Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.856
Filter
1.
Chaos ; 34(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38829789

ABSTRACT

This paper reports an important conclusion that self-diffusion is not a necessary condition for inducing Turing patterns, while taxis could establish complex pattern phenomena. We investigate pattern formation in a zooplankton-phytoplankton model incorporating phytoplankton-taxis, where phytoplankton-taxis describes the zooplankton that tends to move toward the high-densities region of the phytoplankton population. By using the phytoplankton-taxis sensitivity coefficient as the Turing instability threshold, one shows that the model exhibits Turing instability only when repulsive phytoplankton-taxis is added into the system, while the attractive-type phytoplankton-taxis cannot induce Turing instability of the system. In addition, the system does not exhibit Turing instability when the phytoplankton-taxis disappears. Numerically, we display the complex patterns in 1D, 2D domains and on spherical and zebra surfaces, respectively. In summary, our results indicate that the phytoplankton-taxis plays a pivotal role in giving rise to the Turing pattern formation of the model. Additionally, these theoretical and numerical results contribute to our understanding of the complex interaction dynamics between zooplankton and phytoplankton populations.


Subject(s)
Models, Biological , Phytoplankton , Zooplankton , Animals , Zooplankton/physiology , Phytoplankton/physiology , Computer Simulation , Nonlinear Dynamics , Ecosystem , Plankton/physiology , Population Dynamics
2.
Harmful Algae ; 135: 102646, 2024 May.
Article in English | MEDLINE | ID: mdl-38830712

ABSTRACT

Toxic cyanobacterial blooms present a substantial risk to public health due to the production of secondary metabolites, notably microcystins (MCs). Microcystin-LR (MC-LR) is the most prevalent and toxic variant in freshwater. MCs resist conventional water treatment methods, persistently impacting water quality. This study focused on an oligohaline shallow lagoon historically affected by MC-producing cyanobacteria, aiming to identify bacteria capable of degrading MC and investigating the influence of environmental factors on this process. While isolated strains did not exhibit MC degradation, microbial assemblages directly sourced from lagoon water removed MC-LR within seven days at 25 ºC and pH 8.0. The associated bacterial community demonstrated an increased abundance of bacterial taxa assigned to Methylophilales, and also Rhodospirillales and Rhodocyclales to a lesser extent. However, elevated atmospheric temperatures (45 ºC) and acidification (pH 5.0 and 3.0) hindered MC-LR removal, indicating that extreme environmental changes could contribute to prolonged MC persistence in the water column. This study highlights the importance of considering environmental conditions in order to develop strategies to mitigate cyanotoxin contamination in aquatic ecosystems.


Subject(s)
Microcystins , Microcystins/metabolism , Microcystins/analysis , Bacteria/metabolism , Cyanobacteria/metabolism , Cyanobacteria/physiology , Microbiota , Seawater/microbiology , Seawater/chemistry , Plankton , Hydrogen-Ion Concentration
3.
Cell Syst ; 15(5): 409-410, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38754364

ABSTRACT

Power-law relationships between population abundances, energy use, and other factors are often referred to as macroecological scaling. A recent study convincingly shows that these relationships emerge from individual physiology but only after the population distribution is shaped by trophic interactions that are subject to both ecological and evolutionary pressures.


Subject(s)
Biological Evolution , Plankton , Plankton/physiology , Ecosystem , Animals
4.
J Math Biol ; 89(1): 8, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801565

ABSTRACT

Decline of the dissolved oxygen in the ocean is a growing concern, as it may eventually lead to global anoxia, an elevated mortality of marine fauna and even a mass extinction. Deoxygenation of the ocean often results in the formation of oxygen minimum zones (OMZ): large domains where the abundance of oxygen is much lower than that in the surrounding ocean environment. Factors and processes resulting in the OMZ formation remain controversial. We consider a conceptual model of coupled plankton-oxygen dynamics that, apart from the plankton growth and the oxygen production by phytoplankton, also accounts for the difference in the timescales for phyto- and zooplankton (making it a "slow-fast system") and for the implicit effect of upper trophic levels resulting in density dependent (nonlinear) zooplankton mortality. The model is investigated using a combination of analytical techniques and numerical simulations. The slow-fast system is decomposed into its slow and fast subsystems. The critical manifold of the slow-fast system and its stability is then studied by analyzing the bifurcation structure of the fast subsystem. We obtain the canard cycles of the slow-fast system for a range of parameter values. However, the system does not allow for persistent relaxation oscillations; instead, the blowup of the canard cycle results in plankton extinction and oxygen depletion. For the spatially explicit model, the earlier works in this direction did not take into account the density dependent mortality rate of the zooplankton, and thus could exhibit Turing pattern. However, the inclusion of the density dependent mortality into the system can lead to stationary Turing patterns. The dynamics of the system is then studied near the Turing bifurcation threshold. We further consider the effect of the self-movement of the zooplankton along with the turbulent mixing. We show that an initial non-uniform perturbation can lead to the formation of an OMZ, which then grows in size and spreads over space. For a sufficiently large timescale separation, the spread of the OMZ can result in global anoxia.


Subject(s)
Computer Simulation , Models, Biological , Oxygen , Phytoplankton , Zooplankton , Animals , Oxygen/metabolism , Zooplankton/metabolism , Zooplankton/growth & development , Zooplankton/physiology , Phytoplankton/metabolism , Phytoplankton/growth & development , Phytoplankton/physiology , Oceans and Seas , Plankton/metabolism , Plankton/growth & development , Mathematical Concepts , Ecosystem , Seawater/chemistry , Food Chain , Anaerobiosis
5.
PLoS One ; 19(5): e0303937, 2024.
Article in English | MEDLINE | ID: mdl-38805423

ABSTRACT

Diversity studies of aquatic picoplankton (bacterioplankton) communities using size-class filtration, DNA extraction, PCR and sequencing of phylogenetic markers, require a robust methodological pipeline, since biases have been demonstrated essentially at all levels, including DNA extraction, primer choice and PCR. Even different filtration volumes of the same plankton sample and, thus, different biomass loading of the filters, can distort the sequencing results. In this study, we designed an Arduino microcontroller-based flowmeter that records the decrease of initial (maximal) flowrate as proxy for increasing biomass loading and clogging of filters during plankton filtration. The device was tested using freshwater plankton of Lake Constance, and total DNA was extracted and an 16S rDNA amplicon was sequenced. We confirmed that different filtration volumes used for the same water sample affect the sequencing results. Differences were visible in alpha and beta diversities and across all taxonomic ranks. Taxa most affected were typical freshwater Actinobacteria and Bacteroidetes, increasing up to 38% and decreasing up to 29% in relative abundance, respectively. In another experiment, a lake water sample was filtered undiluted and three-fold diluted, and each filtration was stopped once the flowrate had reduced to 50% of initial flowrate, hence, at the same degree of filter clogging. The three-fold diluted sample required three-fold filtration volumes, while equivalent amounts of total DNA were extracted and differences across all taxonomic ranks were not statistically significant compared to the undiluted controls. In conclusion, this work confirms a volume/biomass-dependent bacterioplankton filtration bias for sequencing-based community analyses and provides an improved procedure for controlling biomass loading during filtrations and recovery of equivalent amounts of DNA from samples independent of the plankton density. The application of the device can also avoid the distorting of sequencing results as caused by the plankton filtration bias.


Subject(s)
Filtration , Plankton , RNA, Ribosomal, 16S , Filtration/instrumentation , Filtration/methods , Plankton/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , DNA, Bacterial/genetics , Sequence Analysis, DNA/methods , Lakes/microbiology , Phylogeny , Biomass
6.
Proc Natl Acad Sci U S A ; 121(21): e2311086121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739806

ABSTRACT

Long-term ecological time series provide a unique perspective on the emergent properties of ecosystems. In aquatic systems, phytoplankton form the base of the food web and their biomass, measured as the concentration of the photosynthetic pigment chlorophyll a (chl a), is an indicator of ecosystem quality. We analyzed temporal trends in chl a from the Long-Term Plankton Time Series in Narragansett Bay, Rhode Island, USA, a temperate estuary experiencing long-term warming and changing anthropogenic nutrient inputs. Dynamic linear models were used to impute and model environmental variables (1959 to 2019) and chl a concentrations (1968 to 2019). A long-term chl a decrease was observed with an average decline in the cumulative annual chl a concentration of 49% and a marked decline of 57% in winter-spring bloom magnitude. The long-term decline in chl a concentration was directly and indirectly associated with multiple environmental factors that are impacted by climate change (e.g., warming temperatures, water column stratification, reduced nutrient concentrations) indicating the importance of accounting for regional climate change effects in ecosystem-based management. Analysis of seasonal phenology revealed that the winter-spring bloom occurred earlier, at a rate of 4.9 ± 2.8 d decade-1. Finally, the high degree of temporal variation in phytoplankton biomass observed in Narragansett Bay appears common among estuaries, coasts, and open oceans. The commonality among these marine ecosystems highlights the need to maintain a robust set of phytoplankton time series in the coming decades to improve signal-to-noise ratios and identify trends in these highly variable environments.


Subject(s)
Chlorophyll A , Climate Change , Phytoplankton , Seasons , Chlorophyll A/metabolism , Chlorophyll A/analysis , Phytoplankton/physiology , Phytoplankton/growth & development , Estuaries , Ecosystem , Plankton/physiology , Plankton/growth & development , Biomass , Chlorophyll/metabolism
7.
PLoS One ; 19(5): e0298283, 2024.
Article in English | MEDLINE | ID: mdl-38809833

ABSTRACT

Biofilms make it difficult to eradicate bacterial infections through antibiotic treatments and lead to numerous complications. Previously, two periprosthetic infection-related pathogens, Enterococcus faecalis and Staphylococcus lugdunensis were reported to have relatively contrasting biofilm-forming abilities. In this study, we examined the proteomics of the two microorganisms' biofilms using LC-MS/MS. The results showed that each microbe exhibited an overall different profile for differential gene expressions between biofilm and planktonic cells as well as between each other. Of a total of 929 proteins identified in the biofilms of E. faecalis, 870 proteins were shared in biofilm and planktonic cells, and 59 proteins were found only in the biofilm. In S. lugdunensis, a total of 1125 proteins were identified, of which 1072 proteins were found in common in the biofilm and planktonic cells, and 53 proteins were present only in the biofilms. The functional analysis for the proteins identified only in the biofilms using UniProt keywords demonstrated that they were mostly assigned to membrane, transmembrane, and transmembrane helix in both microorganisms, while hydrolase and transferase were found only in E. faecalis. Protein-protein interaction analysis using STRING-db indicated that the resulting networks did not have significantly more interactions than expected. GO term analysis exhibited that the highest number of proteins were assigned to cellular process, catalytic activity, and cellular anatomical entity. KEGG pathway analysis revealed that microbial metabolism in diverse environments was notable for both microorganisms. Taken together, proteomics data discovered in this study present a unique set of biofilm-embedded proteins of each microorganism, providing useful information for diagnostic purposes and the establishment of appropriately tailored treatment strategies. Furthermore, this study has significance in discovering the target candidate molecules to control the biofilm-associated infections of E. faecalis and S. lugdunensis.


Subject(s)
Bacterial Proteins , Biofilms , Enterococcus faecalis , Plankton , Proteomics , Staphylococcus lugdunensis , Biofilms/growth & development , Enterococcus faecalis/physiology , Enterococcus faecalis/metabolism , Enterococcus faecalis/genetics , Proteomics/methods , Staphylococcus lugdunensis/metabolism , Staphylococcus lugdunensis/genetics , Plankton/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Tandem Mass Spectrometry , Chromatography, Liquid
8.
Biomed Mater ; 19(4)2024 May 28.
Article in English | MEDLINE | ID: mdl-38740038

ABSTRACT

Bacterial infections pose a serious threat to human health, with emerging antibiotic resistance, necessitating the development of new antibacterial agents. Cu2+and Ag+are widely recognized antibacterial agents with a low propensity for inducing bacterial resistance; however, their considerable cytotoxicity constrains their clinical applications. Rare-earth ions, owing to their unique electronic layer structure, hold promise as promising alternatives. However, their antibacterial efficacy and biocompatibility relative to conventional antibacterial agents remain underexplored, and the variations in activity across different rare-earth ions remain unclear. Here, we systematically evaluate the antibacterial activity of five rare-earth ions (Yb3+, Gd3+, Sm3+, Tb3+, and La3+) againstStaphylococcus aureusandPseudomonas aeruginosa, benchmarked against well-established antibacterial agents (Cu2+, Ag+) and the antibiotic norfloxacin. Cytotoxicity is also assessed via live/dead staining of fibroblasts after 24 h rare-earth ion exposure. Our findings reveal that rare-earth ions require higher concentrations to match the antibacterial effects of traditional agents but offer the advantage of significantly lower cytotoxicity. In particular, Gd3+demonstrates potent bactericidal efficacy against both planktonic and biofilm bacteria, while maintaining the lowest cytotoxicity toward mammalian cells. Moreover, the tested rare-earth ions also exhibited excellent antifungal activity againstCandida albicans. This study provides a critical empirical framework to guide the selection of rare-earth ions for biomedical applications, offering a strategic direction for the development of novel antimicrobial agents.


Subject(s)
Anti-Bacterial Agents , Biofilms , Ions , Metals, Rare Earth , Microbial Sensitivity Tests , Plankton , Pseudomonas aeruginosa , Metals, Rare Earth/chemistry , Metals, Rare Earth/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Plankton/drug effects , Pseudomonas aeruginosa/drug effects , Humans , Staphylococcus aureus/drug effects , Animals , Norfloxacin/pharmacology , Norfloxacin/chemistry
9.
Environ Sci Technol ; 58(20): 8760-8770, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717860

ABSTRACT

Sinking or floating is the natural state of planktonic organisms and particles in the ocean. Simulating these conditions is critical when making measurements, such as respirometry, because they allow the natural exchange of substrates and products between sinking particles and water flowing around them and prevent organisms that are accustomed to motion from changing their metabolism. We developed a rotating incubator, the RotoBOD (named after its capability to rotate and determine biological oxygen demand, BOD), that uniquely enables automated oxygen measurements in small volumes while keeping the samples in their natural state of suspension. This allows highly sensitive rate measurements of oxygen utilization and subsequent characterization of single particles or small planktonic organisms, such as copepods, jellyfish, or protists. As this approach is nondestructive, it can be combined with several further measurements during and after the incubation, such as stable isotope additions and molecular analyses. This makes the instrument useful for ecologists, biogeochemists, and potentially other user groups such as aquaculture facilities. Here, we present the technical background of our newly developed apparatus and provide examples of how it can be utilized to determine oxygen production and consumption in small organisms and particles.


Subject(s)
Oxygen , Oxygen/metabolism , Oxygen Consumption , Animals , Plankton/metabolism , Copepoda/metabolism
10.
Environ Res ; 253: 119154, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38754616

ABSTRACT

Lakes serve as heterogeneous ecosystems with rich microbiota. Although previous studies on bacterioplankton have advanced our understanding, there are gaps in our knowledge concerning variations in the taxonomic composition and community assembly processes of bacterioplankton across different environment conditions. This study explored the spatial dynamics, assembly processes, and co-occurrence relationships among bacterioplankton communities in 35 surface water samples collected from Hulun Lake (a grassland-type lake), Wuliangsuhai Lake (an irrigated agricultural recession type lake), and Daihai Lake (an inland lake with mixed farming and grazing) in the Inner Mongolia Plateau, China. The results indicated a significant geographical distance decay pattern, with biomarkers (Proteobacteria and Bacteroidota) exhibiting differences in the contributions of different bacteria branches to the lakes. The relative abundance of Proteobacteria (42.23%) were high in Hulun Lake and Wuliangsuhai Lake. Despite Actinobacteriota was most dominant, Firmicutes accounted for approximately 17.07% in Daihai Lake, suggested the potential detection of anthropogenic impacts on bacteria within the agro-pastoral inland lake. Lake heterogeneity caused bacterioplankton responses to phosphorus, chlorophyll a, and salinity in Hulun Lake, Wuliangsuhai Lake, and Daihai Lake. Although bacterioplankton community assembly processes in irrigated agricultural recession type lake were more affected by dispersal limitation than those in grassland-type lake and inland lake with mixed farming and grazing (approximately 52.7% in Hulun Lake), dispersal limitation and undominated processes were key modes of bacterioplankton community assembly in three lakes. This suggested stochastic processes exerted a greater impact on bacterioplankton community assembly in a typical Inner Mongolia Lake than deterministic processes. Overall, the bacterioplankton communities displayed the potential for collaboration, with lowest connectivity observed in irrigated agricultural recession type lake, which reflected the complex dynamic patterns of aquatic bacteria in typical Inner Mongolia Plateau lakes. These findings enhanced our understanding of the interspecific relationships and assembly processes among microorganisms in lakes with distinct habitats.


Subject(s)
Bacteria , Lakes , Plankton , Lakes/microbiology , Lakes/chemistry , China , Bacteria/classification , Bacteria/isolation & purification , Microbiota , Environmental Monitoring
11.
Chemosphere ; 360: 142434, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797215

ABSTRACT

As emerging contaminants, antibiotics are frequently present in various environments, particularly rivers, albeit often at sublethal concentrations (ng/L∼µg/L). Assessing the risk associated with these low levels, which are far below the lethal threshold for most organisms, remains challenging. In this study, using microcosms containing planktonic bacteria and biofilm, we examined how antibiotic resistance genes (ARGs) in different physical states, including intracellular ARGs (iARGs) and extracellular ARGs (eARGs) responded to these low-level antibiotics. Our findings reveal a positive correlation between sub-lethal antibiotic exposure (ranging from 0.1 to 10 µg/L) and increased prevalence (measured as ARG copies/16s rDNA) of both iARGs and eARGs in planktonic bacteria. Notably, eARGs demonstrated greater sensitivity to antibiotic exposure compared to iARGs, with a lower threshold (0.1 µg/L for eARGs versus 1 µg/L for iARGs) for abundance increase. Moreover, ARGs in biofilms demonstrates higher sensitivity to antibiotic exposure compared to planktonic bacteria. To elucidate the underlying mechanisms, we established an integrated population dynamics-pharmacokinetics-pharmacodynamics (PD-PP) model. This model indicates that the enhanced sensitivity of eARGs is primarily driven by an increased potential for plasmid release from cells under low antibiotic concentrations. Furthermore, the accumulation of antibiotic in biofilms induces a greater sensitivity of ARG compared to the planktonic bacteria. This study provides a fresh perspective on the development of antibiotic resistance and offers an innovative approach for assessing the risk of sublethal antibiotic in the environment.


Subject(s)
Anti-Bacterial Agents , Bacteria , Biofilms , Drug Resistance, Microbial , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Biofilms/drug effects , Drug Resistance, Microbial/genetics , Bacteria/drug effects , Bacteria/genetics , Genes, Bacterial , Plankton/drug effects , Plankton/genetics , Drug Resistance, Bacterial/genetics , Water Pollutants, Chemical/toxicity
12.
Mar Pollut Bull ; 203: 116411, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733890

ABSTRACT

This study delves into how two ecotypes of diatom affect the Pyropia haitanensis, a valuable and commercial red macroalga. We co-cultivated P. haitanensis with a planktonic diatom Skeletonema costatum and benthic diatom Navicula climacospheniae. The results showed that benthic diatom significantly hindered P. haitanensis growth, while planktonic ones had no major impact. The macroalga restrained planktonic diatom growth but did not affect benthic diatom. Photosynthetic pigments of macroalga, except chlorophyll, were higher, indicating stress when exposed to diatoms. Microscopic images revealed dense benthic diatom attachment, potentially stressing thalli due to limited light and EPS secretion. Total carbohydrate slightly decreased in both diatom treatments, while total protein significantly decreased with increasing benthic diatom densities. In summary, benthic diatom notably influenced P. haitanensis growth, pigments, and total protein levels. This study sheds light on the interaction between microalgal ecotypes and commercial macroalga P. haitanensis, which is crucial for its economic significance.


Subject(s)
Diatoms , Rhodophyta , Diatoms/growth & development , Rhodophyta/growth & development , Rhodophyta/physiology , Seaweed , Chlorophyll/metabolism , Plankton , Photosynthesis/drug effects
13.
J Oleo Sci ; 73(5): 709-716, 2024.
Article in English | MEDLINE | ID: mdl-38692893

ABSTRACT

Epigallocatechin-3-gallate (EGCG), a polyphenol derived from Green Tea, is one of the sources of natural bioactive compounds which are currently being developed as medicinal ingredients. Besides other biological activities, this natural compound exhibits anti-cariogenic effects. However, EGCG has low physical-chemical stability and poor bioavailability. Thus, the purpose of this study was to develop and characterize lipid-chitosan hybrid nanoparticle with EGCG and to evaluate its in vitro activity against cariogenic planktonic microorganisms. Lipid-chitosan hybrid nanoparticle (LCHNP-EGCG) were prepared by emulsion and sonication method in one step and characterized according to diameter, polydispersity index (PdI), zeta potential (ZP), encapsulation efficiency (EE), mucoadhesion capacity and morphology. Strains of Streptococcus mutans, Streptococcus sobrinus and Lactobacillus casei were treated with LCHNP- EGCG, and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated. LCHNP-EGCG exhibited a size of 217.3 ± 5.1 nm with a low polydispersity index (0.17) and positive zeta potential indicating the presence of chitosan on the lipid nanoparticle surface (+33.7 mV). The LCHNP-EGCG showed a spherical morphology, high stability and a mucoadhesive property due to the presence of chitosan coating. In addition, the EGCG encapsulation efficiency was 96%. A reduction of almost 15-fold in the MIC and MBC against the strains was observed when EGCG was encapsulated in LCHNP, indicating the potential of EGCG encapsulation in lipid-polymer hybrid nanoparticles. Taking the results together, the LCHNP-EGCG could be an interesting system to use in dental care due to their nanometric size, mucoadhesive properties high antibacterial activity against relevant planktonic microorganisms.


Subject(s)
Anti-Bacterial Agents , Catechin , Catechin/analogs & derivatives , Chitosan , Microbial Sensitivity Tests , Nanoparticles , Streptococcus mutans , Catechin/pharmacology , Catechin/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Streptococcus mutans/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Streptococcus sobrinus/drug effects , Lacticaseibacillus casei/drug effects , Lipids/chemistry , Plankton/drug effects , Dental Caries/microbiology , Dental Caries/prevention & control , Drug Carriers/chemistry , Particle Size , Emulsions , Sonication
14.
Harmful Algae ; 134: 102626, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38705614

ABSTRACT

Harmful algal bloom (HAB) is a rapidly expanding marine ecological hazard. Although numerous studies have been carried out about the ecological impact and the ecological mechanism of HAB outbreaks, few studies have comprehensively addressed the shifts of species composition, metabolic activity level, driving factors and community assembly mechanisms of microeukaryotic plankton in the course of the bloom event. To fill the gap of research, we conducted 18S ribosomal DNA and RNA sequencing during the initiation, development, sustenance and decline stages of a Scrippsiella acuminata (S. acuminata) bloom at the coastal sea of Fujian Province, China. We found that the bloom event caused a decrease in microeukaryotic plankton species diversity and increase in community homogeneity. Our results revealed that the RNA- and DNA-inferred communities were similar, but α-diversity was more dynamic in RNA- than in DNA-inferred communities. The main taxa with high projected metabolic activity (with RNA:DNA ratio as the proxy) during the bloom included dinoflagellates, Cercozoa, Chlorophyta, Protalveolata, and diatoms. The role of deterministic processes in microeukaryotic plankton community assembly increased during the bloom, but stochastic processes were always the dominant assembly mechanism throughout the bloom process. Our findings improve the understanding of temporal patterns, driving factors and assembly mechanisms underlying the microeukarytic plankton community in a dinoflagellate bloom.


Subject(s)
Biodiversity , Dinoflagellida , Harmful Algal Bloom , Dinoflagellida/genetics , Dinoflagellida/physiology , China , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 18S/analysis , Plankton/genetics , Diatoms/genetics , Diatoms/physiology
15.
Food Chem ; 448: 139073, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38574713

ABSTRACT

This study reported for the first time that Ascorbic acid (AA) could appreciably boost the efficiency of Octyl gallate (OG)-mediated photodynamic inactivation (PDI) on Escherichia coli and Staphylococcus aureus in planktonic and biofilm states. The combination of OG (0.075 mM) and AA (200 mM) with 420 nm blue light (212 mW/cm2) led to a >6 Log killing within only 5 min for E. coli and S. aureus and rapid eradication of biofilms. The mechanism of action appears to be the generation of highly toxic hydroxyl radicals (•OH) via photochemical pathways. OG was exposed to BL irradiation to generate various reactive oxygen radicals (ROS) and the addition of AA could transform singlet oxygen (1O2) into hydrogen peroxide (H2O2), which could further react with AA to generate enormous •OH. These ROS jeopardized bacteria and biofilms by nonspecifically attacking various biomacromolecules. Overall, this PDI strategy provides a powerful microbiological decontamination modality to guarantee safe food products.


Subject(s)
Ascorbic Acid , Biofilms , Escherichia coli , Gallic Acid , Gallic Acid/analogs & derivatives , Light , Staphylococcus aureus , Biofilms/drug effects , Ascorbic Acid/pharmacology , Ascorbic Acid/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Gallic Acid/pharmacology , Gallic Acid/chemistry , Escherichia coli/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Viability/drug effects , Microbial Viability/radiation effects , Reactive Oxygen Species/metabolism , Plankton/drug effects , Plankton/radiation effects , Blue Light
16.
Int J Biol Macromol ; 268(Pt 1): 131673, 2024 May.
Article in English | MEDLINE | ID: mdl-38642681

ABSTRACT

Bacterial infections trigger inflammation and impede the closure of skin wounds. The misuse of antibiotics exacerbates skin infections by generating multidrug-resistant bacteria. In this study, we developed chemo-photothermal therapy (chemo-PTT) based on near-infrared (NIR)-irradiated chitosan/gold nanorod (GNR) clusters as anti-methicillin-resistant Staphylococcus aureus (MRSA) agents. The nanocomposites exhibited an average size of 223 nm with a surface charge of 36 mV. These plasmonic nanocomposites demonstrated on-demand and rapid hyperthermal action under NIR. The combined effect of positive charge and PTT by NIR-irradiated nanocomposites resulted in a remarkable inhibition rate of 96 % against planktonic MRSA, indicating a synergistic activity compared to chitosan nanoparticles or GNR alone. The nanocomposites easily penetrated the biofilm matrix. The combination of chemical and photothermal treatments by NIR-stimulated clusters significantly damaged the biofilm structure, eradicating MRSA inside the biomass. NIR-irradiated chitosan/GNR clusters increased the skin temperature of mice by 13 °C. The plasmonic nanocomposites induced negligible skin irritation in vivo. In summary, this novel nanosystem demonstrated potent antibacterial effects against planktonic and biofilm MRSA, showcasing the possible efficacy in treating skin infections.


Subject(s)
Anti-Bacterial Agents , Biofilms , Chitosan , Gold , Methicillin-Resistant Staphylococcus aureus , Nanotubes , Photothermal Therapy , Chitosan/chemistry , Chitosan/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Gold/chemistry , Gold/pharmacology , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanotubes/chemistry , Animals , Photothermal Therapy/methods , Mice , Plankton/drug effects , Staphylococcal Infections/drug therapy , Staphylococcal Infections/therapy , Nanocomposites/chemistry , Microbial Sensitivity Tests
17.
Nature ; 629(8012): 616-623, 2024 May.
Article in English | MEDLINE | ID: mdl-38632405

ABSTRACT

In palaeontological studies, groups with consistent ecological and morphological traits across a clade's history (functional groups)1 afford different perspectives on biodiversity dynamics than do species and genera2,3, which are evolutionarily ephemeral. Here we analyse Triton, a global dataset of Cenozoic macroperforate planktonic foraminiferal occurrences4, to contextualize changes in latitudinal equitability gradients1, functional diversity, palaeolatitudinal specialization and community equitability. We identify: global morphological communities becoming less specialized preceding the richness increase after the Cretaceous-Palaeogene extinction; ecological specialization during the Early Eocene Climatic Optimum, suggesting inhibitive equatorial temperatures during the peak of the Cenozoic hothouse; increased specialization due to circulation changes across the Eocene-Oligocene transition, preceding the loss of morphological diversity; changes in morphological specialization and richness about 19 million years ago, coeval with pelagic shark extinctions5; delayed onset of changing functional group richness and specialization between hemispheres during the mid-Miocene plankton diversification. The detailed nature of the Triton dataset permits a unique spatiotemporal view of Cenozoic pelagic macroevolution, in which global biogeographic responses of functional communities and richness are decoupled during Cenozoic climate events. The global response of functional groups to similar abiotic selection pressures may depend on the background climatic state (greenhouse or icehouse) to which a group is adapted.


Subject(s)
Aquatic Organisms , Climate Change , Foraminifera , Phylogeography , Plankton , Animals , Aquatic Organisms/physiology , Aquatic Organisms/classification , Biodiversity , Biological Evolution , Climate Change/history , Datasets as Topic , Extinction, Biological , Foraminifera/classification , Foraminifera/physiology , History, Ancient , Plankton/classification , Plankton/physiology , Spatio-Temporal Analysis
18.
Microb Pathog ; 191: 106665, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685359

ABSTRACT

Fungal infections caused by Candida species pose a serious threat to humankind. Antibiotics abuse and the ability of Candida species to form biofilm have escalated the emergence of drug resistance in clinical settings and hence, rendered it more difficult to treat Candida-related diseases. Lethal effects of Candida infection are often due to inefficacy of antimicrobial treatments and failure of host immune response to clear infections. Previous studies have shown that a combination of riboflavin with UVA (riboflavin/UVA) light demonstrate candidacidal activity albeit its mechanism of actions remain elusive. Thus, this study sought to investigate antifungal and antibiofilm properties by combining riboflavin with UVA against Candida albicans and non-albicans Candida species. The MIC20 for the fluconazole and riboflavin/UVA against the Candida species tested was within the range of 0.125-2 µg/mL while the SMIC50 was 32 µg/mL. Present findings indicate that the inhibitory activities exerted by riboflavin/UVA towards planktonic cells are slightly less effective as compared to controls. However, the efficacy of the combination towards Candida species biofilms showed otherwise. Inhibitory effects exerted by riboflavin/UVA towards most of the tested Candida species biofilms points towards a variation in mode of action that could make it an ideal alternative therapeutic for biofilm-related infections.


Subject(s)
Antifungal Agents , Biofilms , Candida albicans , Candida , Microbial Sensitivity Tests , Riboflavin , Ultraviolet Rays , Biofilms/drug effects , Biofilms/growth & development , Biofilms/radiation effects , Riboflavin/pharmacology , Antifungal Agents/pharmacology , Candida/drug effects , Candida/growth & development , Candida albicans/drug effects , Plankton/drug effects , Fluconazole/pharmacology , Humans
19.
Sci Total Environ ; 929: 172351, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38615783

ABSTRACT

Whole-lake microalgal biomass surveys were carried out in Lake Balaton to investigate the seasonal, spatial, and temporal changes of benthic algae, as well as to identify the drivers of the phytobenthos. Phytobenthos was controlled mainly by light: the highest benthic algal biomass was in the shallow littoral region characterized by large grain size (sand) with good light availability but lower nutrient content in the sediment. During the investigated period, phytoplankton biomass showed a significant decrease in almost the entire lake. At the same time, the biomass of benthic algae increased significantly in the eastern areas, increasing the contribution of total lake microalgae biomass (from 20 % to 27 %). Benthic algal biomass increase can be explained by the better light supply, owing to the artificially maintained high water level which greatly mitigates water mixing. The decrease in planktonic algal biomass could be attributed to increased zooplankton grazing, which is otherwise negatively affected by mixing. As a result of the high water level, the trophic structure of the lake has been rearranged in recent decades with a shift from the planktonic life form to the benthic one while the nutrient supply has largely remained unchanged.


Subject(s)
Biomass , Environmental Monitoring , Lakes , Microalgae , Microalgae/physiology , Lakes/chemistry , Phytoplankton , Plankton , Zooplankton , Eutrophication
20.
Mar Pollut Bull ; 202: 116409, 2024 May.
Article in English | MEDLINE | ID: mdl-38663343

ABSTRACT

We investigated spatial heterogeneity and diel variations in bacterioplankton and pico-nanoeukaryote communities, and potential biotic interactions at the extinction stage of the Ulva prolifera bloom in the Jiaozhou Bay, Yellow Sea. It was found that the presence of Ulva canopies significantly promoted the cell abundance of heterotrophic bacteria, raised evenness, and altered the community structure of bacterioplankton. A diel pattern was solely significant for pico-nanoeukaryote community structure. >50 % of variation in the heterotrophic bacterial abundance was accounted for by the ratio of Bacteroidota to Firmicutes, and dissolved organic nitrogen effectively explained the variations in cell abundances of phytoplankton populations. The factors representing biotic interactions frequently contributed substantially more than environmental factors in explaining the variations in diversity and community structure of both bacterioplankton and pico-nanoeukaryotes. There were higher proportions of eukaryotic pathogens compared to other marine systems, suggesting a higher ecological risk associated with the Ulva blooms.


Subject(s)
Bacteria , Eutrophication , Phytoplankton , Ulva , Plankton , Seaweed , Environmental Monitoring , China
SELECTION OF CITATIONS
SEARCH DETAIL
...