, but there are few studies on the toxicity of BP, especially in the reproductive system. To explore the effects of BP exposure on reproduction and reveal its molecular mechanism, we firstly investigated the potential toxicity of black phosphorus nanoparticles (BPNPs) in vivo. The results showed that BP exposure in pregnant mice can reduce the weight of fetal mice and placenta. H&E staining further indicated the changes of placental cross-section and vascular remodeling after BP treatment. Then, human exvillous trophoblast HTR8/SVneo was treated with different concentrations of BPNPs. We found that BPNPs induced significant cytotoxicity, including dose-dependent reduction of cell viability and proliferation. Trophoblast cell migration and invasion were also impaired by BPNPs exposure. Moreover, pretreatment with Cytochalasin D (Cyto-D), a classical phagocytic inhibitor, alleviated the decline of cell viability induced by BPNPs. Transcriptome sequencing showed that BPNPs exposure led to ferroptosis. Subsequently, the related indexes of ferroptosis were detected, including increase of iron ion concentration, decrease of the ferroptosis marker, GPX4 (Glutathione Peroxidase 4), increase of FTL (Ferritin Light Chain), and increase of lipid peroxidation indexes (MDA level and decrease of GSH level). In addition, ferroptosis inhibitors (Fer-1 and DFO) pretreatment can alleviate both the cytotoxic effects and functional impairment induced by BPNPs. In summary, our study confirmed the reproductive toxicity of BPNPs for the first time, and constructed BPNPs injury model in vitro using human villus trophoblast cells and revealed the role of ferroptosis in this process, which deepened our understanding of the biosafety of black phosphorus nanomaterials.


Subject(s)
Cell Survival , Ferroptosis , Nanoparticles , Phosphorus , Trophoblasts , Ferroptosis/drug effects , Trophoblasts/drug effects , Trophoblasts/metabolism , Trophoblasts/pathology , Female , Animals , Humans , Nanoparticles/toxicity , Mice , Pregnancy , Cell Survival/drug effects , Cell Line , Cell Movement/drug effects , Placenta/drug effects , Placenta/metabolism , Placenta/pathology
13.
Toxicol Ind Health ; 40(6): 312-322, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38590048

ABSTRACT

Previous epidemiologic research has shown that phthalate exposure in pregnant women is related to adverse birth outcomes in a sex-specific manner. However, the biological mechanism of phthalate exposure that causes these birth outcomes remains poorly defined. In this research, we investigated the association between phthalate exposure and placental oxidative stress in a large population-based cohort study, aiming to initially explore the relationship between phthalate exposure and gene expression in placental oxidative stress in a sex-specific manner. Quantitative PCR was performed to measure the expression of placental inflammatory mRNAs (HO-1, HIF1α, and GRP78) in 2469 placentae. The multiple linear regression models were used to investigate the associations between mRNA and urinary phthalate monoesters. Phthalate metabolites monomethyl phthalate (MMP) and mono-n-butyl phthalate (MBP) were positively correlated with higher HIF1α expression in placentae of male fetuses (p < .05). Mono-benzyl phthalate (MBzP) increased the expression of HO-1, HIF1α, and GRP78 in placentae of male fetuses, and mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) up-regulated the expression of HIF1α and GRP78. Additionally, mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) was negatively correlated with HO-1, HIF1α, and GRP78 in placentae of female fetuses. Maternal phthalate exposure was associated with oxidative stress variations in placental tissues. The associations were closer in the placentas of male fetuses than in that of female ones. The placenta oxidative stress is worth further investigation as a potential mediator of maternal exposure-induced disease risk in children.


Subject(s)
Biomarkers , Endoplasmic Reticulum Chaperone BiP , Maternal Exposure , Oxidative Stress , Phthalic Acids , Placenta , Humans , Phthalic Acids/toxicity , Phthalic Acids/urine , Female , Oxidative Stress/drug effects , Pregnancy , Male , Placenta/drug effects , Placenta/metabolism , Biomarkers/urine , Prospective Studies , Adult , Maternal Exposure/adverse effects , Sex Factors , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Cohort Studies
14.
Toxicology ; 504: 153796, 2024 May.
Article in English | MEDLINE | ID: mdl-38582279

ABSTRACT

As a broad-spectrum and efficient insecticide, beta-Cypermethrin (ß-CYP) poses a health risk to pregnancy. It matters the mechanisms of maternal exposure to ß-CYP for impacting reproductive health. The placenta, a transient organ pivotal for maternal-fetal communication during pregnancy, plays a crucial role in embryonic development. The effect of ß-CYP exposure on the placenta and its underlying molecular mechanisms remain obscure. The objective of this study was to investigate the effect of ß-CYP exposure on placental development and the function of trophoblast, as well as the underlying mechanisms through CD-1 mouse model (1, 10, 20 mg/kg.bw) and in vitro HTR-8/SVneo cell model (12.5, 25, 50, 100 µM). We found slower weight gain and reduced uterine wet weight in pregnant mice with maternal exposure to ß-CYP during pregnancy, as well as adverse pregnancy outcomes such as uterine bleeding and embryo resorption. The abnormal placental development in response to ß-CYP was noticed, including imbalanced placental structure and disrupted labyrinthine vascular development. Trophoblasts, pivotal in placental development and vascular remodeling, displayed abnormal differentiation under ß-CYP exposure. This aberration was characterized by thickened trophoblast layers in the labyrinthine zone, accompanied by mitochondrial and endoplasmic reticulum swelling within trophoblasts. Further researches on human chorionic trophoblast cell lines revealed that ß-CYP exposure induced apoptosis in HTR-8/SVneo cells. This induction resulted in a notable decrease in migration and invasion abilities, coupled with oxidative stress and the inhibition of the Notch signaling pathway. N-acetylcysteine (an antioxidant) partially restored the impaired Notch signaling pathway in HTR-8/SVneo cells, and mitigated cellular functional damage attributed to ß-CYP exposure. Collectively, exposure to ß-CYP induced oxidative stress and then led to inhibition of the Notch signaling pathway and dysfunction of trophoblast cells, ultimately resulted in abnormal placenta and pregnancy. These findings indicate Reactive Oxygen Species as potential intervention targets to mitigate ß-CYP toxicity. The comprehensive elucidation contributes to our understanding of ß-CYP biosafety and offers an experimental basis for preventing and managing its reproductive toxicity.


Subject(s)
Insecticides , Oxidative Stress , Pyrethrins , Trophoblasts , Pyrethrins/toxicity , Female , Pregnancy , Trophoblasts/drug effects , Trophoblasts/pathology , Trophoblasts/metabolism , Oxidative Stress/drug effects , Animals , Mice , Insecticides/toxicity , Humans , Maternal Exposure/adverse effects , Placentation/drug effects , Cell Line , Placenta/drug effects , Placenta/pathology , Placenta/metabolism , Apoptosis/drug effects
15.
Chemosphere ; 356: 141923, 2024 May.
Article in English | MEDLINE | ID: mdl-38599328

ABSTRACT

Poly- and perfluoroalkyl substances (PFAS) are a group of compounds with uses in industry and many consumer products. Concerns about the potential health effects of these compounds resulted in regulation by the Stockholm Convention on the use of three of the most common PFAS, including perfluorooctanoic acid (PFOA). Thousands of PFAS remain in production that are unregulated and for which their toxicity is unknown. Our group recently identified a new class of PFAS, fluorotelomer ethoxylates (FTEOs), in indoor dust and industrial wastewater. In this study, we investigated the effect of PFAS on placental metabolism by exposing healthy, pregnant CD-1 mice to PFOA or FTEOs at one of three concentrations (0 ng/L (controls), 5 ng/L, 100 ng/L) (n = 7-8/group). While PFOA is banned and PFOA concentrations in human blood are decreasing, we hypothesize that FTEOs will cause adverse pregnancy outcomes similar to PFOA, the compounds they were meant to replace. Placental tissue samples were collected at embryonic day 17.5 and 1H solid-state magic angle spinning nuclear magnetic resonance spectroscopy was used to determine the relative concentration of placental metabolites (n = 18-20/group). At the highest concentration, the relative concentrations of glucose and threonine were increased and the relative concentration of creatine was decreased in the PFOA-exposed placentas compared to controls (p < 0.05). In contrast, the relative concentrations of asparagine and lysine were decreased and the relative concentration of creatine was increased in the FTEOs-exposed placentas compared to controls (p < 0.05). Partial least squares - discriminant analysis showed the FTEOs-exposed and control groups were significantly separated (p < 0.005) and pathway analysis found four biochemical pathways were perturbed following PFOA exposure, while one pathway was altered following FTEOs exposure. Maternal exposure to PFOA and FTEOs had a significant impact on the placental metabolome, with the effect depending on the pollutant. This work motivates further studies to determine exposure levels and evaluate associations with adverse outcomes in human pregnancies.


Subject(s)
Caprylates , Fluorocarbons , Placenta , Fluorocarbons/toxicity , Female , Animals , Pregnancy , Caprylates/toxicity , Mice , Placenta/metabolism , Placenta/drug effects , Environmental Pollutants/toxicity
16.
Nutrients ; 16(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38674874

ABSTRACT

The present study aimed to investigate the differential effects of n-3 and n-6 polyunsaturated fatty acids (PUFAs) on placental and embryonic development. Pregnant mice were assigned to five groups: healthy control (HC), diabetes mellitus control (DMC), diabetes + low-dose n-3 PUFA (Ln-3), diabetes + high-dose n-3 PUFA (Hn-3), and diabetes + n-6 PUFA (n-6). On E12.5d, the Hn-3 group, but not the n-6 group, had a higher placenta weight. The weight ratio of embryo to placenta in the n-6 group was significantly lower than in the Hn-3 group but higher than in the DMC group. The Hn-3 group had significantly higher protein levels of VEGF, IGF-1, and IGFBP3, while the n-6 group had lower VEGF than the DMC group. Compared with the DMC group, embryonic Cer-16:0 was significantly higher in the Hn-3 group, while embryonic PC (36:6), PC (38:7), and PE (40:7) were significantly lower in the n-6 group. The embryo and placenta weights were positively correlated with placental VEGF, IGFBP3, and embryonic Cer-16:0, and they were negatively correlated with embryonic PC (36:6) and PE (40:7). The weight ratio of embryo to placenta was negatively correlated with embryonic PC (36:6). In addition, embryonic Cer-16:0 was positively correlated with placental VEGF and IGFBP3. In conclusion, n-3 PUFA and n-6 PUFA improved placental and embryonic growth through different mechanisms.


Subject(s)
Embryonic Development , Fatty Acids, Omega-3 , Fatty Acids, Omega-6 , Placenta , Animals , Pregnancy , Female , Fatty Acids, Omega-3/pharmacology , Placenta/metabolism , Placenta/drug effects , Fatty Acids, Omega-6/pharmacology , Mice , Embryonic Development/drug effects , Diabetes Mellitus, Experimental , Insulin-Like Growth Factor Binding Protein 3/metabolism , Vascular Endothelial Growth Factor A/metabolism , Pregnancy in Diabetics/metabolism , Insulin-Like Growth Factor I/metabolism , Organ Size/drug effects
17.
Ecotoxicol Environ Saf ; 276: 116287, 2024 May.
Article in English | MEDLINE | ID: mdl-38579532

ABSTRACT

Benzo(a)pyrene (BaP) can be detected in the human placenta. However, little is known about the effects of BaP exposure on different placental cells under various conditions. In this study, we aimed to investigate the effects of BaP on mitochondrial function, pyrin domain-containing protein 3 (NLRP3) inflammasome, and apoptosis in three human trophoblast cell lines under normoxia, hypoxia, and inflammatory conditions. JEG-3, BeWo, and HTR-8/SVneo cell lines were exposed to BaP under normoxia, hypoxia, or inflammatory conditions for 24 h. After treatment, we evaluated cell viability, apoptosis, aryl hydrocarbon receptor (AhR) protein and cytochrome P450 (CYP) gene expression, mitochondrial function, including mitochondrial DNA copy number (mtDNAcn), mitochondrial membrane potential (ΔΨm), intracellular adenosine triphosphate (iATP), and extracellular ATP (eATP), nitric oxide (NO), NLPR3 inflammasome proteins, and interleukin (IL)-1ß. We found that BaP upregulated the expression of AhR or CYP genes to varying degrees in all three cell lines. Exposure to BaP alone increased ΔΨm in all cell lines but decreased NO in BeWo and HTR-8/SVneo, iATP in HTR-8/SVneo, and cell viability in JEG-3, without affecting apoptosis. Under hypoxic conditions, BaP did not increase the expression of AhR and CYP genes in JEG-3 cells but increased CYP gene expression in two others. Pro-inflammatory conditions did not affect the response of the 3 cell lines to BaP with respect to the expression of CYP genes and changes in the mitochondrial function and NLRP3 inflammasome proteins. In addition, in HTR-8/SVneo cells, BaP increased IL-1ß secretion in the presence of hypoxia and poly(I:C). In conclusion, our results showed that BaP affected mitochondrial function in trophoblast cell lines by increasing ΔΨm. This increased ΔΨm may have rescued the trophoblast cells from activation of the NLRP3 inflammasome and apoptosis after BaP treatment. We also observed that different human trophoblast cell lines had cell type-dependent responses to BaP exposure under normoxia, hypoxia, or pro-inflammatory conditions.


Subject(s)
Apoptosis , Benzo(a)pyrene , Cell Survival , NLR Family, Pyrin Domain-Containing 3 Protein , Placenta , Receptors, Aryl Hydrocarbon , Trophoblasts , Humans , Benzo(a)pyrene/toxicity , Placenta/drug effects , Placenta/cytology , Cell Line , Female , Pregnancy , Apoptosis/drug effects , Trophoblasts/drug effects , Trophoblasts/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Cell Survival/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/drug effects , Inflammasomes/metabolism , Mitochondria/drug effects , Inflammation/chemically induced , Cell Hypoxia/drug effects , Membrane Potential, Mitochondrial/drug effects , Cytochrome P-450 Enzyme System/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics
18.
Ecotoxicol Environ Saf ; 276: 116259, 2024 May.
Article in English | MEDLINE | ID: mdl-38581905

ABSTRACT

Gestational cadmium exposure increases the risk of preeclampsia. Placenta mitophagy was activated in preeclampsia. The aim of present study was to explore the mechanism of cadmium-induced mitophagy activation and its association with preeclampsia. Mitophagy markers expression levels were detected by quantitative real-time PCR, Western blot, immunofluorescence and immunochemistry in preeclampsia placenta. JEG3 cells were treated with CdCl2, iopanoic acid (IOP), 3-methyladenine and PGC1α SiRNA to verify mechanism of cadmium-induced mitophagy. Mitophagy marker LC3BII/I and P62 expression were increased and mitochondrial membrane receptor protein TOM20 and FUNDC1 expression were decreased in preeclampsia placenta as compared with that in normotension control. Mitophagy marker LC3BII/I and P62 expression were increased and TOM20 and FUNDC1 expression was decreased in CdCl2-treated JEG3 cells. Meanwhile, mitochondrial biogenesis regulator, PGC1α expression was decreased in preeclampsia and CdCl2-treated JEG3 cells. The expressions of LC3B and P62 were increased and the expressions of TOM20, FUNDC1 and PGC1α were decreased in IOP-treated cell. PGC1α SiRNA transfection led to increased expression of LC3BII/I and P62 and decreased expression of TOM20 and FUNDC1. The expression of sFlt1 was increased in preeclampsia placenta, CdCl2-treated cells, in IOP-treated cells and in PGC1α SiRNA transfected cells. 3-methyladenine treatment protected the increased expression of sFlt1 in CdCl2-treated cells, in IOP-treated cells and in PGC1α SiRNA transfected cells. Meanwhile, co-treatment of cadmium and IOP or PGC1αSiRNA led to a reduce expressions of OPA1, MFN1, MFN2 and FUNDC1 as compared to cadmium-treated, IOP-treated and PGC1α SiRNA-treated cells. These results elucidated that maternal cadmium exposure activated placenta mitophagy through downregulation of thyroid hormone receptor signal mediated decreased expression of PGC1α and was associated with the occurrence of preeclampsia.


Subject(s)
Mitophagy , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Placenta , Pre-Eclampsia , Receptors, Thyroid Hormone , Humans , Pre-Eclampsia/chemically induced , Female , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Pregnancy , Mitophagy/drug effects , Placenta/drug effects , Placenta/metabolism , Receptors, Thyroid Hormone/genetics , Receptors, Thyroid Hormone/metabolism , Cadmium/toxicity , Down-Regulation/drug effects , Adult , Signal Transduction/drug effects
19.
Eur J Pharmacol ; 972: 176569, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38593930

ABSTRACT

In our previous study, we uncovered that ghrelin promotes angiogenesis in human umbilical vein endothelial cells (HUVECs) in vitro by activating the Jagged1/Notch2/VEGF pathway in preeclampsia (PE). However, the regulatory effects of ghrelin on placental dysfunction in PE are unclear. Therefore, we applied Normal pregnant Sprague-Dawley (SD) rats, treated with lipopolysaccharide (LPS), to establish a PE-like rat model. The hematoxylin-eosin (HE) staining method and immunohistochemistry (IHC) technology were used to detect morphological features of the placenta. IHC and Western blot were applied to examine Bax and Bcl-2 expression levels. The concentrations of serum soluble fms-like tyrosine kinase-1 (sFlt1) and placental growth factor (PIGF) were assessed by enzyme-linked immunosorbent assay (ELISA) kit. In addition, the apoptosis rates of JEG-3 and HTR-8/SVneo trophoblast cells were determined by Annexin V-FITC/PI apoptosis detection kit. Cell migratory capacities were assessed by scratch-wound assay, and RNA-sequencing assay was used to determine the mechanism of ghrelin in regulating trophoblast apoptosis. It has been found that ghrelin significantly reduced blood pressure, urinary protein, and urine creatinine in rats with PE, at the meanwhile, ameliorated placental and fetal injuries. Second, ghrelin clearly inhibited placental Bax expression and circulating sFlt-1 as well as elevated placental Bcl-2 expression and circulating PIGF, restored apoptosis and invasion deficiency of trophoblast cells caused by LPS in vitro. Finally, transcriptomics indicated that nuclear factor kappa B (NF-κB) was the potential downstream pathway of ghrelin. Our findings illustrated that ghrelin supplementation significantly improved LPS-induced PE-like symptoms and adverse pregnancy outcomes in rats by alleviating placental apoptosis and promoting trophoblast migration.


Subject(s)
Apoptosis , Disease Models, Animal , Ghrelin , Lipopolysaccharides , NF-kappa B , Placenta , Pre-Eclampsia , Rats, Sprague-Dawley , Animals , Ghrelin/pharmacology , Female , Pre-Eclampsia/drug therapy , Pre-Eclampsia/metabolism , Pregnancy , Placenta/metabolism , Placenta/drug effects , NF-kappa B/metabolism , Rats , Apoptosis/drug effects , Humans , Phosphorylation/drug effects , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Down-Regulation/drug effects , Placenta Growth Factor/metabolism , Placenta Growth Factor/genetics , Trophoblasts/metabolism , Trophoblasts/drug effects , Cell Movement/drug effects , bcl-2-Associated X Protein/metabolism , Signal Transduction/drug effects
20.
Placenta ; 150: 52-61, 2024 May.
Article in English | MEDLINE | ID: mdl-38593636

ABSTRACT

INTRODUCTION: Does an elevation in d-Galactose (D-Gal) levels within the body contribute to abnormal embryonic development and placental dysfunction during pregnancy? METHODS: Mouse embryos were cultivated to the blastocyst stage under varying concentrations of D-Gal. The blastocyst formation rate was measured, and the levels of reactive oxygen species (ROS), sirtuin 1 (SIRT1), and forkhead box O3a (FOXO3a) in blastocysts were assessed. Mice were intraperitoneally injected with either saline or D-Gal with or without SRT1720. On the 14th day of pregnancy, the fetal absorption rate and placental weight were recorded. Placental levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were determined. The expression of senescence-related factors, such as senescence-associated ß-galactosidase (SA-ß-gal) in the placenta was examined, and the expression of placental SIRT1, FOXO3a and p21 was evaluated by immunohistochemistry and Western blotting. RESULTS: D-Gal adversely affects early embryonic development in vitro, resulting in a decreased blastocyst formation rate. Furthermore, D-Gal downregulates SIRT1 and FOXO3a while increasing ROS levels in blastocysts. Concurrently, D-Gal induces placental dysfunction, characterized by an elevated fetal absorption rate, reduced placental weight, diminished SOD activity, and increased MDA content. The senescence-related factor SA-ß-gal was detected in the placenta, along with altered expression of placental SIRT1, FOXO3a, and p21. The SIRT1 agonist SRT1720 mitigated this damage by increasing SIRT1 and FOXO3a expression. DISCUSSION: The inhibition of early embryonic development and placental dysfunction induced by D-Gal may be attributed to the dysregulation of SIRT1. Activating SIRT1 emerges as a potentially effective strategy for alleviating the adverse effects of D-Gal exposure.


Subject(s)
Embryonic Development , Forkhead Box Protein O3 , Galactose , Placenta , Reactive Oxygen Species , Sirtuin 1 , Animals , Forkhead Box Protein O3/metabolism , Female , Sirtuin 1/metabolism , Pregnancy , Reactive Oxygen Species/metabolism , Mice , Embryonic Development/drug effects , Placenta/metabolism , Placenta/drug effects , Placenta Diseases/metabolism , Placenta Diseases/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...