Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.884
Filter
1.
Nat Prod Res ; 38(11): 1918-1923, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38739564

ABSTRACT

Blumea eriantha D.C is a weed from Asteraceae family and is reported to have anticancer activity. The essential oil from the aerial parts was extracted by steam distillation method with the yield of 0.36%. Through GC-MS analysis of the oil, seventeen compounds could be identified by comparing with linear retention indices with the library. Out of the seventeen compounds ß-Caryophylline oxide was isolated by column chromatography with gradient elution and the structure was determined through FT-IR, MS, 1HNMR, 13 C NMR and DEPT. The oil was evaluated for its effect on angiogenesis using Chorioallantoic Membrane Assay (CAM Assay). The concentration dependent antiangiogenic effect was observed with IC 50 value of 19.28 ppm.


Subject(s)
Angiogenesis Inhibitors , Asteraceae , Gas Chromatography-Mass Spectrometry , Oils, Volatile , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Asteraceae/chemistry , Animals , Chorioallantoic Membrane/drug effects , Chorioallantoic Membrane/blood supply , Plant Components, Aerial/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Molecular Structure , Spectroscopy, Fourier Transform Infrared , Polycyclic Sesquiterpenes
2.
Pak J Pharm Sci ; 37(1): 163-171, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741413

ABSTRACT

Medicinal plants contain a wide variety of bioactive phytoconstituents which can serve as new therapeutic agents for several diseases. This study examines the antidiabetic potential of Aitchisonia rosea in alloxan-induced diabetic rats and identifies its bioactive phytoconstituents using GC-MS. In vitro, antidiabetic potential was established using the α-amylase inhibition assay. In vivo, antidiabetic potential was investigated by employing the oral glucose tolerance test (OGTT). GC-MS analysis was used to identify the bioactive phytoconstituents. The in vitro and in vivo tests showed that the aqueous extract of A. rosea possesses better antidiabetic potential. The α-amylase inhibition assay highlighted an IC50 value of 134.87µg/ml. In an oral glucose tolerance test, rats given an aqueous A. rosea extract significantly lowered their blood sugar levels significant reduction in the blood glucose concentration was observed in the oral glucose tolerance test in rats treated with the aqueous A. rosea extract. GC-MS investigation revealed many phytoconstituents, with serverogenin acetate and cycloheptasiloxane tetradecamethyl being important antidiabetic agents. This study found anti-diabetic properties in A. rosea extract. The phytochemical and GC-MS investigation also found serverogenin acetate and cycloheptasiloxane tetradecamethyl, which could be used to develop new antidiabetic drugs.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Gas Chromatography-Mass Spectrometry , Hypoglycemic Agents , Plant Components, Aerial , Plant Extracts , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Plant Components, Aerial/chemistry , Male , Blood Glucose/drug effects , Rats , Glucose Tolerance Test , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Rats, Wistar , Phytochemicals/pharmacology , Phytochemicals/analysis , Alloxan
3.
Molecules ; 29(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792176

ABSTRACT

Utilizing online gradient pressure liquid extraction (OGPLE) coupled with a high-performance liquid chromatography antioxidant analysis system, we examined the antioxidative active components present in both the aerial parts and roots of dandelion. By optimizing the chromatographic conditions, we identified the ferric reducing-antioxidant power system as the most suitable for online antioxidant reactions in dandelion. Compared to offline ultrasonic extraction, the OGPLE method demonstrated superior efficiency in extracting chemical components with varying polarities from the samples. Liquid chromatography-mass spectrometry revealed twelve compounds within the dandelion samples, with nine demonstrating considerable antioxidant efficacy. Of these, the aerial parts and roots of dandelion contained nine and four antioxidant constituents, respectively. Additionally, molecular docking studies were carried out to investigate the interaction between these nine antioxidants and four proteins associated with oxidative stress (glutathione peroxidase, inducible nitric oxide synthase, superoxide dismutase, and xanthine oxidase). The nine antioxidant compounds displayed notable binding affinities below -5.0 kcal/mol with the selected proteins, suggesting potential receptor-ligand interactions. These findings contribute to enhancing our understanding of dandelion and provide a comprehensive methodology for screening the natural antioxidant components from herbs.


Subject(s)
Antioxidants , Molecular Docking Simulation , Plant Extracts , Taraxacum , Antioxidants/chemistry , Chromatography, High Pressure Liquid/methods , Taraxacum/chemistry , Plant Extracts/chemistry , Plant Roots/chemistry , Plant Components, Aerial/chemistry
4.
Biomolecules ; 14(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38672484

ABSTRACT

A detailed phytochemical investigation has been carried out on the aerial parts of G. foetida leading to the isolation of 29 pure compounds, mainly belonging to the amorfrutin and polyphenol classes. Among them, the new amorfrutin N (5) and exiguaflavone L (21) were isolated and their structures elucidated by means of HR-ESIMS and NMR. All the isolated compounds were investigated for modulation of mitochondrial activity and stimulation of glucose uptake via GLUT transporters, two metabolic processes involved in intracellular glucose homeostasis, which, therefore, correlate with the incidence of metabolic syndrome. These experiments revealed that amorfrutins were active on both targets, with amorfrutin M (17) and decarboxyamorfrutin A (2) emerging as mitochondrial stimulators, and amorfrutin 2 (12) as a glucose uptake promoter. However, members of the rich chalcone/flavonoid fraction also proved to contribute to this activity.


Subject(s)
Glucose , Metabolic Syndrome , Plant Components, Aerial , Metabolic Syndrome/metabolism , Metabolic Syndrome/drug therapy , Plant Components, Aerial/chemistry , Humans , Glucose/metabolism , Glycyrrhiza/chemistry , Mitochondria/metabolism , Mitochondria/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/isolation & purification , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transport Proteins, Facilitative/genetics
5.
Chin J Nat Med ; 22(4): 375-384, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658100

ABSTRACT

The aerial parts of Mosla chinensis Maxim. and Mosla chinensis cv. 'Jiangxiangru' (MCJ) are widely utilized in traditional Chinese medicine (TCM), known collectively as Xiang-ru. However, due to clinical effectiveness concerns and frequent misidentification, the original plants have increasingly been substituted by various species within the genera Elsholtzia and Mosla. The challenge in distinguishing between these genera arises from their similar morphological and metabolic profiles. To address this issue, our study introduced a rapid method for metabolic characterization, employing high-resolution mass spectrometry-based metabolomics. Through detailed biosynthetic and chemometric analyses, we pinpointed five phenolic compounds-salviaflaside, cynaroside, scutellarein-7-O-D-glucoside, rutin, and vicenin-2-among 203 identified compounds, as reliable chemical markers for distinguishing Xiang-ru from closely related Elsholtzia species. This methodology holds promise for broad application in the analysis of plant aerial parts, especially in verifying the authenticity of aromatic traditional medicinal plants. Our findings underscore the importance of non-volatile compounds as dependable chemical markers in the authentication process of aromatic traditional medicinal plants.


Subject(s)
Drugs, Chinese Herbal , Lamiaceae , Phenols , Phenols/analysis , Phenols/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Lamiaceae/chemistry , Lamiaceae/classification , Medicine, Chinese Traditional , Metabolomics/methods , Mass Spectrometry/methods , Plant Components, Aerial/chemistry
6.
J Ethnopharmacol ; 330: 118252, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38663782

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Atractylis aristata batt., as an endemic plant from the Asteraceae family, holds a significant position in the Ahaggar region of southern Algeria's traditional medicine. The aerial parts of Atractylis aristata was used to cure inflammation, fever, and stomach disorders. AIM OF THE STUDY: The objective of the present investigation was to ascertain the overall bioactive components and phytochemical components and examine the antioxidant, antidiabetic, anti-inflammatory, acute toxicity, and sedative properties of the crude extract obtained from the aerial portions of Atractylis aristata (AaME). MATERIALS AND METHODS: The AaME's antioxidant activity was assessed by the use of pyrogallol autoxidation, (1,1 diphenyl-2-picrylhydrazyl) (DPPH), 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and reducing power (RP) techniques. 1 mg/mL of AaME was used to evaluate the antidiabetic activity by applying the enzyme α-amylase inhibitory power test. At the same time, the bovine serum albumin (BSA) denaturation method was employed to quantify the in vitro anti-inflammatory activity at different concentrations (1.5625, 0.78125, 0.390625, 0.1953125 and 0.09765625 mg/mL). In contrast, following the Organization for Economic Co-operation and Development (OECD) guideline No. 423, which covers acute oral toxicity testing protocols, the limit dosage test was employed to assess in vivo acute toxicity. At the dose of 0.08 mg/mL, the carrageenan-induced paw edema approach was used to assess the anti-inflammatory efficacy in vivo, and the sedative activity was carried out at the dose of 0.08 mg/mL using the measurement of the locomotor method. Different bioactive compounds were identified within AaME using LC-MS/MS and HPLC-UV analysis. RESULTS: The acute toxicity study showed no fatalities or noticeable neurobehavioral consequences at the limit test; this led to their classification in Globally Harmonized System (GHS) category Five, as the OECD guideline No 423 recommended. At a concentration of 0.08 mg/mL (2000 mg/kg), AaME showed apparent inhibition of paw edema and a significant (p = 0.01227) reduction in locomotor activity compared to the control animals. Our findings showed that AaME exhibited considerable antioxidant (IC50 = 0.040 ± 0.003 mg/mL (DPPH), IC50 = 0.005 ± 5.77 × 10-5 mg/mL (ABTS), AEAC = 91.15 ± 3.921 mg (RP) and IR% = 23.81 ± 4.276 (Inhibition rate of pyrogallol) and rebuts antidiabetic activities (I% = 57.6241% ± 2.81772). Our findings revealed that the maximum percentage of BSA inhibition (70.84 ± 0.10%) was obtained at 1.562.5 mg/mL. Thus, the AaME phytochemical profile performed using phytochemical screening, HPLC-UV, and LC-MS/MS analysis demonstrated that A. aristata can be a valuable source of chemicals with biological activity for pharmaceutical manufacturers. CONCLUSION: The phytochemical profiling, determined through HPLC-UV and LC-MS/MS applications, reveals this plant's therapeutic value. The aerial parts of Atractylis aristata contain bioactive molecules such as gallic acid, ascorbic acid, and quercetin, contributing to its significant antioxidant capabilities. Furthermore, identifying alizarin, the active compound responsible for its anti-inflammatory properties, could provide evidence supporting the anti-inflammatory capabilities of this subspecies.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Hypnotics and Sedatives , Hypoglycemic Agents , Phenols , Plant Extracts , Animals , Antioxidants/pharmacology , Antioxidants/isolation & purification , Antioxidants/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/toxicity , Male , Phenols/pharmacology , Phenols/analysis , Phenols/isolation & purification , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/isolation & purification , Hypnotics and Sedatives/toxicity , Mice , Asteraceae/chemistry , Rats, Wistar , Rats , Edema/drug therapy , Edema/chemically induced , Female , Plant Components, Aerial/chemistry
7.
Fitoterapia ; 175: 105951, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583637

ABSTRACT

Four undescribed amide alkaloids hongkongensines A-C and 1-(1-oxo-6-hydroxy-2E,4E-dodecadienyl)-piperidine, five known amide alkaloids, and three known neolignans were isolated from the aerial part of Piper hongkongense. The planar structures of these compounds were determined by detailed analyses of HR-ESI-MS and NMR data. The absolute configurations of hongkongensines A-C were elucidated by single-crystal X-ray diffraction analysis and ECD calculations. Moreover, the inhibitory activities of PCSK9 expression in vitro for all compounds were assessed by PCSK9 AlphaLISA screening. Kadsurenone (10) displayed a significant inhibitory activity at 5 µM with an inhibition rate of 51.98%, compared with 55.55% of berberine (BBR 5 µM).


Subject(s)
Alkaloids , Lignans , PCSK9 Inhibitors , Phytochemicals , Piper , Plant Components, Aerial , Piper/chemistry , Molecular Structure , Alkaloids/pharmacology , Alkaloids/isolation & purification , Alkaloids/chemistry , Lignans/pharmacology , Lignans/isolation & purification , Humans , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Plant Components, Aerial/chemistry , Amides/pharmacology , Amides/isolation & purification , Amides/chemistry , Proprotein Convertase 9/metabolism , China
8.
Fitoterapia ; 175: 105954, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583638

ABSTRACT

Six previously undescribed diterpenoid glucosides, along with four known compounds, were isolated from the aerial parts of Sigesbeckia glabrescens. The structures and absolute configurations of undescribed compounds were elucidated using extensive spectroscopic techniques, ECD calculations and chemical methods. Compounds 1 and 8 exhibited anti-inflammatory activity against LPS-induced NO production in RAW 264.7 macrophages, with compound 8 demonstrating significant inhibitory activity compared to positive control minocycline, boasting an IC50 value at 14.20 µM.


Subject(s)
Anti-Inflammatory Agents , Diterpenes , Glucosides , Nitric Oxide , Phytochemicals , Plant Components, Aerial , Animals , RAW 264.7 Cells , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Molecular Structure , Glucosides/pharmacology , Glucosides/isolation & purification , Diterpenes/pharmacology , Diterpenes/isolation & purification , Nitric Oxide/metabolism , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Plant Components, Aerial/chemistry , China , Macrophages/drug effects , Asteraceae/chemistry , Sigesbeckia
9.
Fitoterapia ; 175: 105948, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38588904

ABSTRACT

Four new undescribed halimane- and labdane-type diterpenoids, named zeylleucapenoids E-H (1-4), along with four known analogues (5-8), were isolated from the aerial parts of Leucas zeylanica (L.) R. Br. Their structures were determined by comprehensive spectroscopic analysis and computational calculations. Compounds 1 and 2 are the highly modified halimane diterpenoids featuring a 6/6/6-fused tricyclic system with an unusual six-membered 6,11-ether ring. Compound 8 exhibits nontoxic effects for zebrafish embryo, while it displays efficient reduction against NO production in a dose-dependent manner and strongly suppresses the secretion of LPS-induced TNF-α and IL-6 cytokines in RAW264.7 macrophages. In addition, marked reductions of iNOS and COX-2 expression were observed. Molecular docking analysis indicated that 8 has high affinities with the target amino acid residues on protein-binding sites, which may be a possible mechanism contributing to the anti-inflammatory potential of this molecule.


Subject(s)
Anti-Inflammatory Agents , Diterpenes , Molecular Docking Simulation , Plant Components, Aerial , Zebrafish , Animals , Mice , RAW 264.7 Cells , Plant Components, Aerial/chemistry , Molecular Structure , Diterpenes/pharmacology , Diterpenes/isolation & purification , Diterpenes/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Fabaceae/chemistry , Nitric Oxide/metabolism , Cyclooxygenase 2/metabolism , Nitric Oxide Synthase Type II/metabolism , Tumor Necrosis Factor-alpha/metabolism , China , Interleukin-6/metabolism , Phytochemicals/pharmacology , Phytochemicals/isolation & purification
10.
J Ethnopharmacol ; 331: 118271, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38688356

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The use of medicinal plants for central nervous system (CNS)-related ailments, such as epilepsy and anxiety, is prevalent in South Africa. Plants from the Lamiaceae family are commonly used for their therapeutic benefits. Leonotis leonurus (L.) R.Br. has been reported in ethnobotanical literature to have anticonvulsant and anxiolytic effects through the inhalation of pyrolysis products obtained by combustion of the aerial parts. AIM AND OBJECTIVES: To explore the chemical profiles and CNS activity of the smoke extract and isolated constituents of L. leonurus in zebrafish larvae, through anticonvulsive and anxiolytic activity assays. MATERIALS AND METHODS: The smoke extract of L. leonurus was obtained through the combustion of the aerial parts of the plant using a custom-built smoke recovery apparatus. The chemical profile of the smoke constituents was determined using Ultra-Performance Liquid Chromatography coupled with Mass Spectrometry (UPLC-MS). Targeted compounds were subjected to preparative High-Performance Liquid Chromatography for separation before structure elucidation using Nuclear Magnetic Resonance (NMR). The maximum tolerated concentrations, as well as the anxiolytic activity of the smoke extract were determined in five days post fertilisation zebrafish larvae. Reverse-thigmotaxis and locomotor activity of larvae in the light/dark transition assay were used to determine anxiolytic activity. Zebrafish larvae at six days post fertilisation (dpf) were subjected to several concentrations of the smoke constituents of L. leonurus. The baseline locomotor activity of the larvae was tracked for 30 min, prior to addition of pentylenetetrazole (PTZ) to induce seizure-like behaviour in the larvae, after which the locomotor activity of the larvae was once again tracked for an additional 30 min. RESULTS: The UPLC-MS profiles of the smoke extract revealed the presence of two main compounds, leoleorin A and leoleorin B, which were targeted and isolated. Upon subjection to NMR spectroscopy for structure elucidation, the compounds were confirmed to be labdane diterpenoids. Both leoleorin A and leoleorin B, and the smoke extract displayed suppression of the PTZ induced seizure-like behaviour in zebrafish larvae. Under light and dark conditions, the smoke extract and compounds displayed potential anxiolytic activity at different concentrations. CONCLUSION: Our results suggest that the smoke constituents of L. leonurus may exert anticonvulsant and anxiolytic effects which align with the traditional indications and the mode of administration.


Subject(s)
Anti-Anxiety Agents , Anticonvulsants , Plant Extracts , Seizures , Smoke , Zebrafish , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/isolation & purification , Anti-Anxiety Agents/chemistry , Smoke/adverse effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anticonvulsants/pharmacology , Anticonvulsants/isolation & purification , Seizures/drug therapy , Seizures/chemically induced , Larva/drug effects , Lamiaceae/chemistry , Pentylenetetrazole , Plant Components, Aerial/chemistry , South Africa , Behavior, Animal/drug effects
11.
J Nat Prod ; 87(4): 1179-1186, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38528772

ABSTRACT

A comprehensive phytochemical investigation of aerial parts obtained from Centaurea sicula L. led to the isolation of 14 terpenoids (1-14) and nine polyphenols (15-23). The sesquiterpenoid group (1-11) included three structural families, namely, elemanolides (1-6), eudesmanolides (7 and 8), and germacranolides (9-11) with four unreported secondary metabolites (5-8), whose structure has been determined by extensive spectroscopic analysis, including 1D/2D NMR, HR-MS, and chemical conversion. Moreover, an unprecedented alkaloid, named siculamide (24), was structurally characterized, and a possible biogenetic origin was postulated. Inspired by the traditional use of the plant and in the frame of ongoing research on compounds with potential activity on metabolic syndrome, all the isolated compounds were evaluated for their stimulation of glucose uptake, disclosing remarkable activity for dihydrocnicin (10) and the lignan salicifoliol (15).


Subject(s)
Centaurea , Glucose , Plant Components, Aerial , Plant Components, Aerial/chemistry , Centaurea/chemistry , Molecular Structure , Glucose/metabolism , Terpenes/chemistry , Terpenes/isolation & purification , Terpenes/pharmacology , Polyphenols/chemistry , Polyphenols/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification
12.
Fitoterapia ; 175: 105894, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38461867

ABSTRACT

Thrombosis is currently among the major causes of morbidity and mortality in the World. New prevention and therapy alternatives have been increasingly sought in medicinal plants. In this context, we have been investigating parsley, Petroselinum crispum (Mill.) Nym, an aromatic herb with two leaf varieties. We report here the in vitro, in vivo, and ex vivo anti-hemostatic and antithrombotic activities of a parsley curly-leaf variety. Aqueous extracts of aerial parts (PCC-AP), stems (PCC-S), and leaves (PCC-L) showed significant in vitro antiplatelet activity. PCC-AP extract exhibited the highest activity (IC50 2.92 mg/mL) when using ADP and collagen as agonists. All extracts also presented in vitro anticoagulant activity (APTT and PT) and anti-thrombogenic activity. PCC-S was the most active, with more significant interference in the factors of the intrinsic coagulation pathway. The oral administration of PCC-AP extract in rats caused a greater inhibitory activity in the deep vein thrombi (50%; 65 mg/kg) than in arterial thrombi formation (50%; 200 mg/kg), without cumulative effect after consecutive five-day administration. PCC-AP extract was safe in the induced bleeding time test. Its anti-aggregating profile was similar in ex vivo and in vitro conditions but was more effective in the extrinsic pathway when compared to in vitro results. Apiin and coumaric acid derivatives are the main compounds in PCC-AP according to the HPLC-DAD-ESI-MS/MS profile. We demonstrated for the first time that extracts from different parts of curly parsley have significant antiplatelet, anticoagulant, and antithrombotic activity without inducing hemorrhage, proving its potential as a source of antithrombotic compounds.


Subject(s)
Fibrinolytic Agents , Petroselinum , Plant Extracts , Plant Leaves , Animals , Petroselinum/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Rats , Male , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/isolation & purification , Fibrinolytic Agents/chemistry , Rats, Wistar , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Thrombosis/drug therapy , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/isolation & purification , Plant Components, Aerial/chemistry , Plant Stems/chemistry , Hemostatics/pharmacology , Hemostatics/isolation & purification , Anticoagulants/pharmacology , Anticoagulants/isolation & purification , Anticoagulants/chemistry , Plants, Medicinal/chemistry
13.
Fitoterapia ; 175: 105903, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38479620

ABSTRACT

A phytochemical study of the aerial parts of Piper mutabile C. DC. revealed seven undescribed compounds [two (2-7')-neolignans and five polyoxygenated cyclohexene glycosides] and six known propenylcatechol derivatives. The chemical structures of the isolated compounds were elucidated by extensive HR-ESI-MS and NMR analyses, as well as comparison with the literature. The absolute configurations of the (2-7')-neolignans were confirmed by GIAO 13C NMR calculations with a sorted training set strategy and TD-DFT calculation ECD spectra. The (2-7')-neolignans and polyoxygenated cyclohexene glycosides are unusual in natural sources. Undescribed neolignans 1 and 2 inhibited NO production in RAW 264.7 cells, with respective IC50 values of 14.4 and 9.5 µM.


Subject(s)
Cyclohexenes , Glycosides , Lignans , Nitric Oxide , Phytochemicals , Piper , Plant Components, Aerial , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Nitric Oxide/antagonists & inhibitors , RAW 264.7 Cells , Mice , Piper/chemistry , Molecular Structure , Plant Components, Aerial/chemistry , Animals , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Lignans/pharmacology , Lignans/isolation & purification , Lignans/chemistry , Glycosides/pharmacology , Glycosides/isolation & purification , Glycosides/chemistry , Cyclohexenes/pharmacology , Cyclohexenes/isolation & purification , China
14.
Chem Biodivers ; 21(5): e202400302, 2024 May.
Article in English | MEDLINE | ID: mdl-38454878

ABSTRACT

This study isolated pure compounds from Canna edulis aerial parts and assessed their antiplatelet and anticoagulant potential. Structural elucidation resulted in the identification of two new compounds: caneduloside A (1) and caneduloside B (2), and eleven known compounds: 6'-acetyl-3,6,2'-tri-p-coumaroyl sucrose (3), 6'-acetyl-3,6,2'-triferuloyl sucrose (4), tiliroside (5), afzelin (6), quercitrin (7), 2-hydroxycinnamaldehyde (8), cinnamic acid (9), 3,4-dimethoxycinnamic acid (10), dehydrovomifoliol (11), 4-hydroxy-3,5-dimethoxybenzaldehyde (12), and (S)-(-)-rosmarinic acid (13). Compounds 3, 4, 6-9, 13 were previously reported for antithrombotic properties. Hence, antithrombotic tests were conducted for 1, 2, 5, 10-12. All tested compounds demonstrated a dose-dependent antiaggregatory effect, and 10 and 12 were the most potent for both ADP and collagen activators. Additionally, 10 and 12 showed anticoagulant effects, with prolonged prothrombin time and activated partial thromboplastin time. The new compound 1 displayed antiplatelet and anticoagulant activity, while 2 mildly inhibited platelet aggregation. C. edulis is a potential source for developing antithrombotic agents.


Subject(s)
Anticoagulants , Plant Components, Aerial , Platelet Aggregation Inhibitors , Sucrose , Anticoagulants/pharmacology , Anticoagulants/chemistry , Anticoagulants/isolation & purification , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/chemistry , Platelet Aggregation Inhibitors/isolation & purification , Sucrose/chemistry , Sucrose/pharmacology , Sucrose/metabolism , Plant Components, Aerial/chemistry , Plant Components, Aerial/metabolism , Humans , Esters/chemistry , Esters/pharmacology , Esters/isolation & purification , Platelet Aggregation/drug effects , Myristicaceae/chemistry , Dose-Response Relationship, Drug , Molecular Structure , Structure-Activity Relationship , Animals
15.
Chem Biodivers ; 21(5): e202400414, 2024 May.
Article in English | MEDLINE | ID: mdl-38500337

ABSTRACT

Three undescribed sesquiterpenes (1-3), two enantiomeric pairs of monoterpenes (4a/4b-5a/5b), one alkyne (6), two known alkynes (7-8) and eight known coumarins (9-16) were isolated from the aerial parts extracts of Artemisia scoparia. The structures of these compounds were fully elucidated by their 1D and 2D NMR, HRESIMS spectral data analyses, and comparison with literature. The absolute configurations of compounds were determined by single-crystal X-ray crystallography (1), a comparison of experimental and calculated electronic circular dichroism (ECD) data (2-6). 15 showed moderate inhibitory activity with the NO release in LPS-induced RAW264.7 cells. 9-16 showed varying degrees of promoting melanogenesis and tyrosinase activity in B16 cells.


Subject(s)
Artemisia , Nitric Oxide , Artemisia/chemistry , Mice , Animals , RAW 264.7 Cells , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Crystallography, X-Ray , Plant Components, Aerial/chemistry , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Molecular Structure , Monoterpenes/chemistry , Monoterpenes/isolation & purification , Monoterpenes/pharmacology , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/isolation & purification , Molecular Conformation , Melanins/antagonists & inhibitors , Melanins/metabolism , Models, Molecular , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification
16.
Chem Biodivers ; 21(5): e202400518, 2024 May.
Article in English | MEDLINE | ID: mdl-38501574

ABSTRACT

In this study, two undescribed compounds (1 and 2), together with eight known compounds (3-10) were isolated from the aerial parts of Piper samentosum by various chromatography methods. Their chemical structures were determined to be 7'''-oxolyciumamide N (1), vitexin 2''-O-ß-D-(6'''-feruloyl)-glucopyranoside (2), 1,2-dihydro-6,8-dimethoxy-7-hydroxy-1-(3,4-dihydroxyphenyl)-N1,N2-bis-[2-(-hydroxyphenyl)ethyl]-2,3-napthalene dicarboamide (3), vitexin 6''-O-ß-D-glucopyranoside (4), vitexin 2''-O-α-L-rhamnopyranoside (5), methyl 2-hydroxybenzoate-2-O-ß-D-apiofuranosyl-(1→2)-O-ß-D-glucopyranoside (6), ficuside G (7), methyl 2-O-ß-D-glucopyranosylbenzoate (8), methyl 2,5-dihydroxybenzoate-5-O-ß-D-glucopyranoside (9), and 3,7-dimethyloct-1-ene-3,6,7-triol 6-O-ß-D-glucopyranoside (10) by spectroscopic data analysis including HR-ESI-MS, 1D-, and 2D-NMR spectra. Compounds 1-5 inhibited nitric oxide production in LPS-stimulated RAW264.7 macrophages with the IC50 values of 27.62, 74.03, 38.54, 70.39, and 44.95 µM, respectively. The NMR data of 9 were firstly reported herein.


Subject(s)
Flavones , Glucosides , Lipopolysaccharides , Nitric Oxide , Piper , Plant Components, Aerial , RAW 264.7 Cells , Mice , Animals , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Plant Components, Aerial/chemistry , Glucosides/isolation & purification , Glucosides/pharmacology , Glucosides/chemistry , Piper/chemistry , Flavones/isolation & purification , Flavones/pharmacology , Flavones/chemistry , Amides/chemistry , Amides/pharmacology , Amides/isolation & purification , Molecular Structure
17.
Fitoterapia ; 175: 105936, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552807

ABSTRACT

In this work, the first specific phytochemical analysis on Odontites vulgaris Moench collected in Central Italy was performed. The aerial parts ethanolic extract was studied and eight compounds were identified: pheophytin a (1), aucubin (2), catalpol (3), shanzhiside methyl ester (4), melampyroside (5), 8-epi-loganin (6), caryoptoside (7) and quinic acid (8). To the best of our knowledge, in this study, compounds (7-8) resulted to be isolated from the genus for the first time. The chemophenetic markers of the family and order were evidenced and several important ecological conclusions could be drawn. The ethanolic extract was also tested for several biological activities showing high effects in the antioxidant, cytoprotective and aflatoxin B1 production inhibitory assays. A brief explanation on these activities under the phytochemical standpoint was also included.


Subject(s)
Antioxidants , Phytochemicals , Plant Components, Aerial , Plant Extracts , Plant Components, Aerial/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Molecular Structure , Italy , Humans
18.
Arch Pharm (Weinheim) ; 357(5): e2300728, 2024 May.
Article in English | MEDLINE | ID: mdl-38314893

ABSTRACT

In the present study, we aimed to investigate the chemical profiles and biological activities of different extracts (ethyl acetate, dichloromethane, ethanol, and water) of Pelargonium endlicherianum parts (aerial parts and roots). Free radical scavenging, reducing power, phosphomolybdenum, and metal chelating were assayed for antioxidant properties. To detect enzyme inhibitory properties, cholinesterase, amylase, glucosidase, and tyrosinase were chosen as target enzymes. The ethanol extract of the aerial parts contained higher amounts of total bioactive compounds (120.53 mg GAE/g-24.46 mg RE/g). The ethanol and water extracts of these parts were tentatively characterized by UHPLC-ESI-QTOF-MS and 95 compounds were annotated. In addition, the highest acetylcholiesterase (3.74 mg GALAE/g) and butyrylcholinesterase (3.92 mg GALAE/g) abilities were observed by the ethanol extract of roots. The water extract from aerial parts exhibited the most pronounced inhibitory effects on multiple cancer cell lines, especially A549 (IC50: 23.2 µg/mL) and HT-29 (IC50: 27.43 µg/mL) cells. Using network pharmacology, P. endlicherianum compounds were studied against cancer, revealing well-connected targets such as epidermal growth factor receptor (EGFR), phosphoinositide-3-kinase (PI3K), AKT, receptor tyrosine-protein kinase erbB-2, and growth factor receptor bound protein 2 (GRB2) with significant impact on cancer-related pathways. The results could open a new path from natural treasure to functional applications with P. endlicherianum and highlight a new study on other uninvestigated Pelargonium species.


Subject(s)
Pelargonium , Plant Extracts , Spectrometry, Mass, Electrospray Ionization , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chromatography, High Pressure Liquid , Pelargonium/chemistry , Network Pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Plant Components, Aerial/chemistry , Plant Roots/chemistry
19.
Molecules ; 29(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338341

ABSTRACT

Medicinal plants are considered a major source for discovering novel effective drugs. To our knowledge, no studies have reported the chemical composition and biological activities of Moroccan Lactuca saligna extracts. In this context, this study aims to characterize the polyphenolic compounds distributed in hydro-methanolic extracts of L. saligna and evaluate their antioxidant and antibacterial activities; in addition, in silico analysis based on molecular docking and ADMET was performed to predict the antibacterial activity of the identified phenolic compounds. Our results showed the identification of 29 among 30 detected phenolic compounds with an abundance of dicaffeoyltartaric acid, luteolin 7-glucoronide, 3,5-di-O-caffeoylquinic acid, and 5-caffeoylquinic acid with 472.77, 224.30, 196.79, and 171.74 mg/kg of dried extract, respectively. Additionally, antioxidant activity assessed by DPPH scavenging activity, ferric reducing antioxidant power (FRAP) assay, and ferrous ion-chelating (FIC) assay showed interesting antioxidant activity. Moreover, the results showed remarkable antibacterial activity against Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, and Listeria monocytogenes with minimum inhibitory concentrations between 1.30 ± 0.31 and 10.41 ± 0.23 mg/mL. Furthermore, in silico analysis identified three compounds, including Apigenin 7-O-glucuronide, Quercetin-3-O-glucuronide, and 3-p-Coumaroylquinic acid as potent candidates for developing new antibacterial agents with acceptable pharmacokinetic properties. Hence, L. saligna can be considered a source of phytochemical compounds with remarkable activities, while further in vitro and in vivo studies are required to explore the main biological activities of this plant.


Subject(s)
Antioxidants , Lactuca , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Molecular Docking Simulation , Glucuronides/pharmacology , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Phenols/pharmacology , Plant Components, Aerial/chemistry
20.
Arch Pharm (Weinheim) ; 357(6): e2300663, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38408265

ABSTRACT

The Cucurbita genus has been widely used in traditional medicinal systems across different countries. In this study, we aimed to investigate the chemical composition, antioxidant properties, enzyme inhibitory, and cytotoxic effects of methanol and aqueous extracts obtained from the aerial parts, seeds, and fruit shells of Cucurbita okeechobeensis. Antioxidant properties were assessed using various chemical methods, including radical quenching (DPPH and ABTS), reducing power (CUPRAC and FRAP), metal chelation, and phosphomolybdenum assays. The extracts' enzyme inhibitory effects were tested against cholinesterase, amylase, glucosidase, and tyrosinase, whereas different cancer cell lines were used for the cytotoxicity study. The chemical composition, evaluated by HPLC-ESI-MSn, showed that the most abundant compounds were flavonoids (mainly quercetin glycosides) followed by phenolic acids (mostly caffeic acid derivatives). The aerial parts displayed stronger antioxidant ability than the seed and fruit shells, in agreement with the highest content in phytochemicals. In addition, the methanol extracts presented the highest bioactivity and content in phytochemicals; among them, the extract of the aerial part exhibited significant cytotoxic effects on cancer cell lines and induced apoptosis. Overall, our results suggest that C. okeechobeensis is a valuable source of bioactive compounds for the pharmaceutical and nutraceutical industries.


Subject(s)
Antineoplastic Agents, Phytogenic , Antioxidants , Cucurbita , Fruit , Plant Components, Aerial , Plant Extracts , Seeds , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Humans , Seeds/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Cucurbita/chemistry , Plant Components, Aerial/chemistry , Fruit/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Cell Survival/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Chromatography, High Pressure Liquid
SELECTION OF CITATIONS
SEARCH DETAIL
...