Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.753
Filter
1.
Physiol Plant ; 176(3): e14375, 2024.
Article in English | MEDLINE | ID: mdl-38837224

ABSTRACT

MicroRNA(miRNA) is a class of non-coding small RNA that plays an important role in plant growth, development, and response to environmental stresses. Unlike most miRNAs, which usually target homologous genes across a variety of species, miR827 targets different types of genes in different species. Research on miR827 mainly focuses on its role in regulating phosphate (Pi) homeostasis of plants, however, little is known about its function in plant response to virus infection. In the present study, miR827 was significantly upregulated in the recovery tissue of virus-infected Nicotiana tabacum. Overexpression of miR827 could improve plants resistance to the infection of chilli veinal mottle virus (ChiVMV) in Nicotiana benthamiana, whereas interference of miR827 increased the susceptibility of the virus-infected plants. Further experiments indicated that the antiviral defence regulated by miR827 was associated with the reactive oxygen species and salicylic acid signalling pathways. Then, fructose-1,6-bisphosphatase (FBPase) was identified to be a target of miR827, and virus infection could affect the expression of FBPase. Finally, transient expression of FBPase increased the susceptibility to ChiVMV-GFP infection in N. benthamiana. By contrast, silencing of FBPase increased plant resistance. Taken together, our results demonstrate that miR827 plays a positive role in tobacco response to virus infection, thus providing new insights into understanding the role of miR827 in plant-virus interaction.


Subject(s)
Disease Resistance , Gene Expression Regulation, Plant , MicroRNAs , Nicotiana , Plant Diseases , Nicotiana/virology , Nicotiana/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Diseases/virology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphatase/metabolism , Salicylic Acid/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Tobamovirus/physiology , Tobamovirus/genetics , Plants, Genetically Modified
2.
J Gen Virol ; 105(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38833289

ABSTRACT

Relatively few phages that infect plant pathogens have been isolated and investigated. The Pseudomonas syringae species complex is present in various environments, including plants. It can cause major crop diseases, such as bacterial canker on apricot trees. This study presents a collection of 25 unique phage genomes that infect P. syringae. These phages were isolated from apricot orchards with bacterial canker symptoms after enrichment with 21 strains of P. syringae. This collection comprises mostly virulent phages, with only three being temperate. They belong to 14 genera, 11 of which are newly discovered, and 18 new species, revealing great genetic diversity within this collection. Novel DNA packaging systems have been identified bioinformatically in one of the new phage species, but experimental confirmation is required to define the precise mechanism. Additionally, many phage genomes contain numerous potential auxiliary metabolic genes with diversified putative functions. At least three phages encode genes involved in bacterial tellurite resistance, a toxic metalloid. This suggests that viruses could play a role in bacterial stress tolerance. This research emphasizes the significance of continuing the search for new phages in the agricultural ecosystem to unravel novel ecological diversity and new gene functions. This work contributes to the foundation for future fundamental and applied research on phages infecting phytopathogenic bacteria.


Subject(s)
Genome, Viral , Plant Diseases , Pseudomonas Phages , Pseudomonas syringae , Pseudomonas syringae/virology , Pseudomonas syringae/genetics , Plant Diseases/microbiology , Plant Diseases/virology , Pseudomonas Phages/genetics , Phylogeny , Genetic Variation
3.
Curr Microbiol ; 81(7): 204, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831133

ABSTRACT

Erwinia amylovora, the primary causative agent of blight disease in rosaceous plants, poses a significant threat to agricultural yield worldwide, with limited effective countermeasures. The emergence of sustainable alternative agents such as bacteriophages is a promising solution for fire blight that specifically targets Erwinia. In this study, we isolated pEp_SNUABM_01 and pEa_SNUABM_55 from a South Korean apple orchard soil, analyzed their genomic DNA sequences, and performed a comprehensive comparative analysis of Hena1 in four distinct sections. This study aimed to unveil distinctive features of these phages, with a focus on host recognition, which will provide valuable insights into the evolution and characteristics of Henunavirus bacteriophages that infect plant pathogenic Erwinia spp. By elucidating the distinct genomic features of these phages, particularly in terms of host recognition, this study lays a foundation for their potential application in mitigating the risks associated with fire blight in Rosaceae plants on a global scale.


Subject(s)
Bacteriophages , Erwinia amylovora , Genome, Viral , Plant Diseases , Erwinia amylovora/virology , Erwinia amylovora/genetics , Plant Diseases/virology , Plant Diseases/microbiology , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/isolation & purification , Phylogeny , Host Specificity , Genomics , Malus/microbiology , Malus/virology , Soil Microbiology
4.
PLoS One ; 19(6): e0303941, 2024.
Article in English | MEDLINE | ID: mdl-38838001

ABSTRACT

Areca palm velarivirus 1 (APV1) is one of the main pathogen causing yellow leaf disease, and leading to considerable losses in the Areca palm industry. The detection methods for APV1 are primarily based on phenotype determination and molecular techniques, such as polymerase chain reaction (PCR). However, a single PCR has limitations in accuracy and sensitivity. Therefore, in the present study, we established a dual RT-PCR APV1-detection system with enhanced accuracy and sensitivity using two pairs of specific primers, YLDV2-F/YLDV2-R and YLDV4-F/YLDV4-R. Moreover, two cDNA fragments covering different regions of the viral genome were simultaneously amplified, with PCR amplicon of 311 and 499 bp, respectively. The dual RT-PCR detection system successfully amplified the two target regions of the APV1, demonstrating high specificity and sensitivity and compensating for the limitations of single-primer detection methods. We tested 60 Areca palm samples from different geographical regions, highlighting its advantages in that the dual RT-PCR system efficiently and accurately detected APV1 in samples across diverse areas. The dual RT-PCR APV1 detection system provides a rapid, accurate, and sensitive method for detecting the virus and offers valuable technical support for research in preventing and managing yellow leaf diseases caused by APV1 in Areca palms. Moreover, the findings of this study can serve as a reference for establishing similar plants viral detection systems in the future.


Subject(s)
Plant Diseases , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction/methods , Plant Diseases/virology , Arecaceae/virology , Sensitivity and Specificity , DNA Primers/genetics , RNA, Viral/genetics , RNA, Viral/analysis
5.
Sci Rep ; 14(1): 12948, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839925

ABSTRACT

Viral diseases are becoming an important problem in Amorphophallus production due to the propagation of seed corms and their trade across regions. In this study, combined-High-Throughput Sequencing, RT-PCR, electron microscopy, and mechanical inoculation were used to analyze virus-like infected Amorphophallus samples in Yunnan province to investigate the distribution, molecular characterization, and diversity and evolution of Amorphophallus-infecting viruses including three isolates of dasheen mosaic virus and three orthotospoviruses: mulberry vein banding associated virus (MVBaV), tomato zonate spot virus (TZSV) and impatiens necrotic spot virus (INSV). The results showed that DsMV is the dominant virus infecting Amorphophallus, mixed infections with DsMV and MVBaV to Amorphophallus were quite common in Yunnan province, China. This is the first report on infection of Amorphophallus with MVBaV, TZSV, and impatiens necrotic spot virus (INSV) in China. This work will help to develop an effective integrated management strategy to control the spread of Amorphophallus viral diseases.


Subject(s)
Phylogeny , Plant Diseases , China , Plant Diseases/virology , Plant Viruses/isolation & purification , Plant Viruses/genetics , High-Throughput Nucleotide Sequencing , RNA, Viral/genetics
6.
Nat Commun ; 15(1): 4748, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834585

ABSTRACT

Non-self recognition is a fundamental aspect of life, serving as a crucial mechanism for mitigating proliferation of molecular parasites within fungal populations. However, studies investigating the potential interference of plants with fungal non-self recognition mechanisms are limited. Here, we demonstrate a pronounced increase in the efficiency of horizontal mycovirus transmission between vegetatively incompatible Sclerotinia sclerotiorum strains in planta as compared to in vitro. This increased efficiency is associated with elevated proline concentration in plants following S. sclerotiorum infection. This surge in proline levels attenuates the non-self recognition reaction among fungi by inhibition of cell death, thereby facilitating mycovirus transmission. Furthermore, our field experiments reveal that the combined deployment of hypovirulent S. sclerotiorum strains harboring hypovirulence-associated mycoviruses (HAVs) together with exogenous proline confers substantial protection to oilseed rape plants against virulent S. sclerotiorum. This unprecedented discovery illuminates a novel pathway by which plants can counteract S. sclerotiorum infection, leveraging the weakening of fungal non-self recognition and promotion of HAVs spread. These promising insights provide an avenue to explore for developing innovative biological control strategies aimed at mitigating fungal diseases in plants by enhancing the efficacy of horizontal HAV transmission.


Subject(s)
Ascomycota , Fungal Viruses , Plant Diseases , Proline , Fungal Viruses/physiology , Fungal Viruses/genetics , Proline/metabolism , Plant Diseases/microbiology , Plant Diseases/virology , Ascomycota/virology , Ascomycota/physiology , Brassica napus/microbiology , Brassica napus/virology , Virulence , Host-Pathogen Interactions
7.
PLoS One ; 19(5): e0302692, 2024.
Article in English | MEDLINE | ID: mdl-38722893

ABSTRACT

Tobacco vein necrosis (TVN) is a complex phenomenon regulated by different genetic determinants mapped in the HC-Pro protein (amino acids N330, K391 and E410) and in two regions of potato virus Y (PVY) genome, corresponding to the cytoplasmic inclusion (CI) protein and the nuclear inclusion protein a-protease (NIa-Pro), respectively. A new determinant of TVN was discovered in the MK isolate of PVY which, although carried the HC-Pro determinants associated to TVN, did not induce TVN. The HC-Pro open reading frame (ORF) of the necrotic infectious clone PVY N605 was replaced with that of the non-necrotic MK isolate, which differed only by one amino acid at position 392 (T392 instead of I392). The cDNA clone N605_MKHCPro inoculated in tobacco induced only weak mosaics at the systemic level, demostrating that the amino acid at position 392 is a new determinant for TVN. No significant difference in accumulation in tobacco was observed between N605 and N605_MKHCPro. Since phylogenetic analyses showed that the loss of necrosis in tobacco has occurred several times independently during PVY evolution, these repeated evolutions strongly suggest that tobacco necrosis is a costly trait in PVY.


Subject(s)
Nicotiana , Phylogeny , Plant Diseases , Point Mutation , Potyvirus , Viral Proteins , Nicotiana/virology , Potyvirus/genetics , Potyvirus/pathogenicity , Plant Diseases/virology , Viral Proteins/genetics , Viral Proteins/metabolism , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Amino Acid Sequence , Necrosis , Molecular Sequence Data , Open Reading Frames/genetics
8.
PLoS Biol ; 22(5): e3002626, 2024 May.
Article in English | MEDLINE | ID: mdl-38728373

ABSTRACT

All plant viruses were thought to encode in its genome a movement protein that acts as a "passport," allowing active movement within the host. A new study in PLOS Biology characterizes the first plant virus that can colonize its host without encoding this protein.


Subject(s)
Plant Diseases , Plant Viruses , Plant Viruses/physiology , Plant Viruses/genetics , Plant Viruses/pathogenicity , Plant Diseases/virology , Plants/virology , Plant Viral Movement Proteins/metabolism , Plant Viral Movement Proteins/genetics , Genome, Viral , Host-Pathogen Interactions
9.
BMC Genom Data ; 25(1): 42, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711021

ABSTRACT

BACKGROUND: Shallots are infected by various viruses like Onion yellow dwarf virus (OYDV), Leek yellow stripe virus (LYSV), Shallot latent virus (SLV) and Shallot virus X (ShVX). In India, they have been found to be persistently infected by ShVX. ShVX also infects onion and garlic in combination with other carlaviruses and potyviruses. ShVX is a member of genus Allexivirus of family Alphaflexiviridae. ShVX has a monopartite genome, which is represented by positive sense single-stranded RNA. Globally, only six complete and 3 nearly complete genome sequences of ShV X are reported to date. This number is insufficient to measure a taxon's true molecular diversity. Moreover, the complete genome sequence of ShVX from Asia has not been reported as yet. Therefore, this study was undertaken to generate a complete genome sequence of ShVX from India. RESULTS: Shallot virus X (ShVX) is one of the significant threats to Allium crop production. In this study, we report the first complete genome sequence of the ShVX from India through Next-generation sequencing (NGS). The complete genome of the ShVX (Accession No. OK104171), from this study comprised 8911 nucleotides. In-silico analysis of the sequence revealed variability between this isolate and isolates from other countries. The dissimilarities are spread all over the genome specifically some non-coding intergenic regions. Statistical analysis of individual genes for site-specific selection indicates a positive selection in NABP region. The presence of a recombination event was detected in coat protein region. The sequence similarity percentage and phylogenetic analysis indicate ShVX Indian isolate is a distinctly different isolate. Recombination and site-specific selection may have a function in the evolution of this isolate. This is the first detailed study of the ShVX complete genome sequence from Southeast Asia. CONCLUSION: This study presents the first report of the entire genome sequence of an Indian isolate of ShVX along with an in-depth exploration of its evolutionary traits. The findings highlight the Indian variant as a naturally occurring recombinant, emphasizing the substantial role of recombination in the evolution of this viral species. This insight into the molecular diversity of strains within a specific geographical region holds immense significance for comprehending and forecasting potential epidemics. Consequently, the insights garnered from this research hold practical value for shaping ShVX management strategies and providing a foundation for forthcoming studies delving into its evolutionary trajectory.


Subject(s)
Genome, Viral , Phylogeny , Whole Genome Sequencing , India/epidemiology , Genome, Viral/genetics , Selection, Genetic , Recombination, Genetic , Flexiviridae/genetics , Flexiviridae/isolation & purification , Plant Diseases/virology
10.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38717918

ABSTRACT

The tomato spotted wilt virus (TSWV) is a member of the Tospoviridae family and has an negative/ambisense single-stranded RNA genome. Frankliniella occidentalis and F. intonsa are known to be dominant pests in Capsicum annuum (hot pepper) and can cause damage to the plant either directly by feeding, or indirectly by transmitting TSWV in a persistent and propagative manner, resulting in serious economic damage. This study compared the immune responses of two different thrips species against TSWV infection by transcriptome analysis, which then allowed the assessment of antiviral responses using RNA interference (RNAi). Both adult thrips shared about 90 % of the transcripts in non-viruliferous conditions. Most signal components of the immune pathways were shared by these two thrips species, and their expression levels fluctuated differentially in response to TSWV infection at early immature stages. The functional assays using RNAi treatments indicated that the Toll and JAK/STAT pathways were associated with the antiviral responses, but the IMD pathway was not. The upregulation of dorsal switch protein one supported its physiological role in recognizing TSWV infection and triggering the eicosanoid biosynthetic pathway, which mediates melanization and apoptosis in thrips. In addition, the signal components of the RNAi pathways fluctuated highly after TSWV infection. Individual RNAi treatments specific to the antiviral signalling and response components led to significant increases in the TSWV amount in the thrips, causing virus-induced mortality. These findings suggest that immune signalling pathways leading to antiviral responses are operating in the thrips to regulate TSWV litres to prevent a fatal viral overload. This study also indicates the differential antiviral responses between the TSWV-transmitting F. occidentalis and F. intonsa.


Subject(s)
Plant Diseases , Thysanoptera , Tospovirus , Tospovirus/immunology , Tospovirus/physiology , Tospovirus/genetics , Animals , Thysanoptera/virology , Thysanoptera/immunology , Plant Diseases/virology , Plant Diseases/immunology , Capsicum/virology , Capsicum/immunology , Virus Replication , RNA Interference , Insect Vectors/virology , Insect Vectors/immunology , Gene Expression Profiling , Signal Transduction
11.
Arch Virol ; 169(6): 126, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753067

ABSTRACT

A novel mitovirus was identified in Fusarium oxysporum f. sp. melonis strain T-SD3 and designated as "Fusarium oxysporum mitovirus 3" (FoMV3). The virus was isolated from diseased muskmelon plants with the typical symptom of fusarium wilt. The complete genome of FoMV3 is 2269 nt in length with a predicted AU content of 61.40% and contains a single open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF was predicted to encode a polypeptide of 679 amino acids (aa) containing a conserved RNA-dependent RNA polymerase (RdRp) domain with a molecular mass of 77.39 kDa, which contains six conserved motifs with the highly conserved GDD tripeptide in motif IV. The 5'-untranslated region (UTR) and 3'-UTR of FoMV3 were predicted to fold into stem-loop structures. BLASTp analysis revealed that the RdRp of FoMV3 shared the highest aa sequence identity (83.85%) with that of Fusarium asiaticum mitovirus 5 (FaMV5, a member of the family Mitoviridae) infecting F. asiaticum, the causal agent of wheat fusarium head blight. Phylogenetic analysis further suggested that FoMV3 is a new member of the genus Unuamitovirus within the family Mitoviridae. This is the first report of a new mitovirus associated with F. oxysporum f. sp. melonis.


Subject(s)
Fungal Viruses , Fusarium , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases , Fusarium/virology , Plant Diseases/microbiology , Plant Diseases/virology , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Fungal Viruses/classification , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/classification , Whole Genome Sequencing , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , Cucumis melo/virology , Cucumis melo/microbiology , Amino Acid Sequence , 5' Untranslated Regions , 3' Untranslated Regions , Base Sequence
12.
Arch Virol ; 169(6): 124, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753064

ABSTRACT

Allamanda cathartica is an ornamental medicinal plant that grows widely in the tropics. In the present study, two novel viruses, Allamanda chlorotic virus A (AlCVA) and Allamanda chlorotic virus B (AlCVB), were identified in an A. cathartica plant with interveinal chlorosis by ribosomal RNA-depleted total-RNA sequencing. Phylogenetic analysis and sequence comparisons confirmed that AlCVA and AlCVB belong to the families Closteroviridae and Betaflexiviridae, respectively. Long, flexuous, filamentous virus particles approximately 12 nm in diameter and 784-2291 nm in length were observed using transmission electron microscopy. A specific RT-PCR assay was used to demonstrate a consistent association of viral infection with symptoms.


Subject(s)
Closteroviridae , Flexiviridae , Phylogeny , Plant Diseases , RNA, Viral , Plant Diseases/virology , China , RNA, Viral/genetics , Closteroviridae/genetics , Closteroviridae/isolation & purification , Closteroviridae/classification , Flexiviridae/genetics , Flexiviridae/isolation & purification , Flexiviridae/classification , Genome, Viral/genetics , Plants, Medicinal/virology
13.
Arch Virol ; 169(6): 123, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753216

ABSTRACT

Chinese bayberry is a fruit that is appreciated for its taste. A novel totivirus associated with rolling, disfiguring, chlorotic and vein-clearing symptoms on the leaf apices of Chinese bayberry was identified by transcriptome sequencing and reverse transcription PCR (RT-PCR). The complete genome of the virus was determined to be 4959 nucleotides long, and it contains two open reading frames (ORFs). Its genomic organization is similar to that of previously reported totiviruses. ORF1 encodes a putative coat protein (CP) of 765 aa, and ORF2 encodes an RNA-dependent RNA polymerase (RdRp) of 815 aa. These two putative proteins share 55.1% and 62.6%, amino acid sequence identity, respectively, with the corresponding proteins of Panax notoginseng virus A, respectively. According to the demarcation criteria for totivirus species established by the International Committee on Taxonomy of Viruses (ICTV), the new virus should be considered a member of a new species in the genus totivirus, family Orthototiviridae, which we have tentatively named ''Myrica rubra-associated totivirus'' (MRaTV).


Subject(s)
Genome, Viral , Myrica , Open Reading Frames , Phylogeny , Plant Diseases , Plant Leaves , Totivirus , Whole Genome Sequencing , Genome, Viral/genetics , Plant Diseases/virology , Plant Leaves/virology , Myrica/virology , Myrica/genetics , Totivirus/genetics , Totivirus/isolation & purification , Totivirus/classification , Viral Proteins/genetics , RNA-Dependent RNA Polymerase/genetics , RNA, Viral/genetics
14.
Arch Microbiol ; 206(5): 240, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698140

ABSTRACT

Hop stunt viroid (HSVd), a small, single stranded, circular, non-coding infectious RNA known to cause infection in various economically important crop plants. In the present investigation, a study was conducted in the southern part of Karnataka districts of India to detect the possible association of HSVd infection in mulberry plants. A total of 41 mulberry plants showing typical viroid-like symptoms along with asymptomatic samples were collected and screened using conventional Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) using a specific set of HSVd-Fw/ HSVd-Re primers. Out of 41 samples, the study confirmed the presence of HSVd in six samples of mulberry collected from Ramanagara (1 sample), Chikkaballapur (3 samples) and Doddaballapura (2 samples) regions with an expected HSVd amplicon size of ∼ 290-300 nucleotides. The mechanical transmission of HSVd was also confirmed on cucumber (cv. Suyo) seedlings through bioassay, which was reconfirmed by RT-PCR. The amplicons were cloned, sequenced, and the representative nucleotide sequences were deposited in the NCBI GenBank. Subsequently, molecular phylogenetic analysis showed that HSVd mulberry isolates from this study were most closely related to grapevine isolates, indicating a common origin. On the other hand, it was shown to belong to a different group from mulberry isolates so far reported from Iran, Italy, Lebanon, and China. The secondary structure analysis of HSVd mulberry Indian isolates exhibited substitutions in the terminal left, pathogenicity, and variable regions compared to those of the Indian grapevine isolates. As far as this study is concerned, HSVd was detected exclusively in some mulberry plants with viral-like symptoms, but the pathogenesis and symptom expression needs to be further investigated to establish the relationship between HSVd and the disease symptoms in the mulberry plants.


Subject(s)
Morus , Phylogeny , Plant Diseases , Plant Viruses , Viroids , Morus/virology , Viroids/genetics , Viroids/isolation & purification , Viroids/classification , India , Plant Diseases/virology , RNA, Viral/genetics , Nucleic Acid Conformation
15.
Mol Plant Pathol ; 25(5): e13466, 2024 May.
Article in English | MEDLINE | ID: mdl-38767756

ABSTRACT

The movement of potyviruses, the largest genus of single-stranded, positive-sense RNA viruses responsible for serious diseases in crops, is very complex. As potyviruses developed strategies to hijack the host secretory pathway and plasmodesmata (PD) for their transport, the goal of this study was to identify membrane and/or PD-proteins that interact with the 6K2 protein, a potyviral protein involved in replication and cell-to-cell movement of turnip mosaic virus (TuMV). Using split-ubiquitin membrane yeast two-hybrid assays, we screened an Arabidopsis cDNA library for interactors of TuMV6K2. We isolated AtHVA22a (Hordeum vulgare abscisic acid responsive gene 22), which belongs to a multigenic family of transmembrane proteins, homologous to Receptor expression-enhancing protein (Reep)/Deleted in polyposis (DP1)/Yop1 family proteins in animal and yeast. HVA22/DP1/Yop1 family genes are widely distributed in eukaryotes, but the role of HVA22 proteins in plants is still not well known, although proteomics analysis of PD fractions purified from Arabidopsis suspension cells showed that AtHVA22a is highly enriched in a PD proteome. We confirmed the interaction between TuMV6K2 and AtHVA22a in yeast, as well as in planta by using bimolecular fluorescence complementation and showed that TuMV6K2/AtHVA22a interaction occurs at the level of the viral replication compartment during TuMV infection. Finally, we showed that the propagation of TuMV is increased when AtHVA22a is overexpressed in planta but slowed down upon mutagenesis of AtHVA22a by CRISPR-Cas9. Altogether, our results indicate that AtHVA22a plays an agonistic effect on TuMV propagation and that the C-terminal tail of the protein is important in this process.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Potyvirus , Potyvirus/pathogenicity , Potyvirus/physiology , Arabidopsis/virology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Diseases/virology , Viral Proteins/metabolism , Viral Proteins/genetics , Virus Replication , Nicotiana/virology , Nicotiana/genetics
16.
Biol Lett ; 20(5): 20240095, 2024 May.
Article in English | MEDLINE | ID: mdl-38774968

ABSTRACT

The transmission efficiency of aphid-vectored plant viruses can differ between aphid populations. Intra-species diversity (genetic variation, endosymbionts) is a key determinant of aphid phenotype; however, the extent to which intra-species diversity contributes towards variation in virus transmission efficiency is unclear. Here, we use multiple populations of two key aphid species that vector barley yellow dwarf virus (BYDV) strain PAV (BYDV-PAV), the grain aphid (Sitobion avenae) and the bird cherry-oat aphid (Rhopalosiphum padi), and examine how diversity in vector populations influences virus transmission efficiency. We use Illumina sequencing to characterize genetic and endosymbiont variation in multiple Si. avenae and Rh. padi populations and conduct BYDV-PAV transmission experiments to identify links between intra-species diversity in the vector and virus transmission efficiency. We observe limited variation in the transmission efficiency of Si. avenae, with transmission efficiency consistently low for this species. However, for Rh. padi, we observe a range of transmission efficiencies and show that BYDV transmission efficiency is influenced by genetic diversity within the vector, identifying 542 single nucleotide polymorphisms that potentially contribute towards variable transmission efficiency in Rh. padi. Our results represent an important advancement in our understanding of the relationship between genetic diversity, vector-virus interactions, and virus transmission efficiency.


Subject(s)
Aphids , Genetic Variation , Insect Vectors , Luteovirus , Plant Diseases , Aphids/virology , Aphids/genetics , Animals , Insect Vectors/virology , Insect Vectors/genetics , Plant Diseases/virology , Luteovirus/genetics , Luteovirus/physiology , Symbiosis
17.
Plant Physiol Biochem ; 211: 108714, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749374

ABSTRACT

The CDC48 protein, highly conserved in the living kingdom, is a player of the ubiquitin proteasome system and contributes to various cellular processes. In plants, CDC48 is involved in cell division, plant growth and, as recently highlighted in several reports, in plant immunity. In the present study, to further extend our knowledge about CDC48 functions in plants, we analysed the incidence of its overexpression on tobacco development and immune responses. CDC48 overexpression disrupted plant development and morphology, induced changes in plastoglobule appearance and exacerbated ROS production. In addition, levels of salicylic acid (SA) and glycosylated SA were higher in transgenic plants, both in the basal state and in response to cryptogein, a protein produced by the oomycete Phytophthora cryptogea triggering defence responses. The expression of defence genes, notably those coding for some pathogenesis-related (PR) proteins, was also exacerbated in the basal state in transgenic plant lines. Finally, tobacco plants overexpressing CDC48 did not develop necrosis in response to tobacco mosaic virus (TMV) infection, suggesting a role for CDC48 in virus resistance.


Subject(s)
Nicotiana , Plant Immunity , Plant Proteins , Plants, Genetically Modified , Nicotiana/genetics , Nicotiana/virology , Nicotiana/immunology , Nicotiana/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Plant Diseases/virology , Plant Diseases/immunology , Salicylic Acid/metabolism , Gene Expression Regulation, Plant , Reactive Oxygen Species/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Tobacco Mosaic Virus/physiology , Phytophthora/physiology , Phytophthora/pathogenicity
18.
PLoS One ; 19(5): e0303783, 2024.
Article in English | MEDLINE | ID: mdl-38787845

ABSTRACT

Potato is considered a key component of the global food system and plays a vital role in strengthening world food security. A major constraint to potato production worldwide is the Potato Virus Y (PVY), belonging to the genus Potyvirus in the family of Potyviridae. Selective breeding of potato with resistance to PVY pathogens remains the best method to limit the impact of viral infections. Understanding the genetic diversity and population structure of potato germplasm is important for breeders to improve new cultivars for the sustainable use of genetic materials in potato breeding to PVY pathogens. While, genetic diversity improvement in modern potato breeding is facing increasingly narrow genetic basis and the decline of the genetic diversity. In this research, we performed genotyping-by-sequencing (GBS)-based diversity analysis on 10 commercial potato cultivars and weighted gene co-expression network analysis (WGCNA) to identify candidate genes related to PVY-resistance. WGCNA is a system biology technique that uses the WGCNA R software package to describe the correlation patterns between genes in multiple samples. In terms of consumption, these cultivars are a high rate among Iranian people. Using population structure analysis, the 10 cultivars were clustered into three groups based on the 118343 single nucleotide polymorphisms (SNPs) generated by GBS. Read depth ranged between 5 and 18. The average data size and Q30 of the reads were 145.98 Mb and 93.63%, respectively. Based on the WGCNA and gene expression analysis, the StDUF538, StGTF3C5, and StTMEM161A genes were associated with PVY resistance in the potato genome. Further, these three hub genes were significantly involved in defense mechanism where the StTMEM161A was involved in the regulation of alkalization apoplast, the StDUF538 was activated in the chloroplast degradation program, and the StGTF3C5 regulated the proteins increase related to defense in the PVY infected cells. In addition, in the genetic improvement programs, these hub genes can be used as genetic markers for screening commercial cultivars for PVY resistance. Our survey demonstrated that the combination of GBS-based genetic diversity germplasm analysis and WGCNA can assist breeders to select cultivars resistant to PVY as well as help design proper crossing schemes in potato breeding.


Subject(s)
Plant Diseases , Potyvirus , Solanum tuberosum , Solanum tuberosum/virology , Solanum tuberosum/genetics , Potyvirus/genetics , Plant Diseases/virology , Plant Diseases/genetics , Disease Resistance/genetics , Gene Regulatory Networks , Gene Expression Regulation, Plant , Genotype , Polymorphism, Single Nucleotide , Genotyping Techniques/methods , Plant Breeding/methods , Genes, Plant
19.
Genes (Basel) ; 15(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38790195

ABSTRACT

Soybean mosaic virus (SMV) is one of the main pathogens that can negatively affect soybean production and quality. To study the gene regulatory network of soybeans in response to SMV SC15, the resistant line X149 and susceptible line X97 were subjected to transcriptome analysis at 0, 2, 8, 12, 24, and 48 h post-inoculation (hpi). Differential expression analysis revealed that 10,190 differentially expressed genes (DEGs) responded to SC15 infection. Weighted gene co-expression network analysis (WGCNA) was performed to identify highly related resistance gene modules; in total, eight modules, including 2256 DEGs, were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of 2256 DEGs revealed that the genes significantly clustered into resistance-related pathways, such as the plant-pathogen interaction pathway, mitogen-activated protein kinases (MAPK) signaling pathway, and plant hormone signal transduction pathway. Among these pathways, we found that the flg22, Ca2+, hydrogen peroxide (H2O2), and abscisic acid (ABA) regulatory pathways were fully covered by 36 DEGs. Among the 36 DEGs, the gene Glyma.01G225100 (protein phosphatase 2C, PP2C) in the ABA regulatory pathway, the gene Glyma.16G031900 (WRKY transcription factor 22, WRKY22) in Ca2+ and H2O2 regulatory pathways, and the gene Glyma.04G175300 (calcium-dependent protein kinase, CDPK) in Ca2+ regulatory pathways were highly connected hub genes. These results indicate that the resistance of X149 to SC15 may depend on the positive regulation of flg22, Ca2+, H2O2, and ABA regulatory pathways. Our study further showed that superoxide dismutase (SOD) activity, H2O2 content, and catalase (CAT) and peroxidase (POD) activities were significantly up-regulated in the resistant line X149 compared with those in 0 hpi. This finding indicates that the H2O2 regulatory pathway might be dependent on flg22- and Ca2+-pathway-induced ROS generation. In addition, two hub genes, Glyma.07G190100 (encoding F-box protein) and Glyma.12G185400 (encoding calmodulin-like proteins, CMLs), were also identified and they could positively regulate X149 resistance. This study provides pathways for further investigation of SMV resistance mechanisms in soybean.


Subject(s)
Gene Expression Regulation, Plant , Gene Regulatory Networks , Glycine max , Plant Diseases , Potyvirus , Glycine max/genetics , Glycine max/virology , Potyvirus/pathogenicity , Plant Diseases/virology , Plant Diseases/genetics , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling/methods , Transcriptome , Signal Transduction/genetics
20.
Sci Rep ; 14(1): 12257, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806538

ABSTRACT

Evaluate the impact of extracts from the Lens culinaris plant on a number of physiological and biochemical parameters in squash leaves infected with ZYMV in this work. Compared to the untreated leaves, ZYMV infected leaves showed a range of symptoms, such as severe mosaic, size reduction, stunting, and deformation. Analysis of physiological data revealed that L. culinaris extract lectin therapies and viral infections had an impact on metabolism. Protein, carbohydrate, and pigment levels were all lowered by viral infection. However, phenolic compounds, total protein, total carbohydrates, total amino acids, proline, total chlorophyll and peroxidases levels are considerably elevated with all extract therapies. The other biochemical parameters also displayed a variety of changes. Moreover shoot length, number of leaves and number of flowers was significantly increased compared to viral control in all treatments. The L. culinaris extract treatment increases the plant's ZYMV resistance. This is detectable through reduction of the plants treated with lentil lectin pre and post virus inoculation, reduction in disease severity and viral concentration, and percentage of the infected plants has a virus. All findings demonstrate significant metabolic alterations brought by viral infections or L. culinaris extract treatments, and they also suggest that exogenous extract treatments is essential for activating the body's defences against ZYMV infection.


Subject(s)
Lens Plant , Plant Diseases , Plant Extracts , Plant Leaves , Plant Extracts/pharmacology , Lens Plant/chemistry , Plant Diseases/virology , Plant Diseases/prevention & control , Plant Leaves/chemistry , Plant Leaves/virology , Plant Leaves/metabolism , Cucurbita/chemistry , Cucurbita/virology , Mosaic Viruses/drug effects , Mosaic Viruses/physiology , Chlorophyll/metabolism , Disease Resistance/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...