Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.009
Filter
1.
Plant Cell Rep ; 43(6): 158, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822833

ABSTRACT

KEY MESSAGE: Transgenic plants stably overexpressing ScOPR1 gene enhanced disease resistance by increasing the accumulation of JA, SA, and GST, as well as up-regulating the expression of genes related to signaling pathways. 12-Oxo-phytodienoate reductase (OPR) is an oxidoreductase that depends on flavin mononucleotide (FMN) and catalyzes the conversion of 12-oxophytodienoate (12-OPDA) into jasmonic acid (JA). It plays a key role in plant growth and development, and resistance to adverse stresses. In our previous study, we have obtained an OPR gene (ScOPR1, GenBank Accession Number: MG755745) from sugarcane. This gene showed positive responses to methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), and Sporisorium scitamineum, suggesting its potential for pathogen resistance. Here, in our study, we observed that Nicotiana benthamiana leaves transiently overexpressing ScOPR1 exhibited weaker disease symptoms, darker 3,3-diaminobenzidine (DAB) staining, higher accumulation of reactive oxygen species (ROS), and higher expression of hypersensitive response (HR) and SA pathway-related genes after inoculation with Ralstonia solanacearum and Fusarium solanacearum var. coeruleum. Furthermore, the transgenic N. benthamiana plants stably overexpressing the ScOPR1 gene showed enhanced resistance to pathogen infection by increasing the accumulation of JA, SA, and glutathione S-transferase (GST), as well as up-regulating genes related to HR, JA, SA, and ROS signaling pathways. Transcriptome analysis revealed that the specific differentially expressed genes (DEGs) in ScOPR1-OE were significantly enriched in hormone transduction signaling and plant-pathogen interaction pathways. Finally, a functional mechanism model of the ScOPR1 gene in response to pathogen infection was depicted. This study provides insights into the molecular mechanism of ScOPR1 and presents compelling evidence supporting its positive involvement in enhancing plant disease resistance.


Subject(s)
Cyclopentanes , Disease Resistance , Gene Expression Regulation, Plant , Oxylipins , Plant Diseases , Plant Growth Regulators , Plant Proteins , Plants, Genetically Modified , Saccharum , Salicylic Acid , Signal Transduction , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Saccharum/genetics , Saccharum/microbiology , Signal Transduction/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Oxylipins/metabolism , Salicylic Acid/metabolism , Cyclopentanes/metabolism , Nicotiana/genetics , Nicotiana/microbiology , Reactive Oxygen Species/metabolism , Acetates/pharmacology , Plant Leaves/genetics , Plant Leaves/microbiology , Abscisic Acid/metabolism , Ralstonia solanacearum/physiology , Ralstonia solanacearum/pathogenicity
2.
Mol Biol Rep ; 51(1): 708, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824228

ABSTRACT

BACKGROUND: Groundnut is vulnerable to the major foliar fungal disease viz., late leaf spot (LLS) and rust in kharif season, which results in severe yield losses. Until now, LLS and rust resistance linked markers were developed based on GPBD 4 as a major donor source and were validated in its derivatives only, which restricted their use in marker assisted selection (MAS) involving other donors. METHODS AND RESULTS: The current study focused to validate LLS and rust resistance linked markers employing advanced breeding lines of F6 generation, derived from nine different crosses involving nine diverse parents, to identify potential markers for marker-assisted breeding of LLS and rust resistance in groundnut. Out of 28-trait linked markers used for validation, 8 were polymorphic (28.57%). Marker-trait association (MTA) and Single Marker Analysis (SMA) revealed that the SSR marker pPGPseq5D05 is significantly associated with both LLS (15.8% PVE) and rust (17.5% PVE) resistance, whereas, the marker IPAHM103 is tightly linked with rust resistance (26.8% PVE) alone. In silico analysis revealed that the marker gene for IPAHM103 is a zinc finger protein and the marker gene for pPGPseq5D05 is an ADP-ribosylation factor GTPase-activating protein. Both these protein products impart resistance or tolerance to biotic stress in crop plants. Two other markers namely, GMLQ975 and pPGPseq13A10 were also found to be associated with LLS resistance explaining MTA up to 60%. CONCLUSION: These gene specific markers will enable us to screen more number of germplasm lines or newly developed lines in MAS schemes for LLS and rust resistance using a wide range of resistant sources.


Subject(s)
Arachis , Disease Resistance , Plant Diseases , Disease Resistance/genetics , Arachis/genetics , Arachis/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Genetic Markers , Plant Breeding/methods , Basidiomycota/pathogenicity , Basidiomycota/physiology , Plant Leaves/genetics , Plant Leaves/microbiology , Quantitative Trait Loci/genetics , Genes, Plant/genetics , Chromosome Mapping/methods
3.
Physiol Plant ; 176(3): e14335, 2024.
Article in English | MEDLINE | ID: mdl-38705728

ABSTRACT

Sound vibrations (SV) are known to influence molecular and physiological processes that can improve crop performance and yield. In this study, the effects of three audible frequencies (100, 500 and 1000 Hz) at constant amplitude (90 dB) on tomato Micro-Tom physiological responses were evaluated 1 and 3 days post-treatment. Moreover, the potential use of SV treatment as priming agent for improved Micro-Tom resistance to Pseudomonas syringae pv. tomato DC3000 was tested by microarray. Results showed that the SV-induced physiological changes were frequency- and time-dependent, with the largest changes registered at 1000 Hz at day 3. SV treatments tended to alter the foliar content of photosynthetic pigments, soluble proteins, sugars, phenolic composition, and the enzymatic activity of polyphenol oxidase, peroxidase, superoxide dismutase and catalase. Microarray data revealed that 1000 Hz treatment is effective in eliciting transcriptional reprogramming in tomato plants grown under normal conditions, but particularly after the infection with Pst DC3000. Broadly, in plants challenged with Pst DC3000, the 1000 Hz pretreatment provoked the up-regulation of unique differentially expressed genes (DEGs) involved in cell wall reinforcement, phenylpropanoid pathway and defensive proteins. In addition, in those plants, DEGs associated with enhancing plant basal immunity, such as proteinase inhibitors, pathogenesis-related proteins, and carbonic anhydrase 3, were notably up-regulated in comparison with non-SV pretreated, infected plants. These findings provide new insights into the modulation of Pst DC3000-tomato interaction by sound and open up prospects for further development of strategies for plant disease management through the reinforcement of defense mechanisms in Micro-Tom plants.


Subject(s)
Gene Expression Regulation, Plant , Plant Diseases , Pseudomonas syringae , Solanum lycopersicum , Pseudomonas syringae/physiology , Pseudomonas syringae/pathogenicity , Solanum lycopersicum/microbiology , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Plant Diseases/microbiology , Plant Diseases/genetics , Sound , Disease Resistance/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Leaves/microbiology , Plant Leaves/genetics , Plant Leaves/metabolism , Catechol Oxidase/metabolism , Catechol Oxidase/genetics
4.
Mol Biol Rep ; 51(1): 619, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709339

ABSTRACT

BACKGROUND: Rice blast and bacterial leaf blight (BLB) are the most limiting factors for rice production in the world which cause yield losses typically ranging from 20 to 30% and can be as high as 50% in some areas of Asia especially India under severe infection conditions. METHODS AND RESULTS: An improved line of Tellahamsa, TH-625-491 having two BLB resistance genes (xa13 and Xa21) and two blast resistance genes (Pi54 and Pi1) with 95% Tellahamsa genome was used in the present study. TH-625-491 was validated for all four target genes and was used for backcrossing with Tellahamsa. Seventeen IBC1F1 plants heterozygous for all four target genes, 19 IBC1F2 plants homozygous for four, three and two gene combinations and 19 IBC1F2:3 plants also homozygous for four, three and two gene combinations were observed. Among seventeen IBC1F1 plants, IBC1F1-62 plant recorded highest recurrent parent genome (97.5%) covering 75 polymorphic markers. Out of the total of 920 IBC1F2 plants screened, 19 homozygous plants were homozygous for four, three and two target genes along with bacterial blight resistance. Background analysis was done in all 19 homozygous IBC1F2 plants possessing BLB resistance (possessing xa13, Xa21, Pi54 and Pi1 in different combinations) with five parental polymorphic SSR markers. IBC1F2-62-515 recovered 98.5% recurrent parent genome. The four, three and two gene pyramided lines of Tellahamsa exhibited varying resistance to blast. CONCLUSIONS: Results show that there might be presence of antagonistic effect between bacterial blight and blast resistance genes since the lines with Pi54 and Pi1 combination are showing better resistance than the combinations with both bacterial blight and blast resistance genes.


Subject(s)
Disease Resistance , Oryza , Plant Diseases , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Oryza/genetics , Oryza/microbiology , Genes, Plant/genetics , Xanthomonas/pathogenicity , Xanthomonas/physiology , Plant Leaves/genetics , Plant Leaves/microbiology , Plant Breeding/methods
5.
PeerJ ; 12: e17323, 2024.
Article in English | MEDLINE | ID: mdl-38726377

ABSTRACT

The rice receptor kinase XA21 confers broad-spectrum resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of rice bacterial blight disease. To investigate the relationship between the expression level of XA21 and resulting resistance, we generated independent HA-XA21 transgenic rice lines accumulating the XA21 immune receptor fused with an HA epitope tag. Whole-genome sequence analysis identified the T-DNA insertion sites in sixteen independent T0 events. Through quantification of the HA-XA21 protein and assessment of the resistance to Xoo strain PXO99 in six independent transgenic lines, we observed that XA21-mediated resistance is dose dependent. In contrast, based on the four agronomic traits quantified in these experiments, yield is unlikely to be affected by the expression level of HA-XA21. These findings extend our knowledge of XA21-mediated defense and contribute to the growing number of well-defined genomic landing pads in the rice genome that can be targeted for gene insertion without compromising yield.


Subject(s)
Disease Resistance , Oryza , Plant Diseases , Plant Proteins , Plants, Genetically Modified , Xanthomonas , Xanthomonas/genetics , Oryza/microbiology , Oryza/genetics , Oryza/immunology , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Serine-Threonine Kinases
6.
Sci Rep ; 14(1): 10587, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719851

ABSTRACT

Cassava root-rot incited by soil-borne pathogens is one of the major diseases that reduces root yield. Although the use of resistant cultivars is the most effective method of management, the genetic basis for root-rot resistance remains poorly understood. Therefore, our work analyzed the transcriptome of two contrasting genotypes (BRS Kiriris/resistant and BGM-1345/susceptible) using RNA-Seq to understand the molecular response and identify candidate genes for resistance. Cassava seedlings (resistant and susceptible to root-rot) were both planted in infested and sterilized soil and samples from Initial-time and Final-time periods, pooled. Two controls were used: (i) seedlings collected before planting in infested soil (absolute control) and, (ii) plants grown in sterilized soil (mock treatments). For the differentially expressed genes (DEGs) analysis 23.912 were expressed in the resistant genotype, where 10.307 were differentially expressed in the control treatment, 15 DEGs in the Initial Time-period and 366 DEGs in the Final Time-period. Eighteen candidate genes from the resistant genotype were related to plant defense, such as the MLP-like protein 31 and the peroxidase A2-like gene. This is the first model of resistance at the transcriptional level proposed for the cassava × root-rot pathosystem. Gene validation will contribute to screening for resistance of germplasm, segregating populations and/or use in gene editing in the pursuit to develop most promising cassava clones with resistance to root-rot.


Subject(s)
Disease Resistance , Gene Expression Regulation, Plant , Manihot , Plant Diseases , Plant Roots , Transcriptome , Manihot/genetics , Manihot/microbiology , Disease Resistance/genetics , Plant Roots/genetics , Plant Roots/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Gene Expression Profiling , Genotype , Plant Proteins/genetics , Plant Proteins/metabolism , Genes, Plant
7.
Mol Biol Rep ; 51(1): 626, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717621

ABSTRACT

BACKGROUND: Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases of rice leading to huge yield losses in Southeast Asia. The recessive resistance gene xa-45(t) from Oryza glaberrima IRGC102600B, mapped on rice chromosome 8, spans 80 Kb with 9 candidate genes on Nipponbare reference genome IRGSP-1.0. The xa-45(t) gene provides durable resistance against all the ten Xanthomonas pathotypes of Northern India, thus aiding in the expansion of recessive bacterial blight resistance gene pool. Punjab Rice PR127, carrying xa-45(t), was released for wider use in breeding programs. This study aims to precisely locate the target gene among the 9 candidates conferring resistance to bacterial blight disease. METHODS AND RESULTS: Sanger sequencing of all nine candidate genes revealed seven SNPs and an Indel between the susceptible parent Pusa 44 and the resistant introgression line IL274. The genotyping with polymorphic markers identified three recombinant breakpoints for LOC_Os08g42370, and LOC_Os08g42400, 15 recombinants for LOC_Os08g423420 and 26 for LOC_Os08g42440 out of 190 individuals. Relative expression analysis across six time intervals (0, 8, 24, 48, 72, and 96 h) after bacterial blight infection showed over expression of LOC_Os08g42410-specific transcripts in IL274 compared to Pusa 44, with a significant 4.46-fold increase observed at 72 h post-inoculation. CONCLUSIONS: The Indel marker at the locus LOC_Os08g42410 was found co-segregating with the phenotype, suggesting its candidacy towards xa-45(t). The transcript abundance assay provides strong evidence for the involvement of LOC_Os08g42410 in the resistance conferred by the bacterial blight gene xa-45(t).


Subject(s)
Chromosome Mapping , Disease Resistance , Genes, Plant , Genes, Recessive , Oryza , Plant Diseases , Xanthomonas , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Oryza/genetics , Oryza/microbiology , Xanthomonas/pathogenicity , Chromosome Mapping/methods , Genes, Plant/genetics , Polymorphism, Single Nucleotide/genetics , Chromosomes, Plant/genetics , Genotype , Gene Expression Regulation, Plant/genetics
8.
Mol Plant Pathol ; 25(5): e13461, 2024 May.
Article in English | MEDLINE | ID: mdl-38695657

ABSTRACT

Mitogen-activated protein kinase (MPK) cascades play central signalling roles in plant immunity and stress response. The soybean orthologue of MPK kinase2 (GmMKK2) was recently identified as a potential signalling node whose expression is upregulated in the feeding site induced by soybean cyst nematode (SCN, Heterodera glycines). To investigate the role of GmMKK2 in soybean-SCN interactions, we overexpressed a catabolically inactive variant referred to as kinase-dead variant (KD-GmMKK2) using transgenic hairy roots. KD-GmMKK2 overexpression caused significant reduction in soybean susceptibility to SCN, while overexpression of the wild-type variant (WT-GmMKK2) exhibited no effect on susceptibility. Transcriptome analysis indicated that KD-GmMKK2 overexpressing plants are primed for SCN resistance via constitutive activation of defence signalling, particularly those related to chitin, respiratory burst, hydrogen peroxide and salicylic acid. Phosphoproteomic profiling of the WT-GmMKK2 and KD-GmMKK2 root samples upon SCN infection resulted in the identification of 391 potential targets of GmMKK2. These targets are involved in a broad range of biological processes, including defence signalling, vesicle fusion, chromatin remodelling and nuclear organization among others. Furthermore, GmMKK2 mediates phosphorylation of numerous transcriptional and translational regulators, pointing to the presence of signalling shortcuts besides the canonical MAPK cascades to initiate downstream signalling that eventually regulates gene expression and translation initiation. Finally, the functional requirement of specific phosphorylation sites for soybean response to SCN infection was validated by overexpressing phospho-mimic and phospho-dead variants of two differentially phosphorylated proteins SUN1 and IDD4. Together, our analyses identify GmMKK2 impacts on signalling modules that regulate soybean response to SCN infection.


Subject(s)
Glycine max , Plant Diseases , Signal Transduction , Tylenchoidea , Glycine max/parasitology , Glycine max/genetics , Animals , Plant Diseases/parasitology , Plant Diseases/genetics , Tylenchoidea/physiology , Tylenchoidea/pathogenicity , Gene Expression Regulation, Plant , Plants, Genetically Modified , Plant Roots/parasitology , Plant Roots/metabolism , Plant Roots/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Disease Resistance/genetics
9.
Theor Appl Genet ; 137(5): 116, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698276

ABSTRACT

KEY MESSAGE: An adult plant gene for resistance to stripe rust was narrowed down to the proximal one-third of the 2NvS segment translocated from Aegilops ventricosa to wheat chromosome arm 2AS, and based on the gene expression analysis, two candidate genes were identified showing a stronger response at the adult plant stage compared to the seedling stage. The 2NvS translocation from Aegilops ventricosa, known for its resistance to various diseases, has been pivotal in global wheat breeding for more than three decades. Here, we identified an adult plant resistance (APR) gene in the 2NvS segment in wheat line K13-868. Through fine mapping in a segregating near-isogenic line (NIL) derived population of 6389 plants, the candidate region for the APR gene was narrowed down to between 19.36 Mb and 33 Mb in the Jagger reference genome. Transcriptome analysis in NILs strongly suggested that this APR gene conferred resistance to stripe rust by triggering plant innate immune responses. Based on the gene expression analysis, two disease resistance-associated genes within the candidate region, TraesJAG2A03G00588940 and TraesJAG2A03G00590140, exhibited a stronger response to Puccinia striiformis f. sp. tritici (Pst) infection at the adult plant stage than at the seedling stage, indicating that they could be potential candidates for the resistance gene. Additionally, we developed a co-dominant InDel marker, InDel_31.05, for detecting this APR gene. Applying this marker showed that over one-half of the wheat varieties approved in 2021 and 2022 in Sichuan province, China, carry this gene. Agronomic trait evaluation of NILs indicated that the 2NvS segment effectively mitigated the negative effects of stripe rust on yield without affecting other important agronomic traits. This study provided valuable insights for cloning and breeding through the utilization of the APR gene present in the 2NvS segment.


Subject(s)
Aegilops , Basidiomycota , Chromosome Mapping , Disease Resistance , Gene Expression Profiling , Genes, Plant , Plant Diseases , Triticum , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Basidiomycota/pathogenicity , Basidiomycota/physiology , Aegilops/genetics , Aegilops/microbiology , Plant Breeding , Transcriptome , Chromosomes, Plant/genetics , Puccinia/pathogenicity , Puccinia/physiology , Gene Expression Regulation, Plant
10.
Commun Biol ; 7(1): 607, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769168

ABSTRACT

A critical step to maximize the usefulness of genome-wide association studies (GWAS) in plant breeding is the identification and validation of candidate genes underlying genetic associations. This is of particular importance in disease resistance breeding where allelic variants of resistance genes often confer resistance to distinct populations, or races, of a pathogen. Here, we perform a genome-wide association analysis of rice blast resistance in 500 genetically diverse rice accessions. To facilitate candidate gene identification, we produce de-novo genome assemblies of ten rice accessions with various rice blast resistance associations. These genome assemblies facilitate the identification and functional validation of novel alleles of the rice blast resistance genes Ptr and Pia. We uncover an allelic series for the unusual Ptr rice blast resistance gene, and additional alleles of the Pia resistance genes RGA4 and RGA5. By linking these associations to three thousand rice genomes we provide a useful tool to inform future rice blast breeding efforts. Our work shows that GWAS in combination with whole-genome sequencing is a powerful tool for gene cloning and to facilitate selection of specific resistance alleles for plant breeding.


Subject(s)
Alleles , Disease Resistance , Genome-Wide Association Study , Oryza , Plant Diseases , Oryza/genetics , Oryza/immunology , Oryza/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Proteins/genetics , Genome, Plant , Genes, Plant , Plant Breeding/methods
11.
Theor Appl Genet ; 137(6): 122, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713254

ABSTRACT

KEY MESSAGE: By deploying a multi-omics approach, we unraveled the mechanisms that might help rice to combat Yellow Stem Borer infestation, thus providing insights and scope for developing YSB resistant rice varieties. Yellow Stem Borer (YSB), Scirpophaga incertulas (Walker) (Lepidoptera: Crambidae), is a major pest of rice, that can lead to 20-60% loss in rice production. Effective management of YSB infestation is challenged by the non-availability of adequate sources of resistance and poor understanding of resistance mechanisms, thus necessitating studies for generating resources to breed YSB resistant rice and to understand rice-YSB interaction. In this study, by using bulk-segregant analysis in combination with next-generation sequencing, Quantitative Trait Loci (QTL) intervals in five rice chromosomes were mapped that could be associated with YSB resistance at the vegetative phase in a resistant rice line named SM92. Further, multiple SNP markers that showed significant association with YSB resistance in rice chromosomes 1, 5, 10, and 12 were developed. RNA-sequencing of the susceptible and resistant lines revealed several genes present in the candidate QTL intervals to be differentially regulated upon YSB infestation. Comparative transcriptome analysis revealed a putative candidate gene that was predicted to encode an alpha-amylase inhibitor. Analysis of the transcriptome and metabolite profiles further revealed a possible link between phenylpropanoid metabolism and YSB resistance. Taken together, our study provides deeper insights into rice-YSB interaction and enhances the understanding of YSB resistance mechanism. Importantly, a promising breeding line and markers for YSB resistance have been developed that can potentially aid in marker-assisted breeding of YSB resistance among elite rice cultivars.


Subject(s)
Chromosome Mapping , Moths , Oryza , Quantitative Trait Loci , Oryza/genetics , Oryza/parasitology , Oryza/immunology , Animals , Moths/physiology , Polymorphism, Single Nucleotide , Plant Diseases/parasitology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Genomics/methods , Phenotype , Multiomics
12.
Mol Genet Genomics ; 299(1): 54, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758218

ABSTRACT

Soybean [Glycine max (L.) Merr.] is an important legume crop worldwide, which provides abundant plant protein and oil for human beings. Soybean mosaic virus (SMV) can cause serious damage to the yield and quality of soybean, but it is difficult to control SMV with chemicals, breeding SMV-resistant varieties has become the most effective way to control the disease. Therefore, it is important to identify SMV resistance genes from soybean resources and apply them to soybean breeding. In this study, the disease rates (DRs) of 219 soybean accessions to SMV strain SC7 in two environments were investigated. A high-density NJAU 355 K SoySNP array was used for genome-wide association study (GWAS) of DR. A 274 kb region on chromosome 15 (1,110,567 bp to 1,384,173 bp) was repeatedly detected in two environments. Six new significant single nucleotide polymorphisms (SNPs) on chromosome 15 were identified. Four of these six SNPs were located within two candidate genes, Glyma.15G015700 and Glyma.15G015800. The elite haplotype Glyma.15G015700Hap I with low DR exhibited strong resistance to SC7. The expression of Glyma.15G015700 in the SMV-resistant accession increased significantly after inoculation with SC7. Furthermore, most of the proteins predicted to interact with Glyma.15G015700 are heat shock proteins, which have been shown to be related to disease resistance. In summary, new SMV resistance loci and a new candidate gene, Glyma.15G015700, were identified and might be utilized in further soybean disease resistance breeding.


Subject(s)
Disease Resistance , Genome-Wide Association Study , Glycine max , Plant Diseases , Polymorphism, Single Nucleotide , Potyvirus , Glycine max/genetics , Glycine max/virology , Disease Resistance/genetics , Plant Diseases/virology , Plant Diseases/genetics , Potyvirus/pathogenicity , Potyvirus/genetics , Genes, Plant/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Plant Breeding/methods , Haplotypes , Quantitative Trait Loci/genetics
13.
Braz J Biol ; 84: e282495, 2024.
Article in English | MEDLINE | ID: mdl-38747865

ABSTRACT

Rice (Oryza sativa L.) grown in many countries around the world with different climatic conditions and a huge number of environmental stresses, both biotic (fungi, bacteria, viruses, insects) and abiotic (cold, drought, salinity) limit rice productivity. In this regard, breeders and scientists are trying to create rice lines that are resistant to multiple stresses. The aim of this work was to screen and select cold and blast resistant rice breeding lines (RBLs) using molecular markers. Molecular screening of RBLs and parental varieties to cold tolerance was carried out using markers RM24545, RM1377, RM231 and RM569 associated with QTLs (qPSST-3, qPSST-7, qPSST-9). It was discovered that the presence of three QTLs characterizes the cold resistance of studied genotypes, and the absence of one of them leads to cold sensitivity. As a result, 21 cold-resistant out of the 28 studied RBLs were identified. These cold resistant 21 RBLs were further tested to blast resistance using markers Pi-ta, Pita3, Z56592, 195R-1, NMSMPi9-1, TRS26, Pikh MAS, MSM6, 9871.T7E2b, RM224 and RM1233. It was revealed that 16 RBLs from 21 studied lines contain 5-6 blast resistance genes. In accordance with the blast resistance strategy, the presence of 5 or more genes ensures the formation of stable resistance to Magnaporthe oryzae. Thus, 16 lines resistant to multiple stresses, such as cold and blast disease were developed. It should be noted that 6 of these selected lines are high-yielding, which is very important in rice breeding program. These RBLs can be used in breeding process as starting lines, germplasm exchange as a source of resistant genes for the development of new rice varieties resistant to multiple stress factors.


Subject(s)
Oryza , Plant Breeding , Stress, Physiological , Oryza/genetics , Oryza/microbiology , Oryza/physiology , Stress, Physiological/genetics , Disease Resistance/genetics , Quantitative Trait Loci/genetics , Genotype , Genetic Markers , Plant Diseases/genetics , Plant Diseases/microbiology , Cold Temperature
14.
Theor Appl Genet ; 137(6): 127, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733416

ABSTRACT

KEY MESSAGE: Quantitative trait locus analysis identified independent novel loci in cucumbers responsible for resistance to races 0 and 1 of the anthracnose fungal pathogen Colletotrichum orbiculare. Cucumbers have been reported to be vulnerable to Colletotrichum orbiculare, causing anthracnose disease with significant yield loss under favorable conditions. The deployment of a single recessive Cssgr gene in cucumber breeding for anthracnose resistance was effective until a recent report on high-virulent strains infecting cucumbers in Japan conquering the resistance. QTL mapping was conducted to identify the resistance loci in the cucumber accession Ban Kyuri (G100) against C. orbiculare strains 104-T and CcM-1 of pathogenic races 0 and 1, respectively. A single dominant locus An5 was detected in the disease resistance hotspot on chromosome 5 for resistance to 104-T. Resistance to CcM-1 was governed by three loci with additive effects located on chromosomes 2 (An2) and 1 (An1.1 and An1.2). Molecular markers were developed based on variant calling between the corresponding QTL regions in the de novo assembly of the G100 genome and the publicly available cucumber genomes. Multiple backcrossed populations were deployed to fine-map An5 locus and narrow the region to approximately 222 kbp. Accumulation of An2 and An1.1 alleles displayed an adequate resistance to CcM-1 strain. This study provides functional molecular markers for pyramiding resistance loci that confer sufficient resistance against anthracnose in cucumbers.


Subject(s)
Chromosome Mapping , Colletotrichum , Cucumis sativus , Disease Resistance , Plant Diseases , Quantitative Trait Loci , Cucumis sativus/microbiology , Cucumis sativus/genetics , Colletotrichum/pathogenicity , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Genetic Markers , Phenotype , Genetic Linkage , Genes, Plant , Plant Breeding
15.
Plant Cell Rep ; 43(6): 138, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733408

ABSTRACT

KEY MESSAGE: The soybean gene GmSABP2-1 encodes methyl salicylate esterase and its overexpression led to significant reduction in development of pathogenic soybean cyst nematode. Soybean cyst nematode (SCN, Heterodera glycines) is one of the most devastating pests of soybean (Glycine max L. Merr.). In searching for SCN-defense genes, a soybean gene of the methylesterase (MES) family was found to be upregulated in an SCN-resistant soybean line and downregulated in an SCN-susceptible line upon SCN infection. This gene was designated as GmSABP2-1. Here, we report on biochemical and overexpression studies of GmSABP2-1 to examine its possible function in SCN resistance. The protein encoded by GmSABP2-1 is closely related to known methyl salicylate esterases. To determine the biochemical function of GmSABP2-1, a full-length cDNA of GmSABP2-1 was cloned into a protein expression vector and expressed in Escherichia coli. The resulting recombinant GmSABP2-1 was demonstrated to catalyze the demethylation of methyl salicylate. The biochemical properties of GmSABP2-1 were determined. Its apparent Km value was 46.2 ± 2.2 µM for methyl salicylate, comparable to those of the known methyl salicylate esterases. To explore the biological significance of GmSABP2-1 in soybean defense against SCN, we first overexpressed GmSABP2-1 in transgenic hairy roots of an SCN-susceptible soybean line. When infected with SCN, GmSABP2-1-overexpressing hairy roots showed 84.5% reduction in the development of SCN beyond J2 stage. To provide further genetic evidence for the role of GmSABP2-1 in SCN resistance, stable transgenic soybean plants overexpressing GmSABP2-1 were produced. Analysis of the GmSABP2-1-overexpressing lines showed a significant reduction in SCN development compared to non-transgenic plants. In conclusion, we demonstrated that GmSABP2-1 encodes methyl salicylate esterase and functions as a resistance-related gene against SCN.


Subject(s)
Gene Expression Regulation, Plant , Glycine max , Plant Diseases , Plant Proteins , Plants, Genetically Modified , Salicylates , Tylenchoidea , Glycine max/genetics , Glycine max/parasitology , Animals , Plant Diseases/parasitology , Plant Diseases/genetics , Salicylates/metabolism , Tylenchoidea/physiology , Tylenchoidea/pathogenicity , Plant Proteins/genetics , Plant Proteins/metabolism , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/genetics , Disease Resistance/genetics
16.
Plant Cell Rep ; 43(6): 149, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780624

ABSTRACT

KEY MESSAGE: The small-molecule glucosyltransferase loss-of-function mutant ugt76b1 exhibits both SID2- or NPR1-dependent and independent facets of enhanced plant immunity, whereupon FMO1 is required for the SID2 and NPR1 independence. The small-molecule glucosyltransferase UGT76B1 inactivates salicylic acid (SA), isoleucic acid (ILA), and N-hydroxypipecolic acid (NHP). ugt76b1 loss-of-function plants manifest an enhanced defense status. Thus, we were interested how UGT76B1 genetically integrates in defense pathways and whether all impacts depend on SA and NHP. We study the integration of UGT76B1 by transcriptome analyses of ugt76b1. The comparison of transcripts altered by the loss of UGT76B1 with public transcriptome data reveals both SA-responsive, ISOCHORISMATE SYNTHASE 1/SALICYLIC ACID INDUCTION DEFICIENT 2 (ICS1/SID2)- and NON EXPRESSOR OF PR GENES 1 (NPR1)-dependent, consistent with the role of UGT76B1 in glucosylating SA, and SA-non-responsive, SID2/NPR1-independent genes. We also discovered that UGT76B1 impacts on a group of genes showing non-SA-responsiveness and regulation by infections independent from SID2/NPR1. Enhanced resistance of ugt76b1 against Pseudomonas syringae is partially independent from SID2 and NPR1. In contrast, the ugt76b1-activated resistance is completely dependent on FMO1 encoding the NHP-synthesizing FLAVIN-DEPENDENT MONOOXYGENASE 1). Moreover, FMO1 ranks top among the ugt76b1-induced SID2- and NPR1-independent pathogen responsive genes, suggesting that FMO1 determines the SID2- and NPR1-independent effect of ugt76b1. Furthermore, the genetic study revealed that FMO1, ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), SID2, and NPR1 are required for the SA-JA crosstalk and senescence development of ugt76b1, indicating that EDS1 and FMO1 have a similar effect like stress-induced SA biosynthesis (SID2) or the key SA signaling regulator NPR1. Thus, UGT76B1 influences both SID2/NPR1-dependent and independent plant immunity, and the SID2/NPR1 independence is relying on FMO1 and its product NHP, another substrate of UGT76B1.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Glucosyltransferases , Salicylic Acid , Salicylic Acid/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis/immunology , Arabidopsis/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Plant Immunity/genetics , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology , Pipecolic Acids/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism
17.
PLoS One ; 19(5): e0303783, 2024.
Article in English | MEDLINE | ID: mdl-38787845

ABSTRACT

Potato is considered a key component of the global food system and plays a vital role in strengthening world food security. A major constraint to potato production worldwide is the Potato Virus Y (PVY), belonging to the genus Potyvirus in the family of Potyviridae. Selective breeding of potato with resistance to PVY pathogens remains the best method to limit the impact of viral infections. Understanding the genetic diversity and population structure of potato germplasm is important for breeders to improve new cultivars for the sustainable use of genetic materials in potato breeding to PVY pathogens. While, genetic diversity improvement in modern potato breeding is facing increasingly narrow genetic basis and the decline of the genetic diversity. In this research, we performed genotyping-by-sequencing (GBS)-based diversity analysis on 10 commercial potato cultivars and weighted gene co-expression network analysis (WGCNA) to identify candidate genes related to PVY-resistance. WGCNA is a system biology technique that uses the WGCNA R software package to describe the correlation patterns between genes in multiple samples. In terms of consumption, these cultivars are a high rate among Iranian people. Using population structure analysis, the 10 cultivars were clustered into three groups based on the 118343 single nucleotide polymorphisms (SNPs) generated by GBS. Read depth ranged between 5 and 18. The average data size and Q30 of the reads were 145.98 Mb and 93.63%, respectively. Based on the WGCNA and gene expression analysis, the StDUF538, StGTF3C5, and StTMEM161A genes were associated with PVY resistance in the potato genome. Further, these three hub genes were significantly involved in defense mechanism where the StTMEM161A was involved in the regulation of alkalization apoplast, the StDUF538 was activated in the chloroplast degradation program, and the StGTF3C5 regulated the proteins increase related to defense in the PVY infected cells. In addition, in the genetic improvement programs, these hub genes can be used as genetic markers for screening commercial cultivars for PVY resistance. Our survey demonstrated that the combination of GBS-based genetic diversity germplasm analysis and WGCNA can assist breeders to select cultivars resistant to PVY as well as help design proper crossing schemes in potato breeding.


Subject(s)
Plant Diseases , Potyvirus , Solanum tuberosum , Solanum tuberosum/virology , Solanum tuberosum/genetics , Potyvirus/genetics , Plant Diseases/virology , Plant Diseases/genetics , Disease Resistance/genetics , Gene Regulatory Networks , Gene Expression Regulation, Plant , Genotype , Polymorphism, Single Nucleotide , Genotyping Techniques/methods , Plant Breeding/methods , Genes, Plant
18.
C R Biol ; 347: 35-44, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771313

ABSTRACT

In nature, plants defend themselves against pathogen attack by activating an arsenal of defense mechanisms. During the last decades, work mainly focused on the understanding of qualitative disease resistance mediated by a few genes conferring an almost complete resistance, while quantitative disease resistance (QDR) remains poorly understood despite the fact that it represents the predominant and more durable form of resistance in natural populations and crops. Here, we review our past and present work on the dissection of the complex mechanisms underlying QDR in Arabidopsis thaliana. The strategies, main steps and challenges of our studies related to one atypical QDR gene, RKS1 (Resistance related KinaSe 1), are presented. First, from genetic analyses by QTL (Quantitative Trait Locus) mapping and GWAs (Genome Wide Association studies), the identification, cloning and functional analysis of this gene have been used as a starting point for the exploration of the multiple and coordinated pathways acting together to mount the QDR response dependent on RKS1. Identification of RKS1 protein interactors and complexes was a first step, systems biology and reconstruction of protein networks were then used to decipher the molecular roadmap to the immune responses controlled by RKS1. Finally, exploration of the potential impact of key components of the RKS1-dependent gene network on leaf microbiota offers interesting and challenging perspectives to decipher how the plant immune systems interact with the microbial communities' systems.


Dans la nature, les plantes se défendent contre les attaques pathogènes en activant tout un arsenal de mécanismes de défense. Au cours des décennies passées, la recherche s'est principalement focalisée sur la compréhension de la résistance qualitative médiée par quelques gènes majeurs conférant une résistance quasi complète, alors que la résistance quantitative (QDR) demeure peu comprise bien qu'elle représente la forme de résistance prédominante et la plus durable dans les populations naturelles ou les cultures. Nous donnons ici une revue de nos travaux passés et présents sur la dissection des mécanismes complexes qui sous-tendent la QDR chez Arabidopsis thaliana. Les stratégies, étapes clés et défis de nos études concernant un gène QDR atypique, RKS1 (Resistance related KinaSe 1), sont rapportés. En premier lieu, à partir d'analyses génétiques par cartographie de QTL et GWA, l'identification, le clonage et l'analyse fonctionnelle de ce gène ont été utilisés comme point de départ à l'exploration des voies multiples et coordonnées agissant ensemble pour le développement de la réponse QDR dépendante de RKS1. L'identification des interacteurs et complexes protéiques impliquant RKS1 a été une première étape, la biologie des systèmes et la reconstruction de réseaux d'interactions protéines-protéines ont ensuite été mises en œuvre pour décoder les voies moléculaires conduisant aux réponses immunitaires contrôlées par RKS1. Finalement, l'exploration de l'impact potentiel de composantes clés du réseau de gènes dépendant de RKS1 sur le microbiote, offre des perspectives intéressantes et ambitieuses pour comprendre comment le système immunitaire de la plante interagit avec le système des communautés microbiennes.


Subject(s)
Chromosome Mapping , Quantitative Trait Loci , Systems Biology , Disease Resistance/genetics , Arabidopsis/genetics , Arabidopsis/immunology , Plant Immunity/genetics , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Plants/genetics , Plants/immunology , Genome-Wide Association Study , Arabidopsis Proteins/genetics
19.
Plant Mol Biol ; 114(3): 62, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771394

ABSTRACT

Fusarium head blight (FHB) stands out as one of the most devastating wheat diseases and leads to significantly grain yield losses and quality reductions in epidemic years. Exploring quantitative trait loci (QTL) for FHB resistance is a critical step for developing new FHB-resistant varieties. We previously constructed a genetic map of unigenes (UG-Map) according to the physical positions using a set of recombinant-inbred lines (RILs) derived from the cross of 'TN18 × LM6' (TL-RILs). Here, the number of diseased spikelets (NDS) and relative disease index (RDI) for FHB resistance were investigated under four environments using TL-RILs, which were distributed across 13 chromosomes. A number of 36 candidate genes for NDS and RDI from of 19 stable QTLs were identified. The average number of candidate genes per QTL was 1.89, with 14 (73.7%), two (10.5%), and three (15.8%) QTLs including one, two, and 3-10 candidate genes, respectively. Among the 24 candidate genes annotated in the reference genome RefSeq v1.1, the homologous genes of seven candidate genes, including TraesCS4B02G227300 for QNds/Rdi-4BL-4553, TraesCS5B02G303200, TraesCS5B02G303300, TraesCS5B02G303700, TraesCS5B02G303800 and TraesCS5B02G304000 for QNds/Rdi-5BL-9509, and TraesCS7A02G568400 for QNds/Rdi-7AL-14499, were previously reported to be related to FHB resistance in wheat, barely or Brachypodium distachyon. These genes should be closely associated with FHB resistance in wheat. In addition, the homologous genes of five genes, including TraesCS1A02G037600LC for QNds-1AS-2225, TraesCS1D02G017800 and TraesCS1D02G017900 for QNds-1DS-527, TraesCS1D02G018000 for QRdi-1DS-575, and TraesCS4B02G227400 for QNds/Rdi-4BL-4553, were involved in plant defense responses against pathogens. These genes should be likely associated with FHB resistance in wheat.


Subject(s)
Chromosome Mapping , Disease Resistance , Fusarium , Plant Diseases , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/microbiology , Quantitative Trait Loci/genetics , Fusarium/physiology , Fusarium/pathogenicity , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Genes, Plant , Chromosomes, Plant/genetics
20.
Plant Cell Rep ; 43(6): 147, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771491

ABSTRACT

KEY MESSAGE: Thchit42 constitutive expression for fungal resistance showed synchronisation with leaf augmentation and transcriptome analysis revealed the Longifolia and Zinc finger RICESLEEPER gene is responsible for plant growth and development. Pelargonium graveolens essential oil possesses significant attributes, known for perfumery and aromatherapy. However, optimal yield and propagation are predominantly hindered by biotic stress. All biotechnological approaches have yet to prove effective in addressing fungal resistance. The current study developed transgenic geranium bridging molecular mechanism of fungal resistance and plant growth by introducing cassette 35S::Thchit42. Furthermore, 120 independently putative transformed explants were regenerated on kanamycin fortified medium. Primarily transgenic lines were demonstrated peak pathogenicity and antifungal activity against formidable Colletotrichum gloeosporioides and Fusarium oxysporum. Additionally, phenotypic analysis revealed ~ 2fold increase in leaf size and ~ 2.1fold enhanced oil content. To elucidate the molecular mechanisms for genotypic cause, de novo transcriptional profiles were analyzed to indicate that the auxin-regulated longifolia gene is accountable for augmentation in leaf size, and zinc finger (ZF) RICESLEEPER attributes growth upregulation. Collectively, data provides valuable insights into unravelling the mechanism of Thchit42-mediated crosstalk between morphological and chemical alteration in transgenic plants. This knowledge might create novel opportunities to cultivate fungal-resistant geranium throughout all seasons to fulfil demand.


Subject(s)
Disease Resistance , Fusarium , Gene Expression Regulation, Plant , Pelargonium , Plant Leaves , Plants, Genetically Modified , Pelargonium/genetics , Fusarium/pathogenicity , Fusarium/physiology , Disease Resistance/genetics , Plant Leaves/genetics , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Colletotrichum/pathogenicity , Colletotrichum/physiology , Oils, Volatile/metabolism , Oils, Volatile/pharmacology , Geranium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...