Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.745
Filter
1.
AAPS PharmSciTech ; 25(5): 107, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730121

ABSTRACT

Treatment therapies used to manage osteoporosis are associated with severe side effects. So worldwide herbs are widely studied to develop alternative safe & effective treatments. Cissus quadrangularis (CQ) has a significant role in bone health and fracture healing. It is documented that its extracts increase osteoblastic differentiation & mineralization. Currently, Cissus quadrangularis is available in the form of tablets in the market for oral delivery. But these conventional forms are associated with poor bioavailability. There is a need for a novel drug delivery system with improving oral bioavailability. Therefore, a Cissus quadrangularis-loaded self-emulsifying drug delivery system (CQ-SEDDS) was developed which disperses rapidly in the gastrointestinal fluids, yielding nano-emulsions containing a solubilized drug. This solubilized form of the drug can be easily absorbed through lymphatic pathways and bypass the hepatic first-pass effect. The emulsification efficiency, zeta potential, globule size, in-vitro dissolution, ex-vivo, in-vivo and bone marker studies were performed to assess the absorption and permeation potential of CQ incorporated in SEDDS. CQ-SEDDS with excipients Tween 80, Cremophor RH40, Transcutol HP & α-Tocopherol acetate had shown about 76% enhancement in the bioavailability of active constituents of CQ. This study provided the pre-clinical data of CQ-SEDDS using osteoporotic rat model studies.


Subject(s)
Biological Availability , Cissus , Drug Delivery Systems , Emulsions , Osteoporosis , Animals , Osteoporosis/drug therapy , Rats , Cissus/chemistry , Drug Delivery Systems/methods , Female , Administration, Oral , Excipients/chemistry , Solubility , Plant Extracts/pharmacokinetics , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Particle Size , Rats, Sprague-Dawley
2.
Pak J Pharm Sci ; 37(2): 291-296, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38767095

ABSTRACT

Mangiferin, a key bioactive constituent in Gentiana rhodantha, has a favorable impact on reducing blood sugar. A selective and sensitive UPLC MS/MS approach was developed for determining mangiferin in diabetic rats. Employing acetonitrile protein precipitation, chromatographic separation utilized a 2.1×50 mm, 3.5µm C18 column with a mobile phase of 0.1% formic acid aqueous and 5mM ammonium acetate (A, 45%) and acetonitrile (B, 55%) at a 0.5mL min-1 flow rate. Quantification, employing the multiple reaction monitoring (MRM) mode, focused on precursor-to-product ion transitions at m/z 447.1→271.1 for baicalin m/z and 421.0→301.0 for mangiferin. Calibration curves demonstrated linearity in the 1.00~100ng/mL range, with a lower quantification limit for rat plasma set at 1.00ng/mL. Inter- and intra-day accuracies spanned -9.1% to 8.5% and mangiferin mean recovery varied from 82.3% to 86.7%. The adeptly utilized UPLC-MS/MS approach facilitated the exploration of mangiferin pharmacokinetics in diabetic rats.


Subject(s)
Diabetes Mellitus, Experimental , Gentiana , Plant Extracts , Tandem Mass Spectrometry , Xanthones , Animals , Xanthones/pharmacokinetics , Xanthones/blood , Xanthones/administration & dosage , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/drug therapy , Tandem Mass Spectrometry/methods , Male , Chromatography, High Pressure Liquid/methods , Plant Extracts/pharmacokinetics , Plant Extracts/administration & dosage , Plant Extracts/blood , Administration, Oral , Rats , Gentiana/chemistry , Rats, Sprague-Dawley , Streptozocin , Reproducibility of Results , Liquid Chromatography-Mass Spectrometry
3.
Clin Transl Sci ; 17(5): e13804, 2024 May.
Article in English | MEDLINE | ID: mdl-38700454

ABSTRACT

St. John's wort (SJW) extract, a herbal medicine with antidepressant effects, is a potent inducer of intestinal and/or hepatic cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp), which can cause clinically relevant drug interactions. It is currently not known whether SJW can also induce P-gp activity at the human blood-brain barrier (BBB), which may potentially lead to decreased brain exposure and efficacy of certain central nervous system (CNS)-targeted P-gp substrate drugs. In this study, we used a combination of positron emission tomography (PET) imaging and cocktail phenotyping to gain a comprehensive picture on the effect of SJW on central and peripheral P-gp and CYP activities. Before and after treatment of healthy volunteers (n = 10) with SJW extract with a high hyperforin content (3-6%) for 12-19 days (1800 mg/day), the activity of P-gp at the BBB was assessed by means of PET imaging with the P-gp substrate [11C]metoclopramide and the activity of peripheral P-gp and CYPs was assessed by administering a low-dose phenotyping cocktail (caffeine, omeprazole, dextromethorphan, and midazolam or fexofenadine). SJW significantly increased peripheral P-gp, CYP3A, and CYP2C19 activity. Conversely, no significant changes in the peripheral metabolism, brain distribution, and P-gp-mediated efflux of [11C]metoclopramide across the BBB were observed following the treatment with SJW extract. Our data suggest that SJW does not lead to significant P-gp induction at the human BBB despite its ability to induce peripheral P-gp and CYPs. Simultaneous intake of SJW with CNS-targeted P-gp substrate drugs is not expected to lead to P-gp-mediated drug interactions at the BBB.


Subject(s)
Blood-Brain Barrier , Hypericum , Phloroglucinol , Phloroglucinol/analogs & derivatives , Plant Extracts , Positron-Emission Tomography , Terfenadine/analogs & derivatives , Terpenes , Humans , Hypericum/chemistry , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Phloroglucinol/pharmacokinetics , Phloroglucinol/pharmacology , Phloroglucinol/administration & dosage , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/pharmacokinetics , Male , Adult , Positron-Emission Tomography/methods , Terpenes/pharmacology , Terpenes/pharmacokinetics , Terpenes/metabolism , Female , Young Adult , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , Bridged Bicyclo Compounds/pharmacology , Bridged Bicyclo Compounds/pharmacokinetics , Bridged Bicyclo Compounds/administration & dosage , Terfenadine/pharmacokinetics , Terfenadine/administration & dosage , Terfenadine/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Healthy Volunteers
4.
Altern Ther Health Med ; 30(4): 18-23, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38702159

ABSTRACT

Objective: Curcuminoids, the major component of which is curcumin, are natural polyphenolic compounds from the rhizome of Curcuma longa Linn. and possess extensive biopharmacological properties that are limited in humans due to poor bioavailability. Currently, most commercial bioavailable turmeric extracts use synthetic excipients or the addition of piperine to enhance bioavailability, and are needed in multiple daily doses to achieve clinical efficacy. This study was conducted to compare the bioavailability of a natural, water-dispersible turmeric extract containing 60% natural curcuminoids, the test product, WDTE60N (1 × 250 mg per day), with the reference product, turmeric extract capsules (500 mg curcuminoids and 5 mg piperine, CPC; 3 × 500 mg per day). Methods: Sixteen healthy adult male subjects fasted overnight for 10 hours and then were dosed with either one capsule of the test product WDTE60N or three capsules of reference product CPC orally (One capsule administered at every 6 hours interval i.e. at 0.00 hrs, 6.00 hrs and at 12.00 hrs) in each study period. Blood sampling before and after dosing was carried out at defined time points at -12.00, -02.00, 00.00 (within 10 minutes prior to dosing) hours in morning before dosing and post-dose (First dose) at 00.50, 01.00, 02.00, 03.00, 04.00, 05.00, 06.50, 07.00, 08.00, 09.00, 10.00, 11.00, 12.50, 13.00, 14.00, 16.00, 18.00, 20.00 and 24.00 hours in each period. Plasma concentration of curcuminoids was determined using a validated liquid chromatography with tandem mass spectrometry bioanalytical method. Results: The Cmax (GLSM) for the test product WDTE60N was observed to be 74.56 ng/mL; and same for the reference CPC was 22.75 ng/mL. AUC0-t (GLSM) for test WDTE60N was 419.00 h∙ng/mL; and for reference CPC it was 359.86 h∙ng/mL for total curcuminoids. Conclusion: The test formulation WDTE60N showed improved relative absorption and equivalent exposure at a 10-fold-lower dose of actives than the reference formulation CPC.


Subject(s)
Alkaloids , Benzodioxoles , Cross-Over Studies , Curcuma , Curcumin , Piperidines , Plant Extracts , Humans , Male , Plant Extracts/pharmacology , Plant Extracts/pharmacokinetics , Curcuma/chemistry , Adult , Alkaloids/pharmacokinetics , Alkaloids/pharmacology , Benzodioxoles/pharmacokinetics , Benzodioxoles/pharmacology , Curcumin/pharmacokinetics , Curcumin/pharmacology , Piperidines/pharmacokinetics , Piperidines/pharmacology , Biological Availability , Young Adult , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/pharmacokinetics
5.
Nutrients ; 16(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38794640

ABSTRACT

Anthocyanins have gained significant popularity in recent years for their diverse health benefits, yet their limited bioavailability poses a challenge. To address this concern, technologies have emerged to enhance anthocyanin concentration, often isolating these compounds from other food constituents. However, the extent to which isolated anthocyanins confer health benefits compared to their whole-food counterparts remains unclear. This review explores the current literature on anthocyanin bioavailability and metabolism in the body, with a focus on comparing bioavailability when consumed as extracts versus whole foods rich in anthocyanins, drawing from in vitro, in vivo, and human clinical studies. While direct comparisons between anthocyanin bioavailability in whole foods versus isolates are scarce, prevailing evidence favours whole-food consumption over anthocyanin extracts. Further clinical investigations, preferably with direct comparisons, are needed to validate these findings and elucidate the nuanced interplay between anthocyanins and food matrices, informing future research directions and practical recommendations.


Subject(s)
Anthocyanins , Biological Availability , Plant Extracts , Anthocyanins/pharmacokinetics , Humans , Plant Extracts/pharmacokinetics , Animals
6.
J Ethnopharmacol ; 330: 118212, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38636577

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The combination of Aconitum carmichaelii Debx (Chuanwu, CW) and Pinellia ternata (Thunb.) Breit (Banxia, BX) forms an herbal pair within the eighteen incompatible medicaments (EIM), indicating that BX and CW are incompatible. However, the scientific understanding of this incompatibility mechanism, especially the corresponding drug-drug interaction (DDI), remains complex and unclear. AIM OF THE STUDY: This study aims to explain the DDI and potential incompatibility mechanism between CW and BX based on pharmacokinetics and cocktail approach. MATERIALS AND METHODS: Ultraperformance liquid chromatography-tandem mass spectrometry methods were established for pharmacokinetics and cocktail studies. To explore the DDI between BX and CW, in the pharmacokinetics study, 10 compounds were determined in rat plasma after administering CW and BX-CW herbal pair extracts. In the cocktail assay, the pharmacokinetic parameters of five probe substrates were utilized to assess the influence of BX on cytochrome P450 (CYP) isoenzyme (dapsone for CYP3A4, phenacetin for CYP1A2, dextromethorphan for CYP2D6, tolbutamide for CYP2C9, and omeprazole for CYP2C19). Finally, the DDI and incompatibility mechanism of CW and BX were integrated to explain the rationality of EIM theory. RESULTS: BX not only enhances the absorption of aconitine and benzoylaconine but also accelerates the metabolism of mesaconitine, benzoylmesaconine, songorine, and fuziline. Moreover, BX affects the activity of CYP enzymes, which regulate the metabolism of toxic compounds. CONCLUSIONS: BX altered the activity of CYP enzymes, consequently affecting the metabolism of toxic compounds from CW. This incompatibility mechanism may be related to the increased absorption of these toxic compounds in vivo.


Subject(s)
Aconitum , Herb-Drug Interactions , Pinellia , Rats, Sprague-Dawley , Aconitum/chemistry , Pinellia/chemistry , Animals , Male , Rats , Cytochrome P-450 Enzyme System/metabolism , Tandem Mass Spectrometry , Plant Extracts/pharmacokinetics , Plant Extracts/pharmacology , Plant Extracts/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/chemistry , Drug Interactions
7.
J Ethnopharmacol ; 330: 118229, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38670403

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Thymus quinquecostatus Celak., a member of thymus genus in Lamiaceae family, has been used as a folk medicine for relieving exterior syndrome and alleviating pain in China. The polyphenol-rich fraction (PRF) derived from Thymus quinquecostatus Celak. had been validated that it can protect cerebral ischemia-reperfusion injury (CIRI) by activating Keap1/Nrf2/HO-1 signaling pathway. AIM OF THIS STUDY: To explore effective components and their pharmacokinetic and pharmacodynamic characteristics as well as possible mechanisms of PRF in treating CIRI. MATERIALS AND METHODS: Normal treated group (NTG) and tMCAO model treated group (MTG) rats were administrated PRF intragastrically. The prototype components and metabolites of PRF in plasma and brain were analyzed by the UPLC-Q-Exactive Orbitrap MSn method. Subsequently, the pharmacokinetics properties of indicative components were performed based on HPLC-QQQ-MS/MS. SOD and LDH activities were determined to study the pharmacodynamic (PD) properties of PRF. The PK-PD relationship of PRF was constructed. In addition, the effect of PRF on endogenous metabolites in plasma and brain was investigated using metabolomic method. RESULTS: Salvianic acid A, caffeic acid, rosmarinic acid, scutellarin, and apigenin-7-O-glucuronide were selected as indicative components based on metabolic analysis. The non-compartmental parameters were calculated for indicative components in plasma and brain of NTG and MTG rats. Furthermore, single-component and multi-component PK-PD modeling involved Emax, Imax PD models for effect indexes were fitted as well as ANN models were established, which indicated that these components can work together to regulate SOD and LDH activities in plasma and SOD activity in brain tissue to improve CIRI. Additionally, PRF may ameliorate CIRI by regulating the disorder of endogenous metabolites in lipid metabolism, amino acid metabolism, and purine metabolism pathways in vivo, among which lipid metabolism and purine metabolism are closely related to oxidative stress. CONCLUSION: The PK-PD properties of effect substances and mechanisms of PRF anti-CIRI were further elaborated. The findings provide a convincing foundation for the application of T. quinquecostatus Celak. in the maintenance of human health disorders.


Subject(s)
Metabolomics , Polyphenols , Rats, Sprague-Dawley , Reperfusion Injury , Thymus Plant , Animals , Male , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Thymus Plant/chemistry , Polyphenols/pharmacology , Polyphenols/pharmacokinetics , Rats , Infarction, Middle Cerebral Artery/drug therapy , Plant Extracts/pharmacology , Plant Extracts/pharmacokinetics , Brain/metabolism , Brain/drug effects , Disease Models, Animal , Brain Ischemia/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/pharmacokinetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/pharmacokinetics
8.
J Ethnopharmacol ; 329: 118151, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38588988

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: As a representative local medicinal herb produced in China, Vladimiriae Radix (VR) has been proven to exert hepatoprotective and choleretic effects, with particular therapeutic efficacy in cholestatic liver injury (CLI), as demonstrated by the VR extract (VRE). However, the quality markers (Q-markers) of VRE for the treatment of CLI remain unclear. AIM OF THE STUDY: A new strategy based on the core element of "efficacy" was proposed, using a combination of spectrum-effect relationship, pharmacokinetics, and molecular docking methods to select and confirm Q-markers of VRE. MATERIAL AND METHODS: First, the HPLC fingerprinting of 10 batches of VRE was studied, and the in vivo pharmacological index of anti-CLI in rats was determined. The spectrum-effect relationship was utilized as a screening method to identify the Q-markers of VRE. Secondly, Q-markers were used as VRE pharmacokinetic markers to measure their concentrations in normal and CLI rat plasma, and to analyze their disposition. Finally, molecular docking was utilized to predict the potential interaction between the identified Q-markers and crucial targets of CLI. RESULTS: The fingerprints of 10 batches of VRE was established. The in vivo pharmacological evaluation of rats showed that VRE had a significant therapeutic effect on CLI. The spectrum-effect correlation analysis showed that costunolide (COS) and dehydrocostus lactone (DEH) were the Q-markers of VRE anti-CLI. The pharmacokinetic results showed that AUC(0-t), Cmax, CLZ/F, and VZ/F of COS and DEH in CLI rats had significant differences (P < 0.01). They were effectively absorbed into the blood plasma of CLI rats, ensuring ideal bioavailability, and confirming their role as Q-markers. Molecular docking results showed that COS, DEH had good affinity with key targets (FXR, CAR, PXR, MAPK, TGR5, NRF2) for CLI treatment (Binding energy < -4.52 kcal mol-1), further verifying the correctness of Q-marker selection. CONCLUSIONS: In this study, through the combination of experimental and theoretical approaches from the aspects of pharmacodynamic expression, in vivo process rules, and interaction force prediction, the therapeutic effect of VRE and Q-markers (COS、DEH) were elucidated. Furthermore, a new idea based on the principle of "efficacy" was successfully proposed for screening and evaluating Q-markers.


Subject(s)
Molecular Docking Simulation , Rats, Sprague-Dawley , Animals , Male , Rats , Cholestasis/drug therapy , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Plant Extracts/pharmacokinetics , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Roots/chemistry , Biomarkers/blood
9.
J Pharm Biomed Anal ; 245: 116158, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38643703

ABSTRACT

Areca nuts have been used as a traditional Chinese medicine (TCM) for thousands of years. Recent studies have shown that it exhibits good pharmacological activity and toxicity. In this study, the pharmacokinetics of five major components of areca nut extract in rats were investigated using a highly sensitive ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-MS/MS) method. Arecoline, arecaidine, guvacoline, guvacine, and catechin were separated and quantified accurately using gradient elution with mobile phases of (A) water containing 0.1 % formic acid-10 mM ammonium formate, and (B) methanol. The constituents were detected under a timing switch between the positive and negative ion modes using multiple reaction monitoring (MRM). Each calibration curve had a high R2 value of >0.99. The method accuracies ranged -7.09-11.05 % and precision values were less than 14.36 %. The recovery, matrix effect, selectivity, stability, and carry-over of the method were in accordance with the relevant requirements. It was successfully applied for the investigation of the pharmacokinetics of these five constituents after oral administration of areca nut extract. Pharmacokinetic results indirectly indicated a metabolic relationship between the four areca nut alkaloids in rats. For further clarification of its pharmacodynamic basis, this study provided a theoretical reference.


Subject(s)
Areca , Nuts , Plant Extracts , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Animals , Tandem Mass Spectrometry/methods , Areca/chemistry , Chromatography, High Pressure Liquid/methods , Rats , Male , Nuts/chemistry , Plant Extracts/pharmacokinetics , Plant Extracts/chemistry , Plant Extracts/blood , Arecoline/pharmacokinetics , Arecoline/blood , Arecoline/analogs & derivatives , Reproducibility of Results , Administration, Oral , Catechin/pharmacokinetics , Catechin/blood , Catechin/chemistry , Liquid Chromatography-Mass Spectrometry
10.
J Pharm Biomed Anal ; 245: 116162, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38678857

ABSTRACT

Ritonavir, an excellent inhibitor of CYP3A4, has recently been combined with nirmatrelvir to form Paxlovid for the treatment of severe acute respiratory syndrome coronavirus 2 infections. The root of Scutellaria baicalensis Georgi (S. baicalensis), a traditional Chinese medicinal (TCM) herb commonly used to treat heat/inflammation in the lung and digestive tracts, which are major organs targeted by viral infections, contains flavones that can influence the CYP3A metabolism pathway. To investigate the ability of ritonavir to cross the bloodbrain barrier (BBB) and its potential herb-drug interactions with an equivalent TCM clinical dose of S. baicalensis, multisite microdialysis coupled with an LCMS/MS system was developed using rat model. Pretreatment with S. baicalensis extract for 5 days, which contains less flavones than those used in previous studies, had a significant influence on ritonavir, resulting in a 2-fold increase in the total concentration of flavones in the blood and brain. Treatment also boosted the maximum blood concentration of flavones by 1.5-fold and the maximum brain concentration of flavones by 2-fold, all the while exerting no noticeable influence on the transfer ratio across the bloodbrain barrier. These experimental results demonstrated that the use of a typical traditional Chinese medicinal dose of S. baicalensis is sufficient to influence the metabolic pathway and synergistically increase the concentration of ritonavir in rats.


Subject(s)
Antiviral Agents , Blood-Brain Barrier , Herb-Drug Interactions , Microdialysis , Plant Extracts , Rats, Sprague-Dawley , Ritonavir , Scutellaria baicalensis , Animals , Ritonavir/pharmacokinetics , Ritonavir/pharmacology , Scutellaria baicalensis/chemistry , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Rats , Microdialysis/methods , Male , Antiviral Agents/pharmacokinetics , Plant Extracts/pharmacokinetics , Plant Extracts/pharmacology , Tandem Mass Spectrometry/methods , Brain/metabolism , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage
11.
Inflammopharmacology ; 32(3): 1871-1886, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564091

ABSTRACT

Snow mountain garlic (SMG) is a trans-Himalayan medicinal plant used in the traditional medicine system for several ailments, including inflammatory arthritis. Research studies are insufficient to validate its folk medicinal applications. In the present study, the comparative abundance of its key bioactive phytocompounds, viz., S-allyl-L-cysteine (SAC), alliin, and S-methyl-L-cysteine (SMC) against normal garlic were assessed using the LC-MS/MS-MRM method. In addition, the study also explored the antioxidant and anti-inflammatory potency of crude extract of SMG and purified signature phytocompounds (i.e., SMC, SAC, and alliin) in comparison with normal garlic and dexamethasone in LPS-stimulated RAW264.7 macrophage cells. The LC-MS/MS-MRM study revealed significant differences among SMG and normal garlic, viz., alliin 22.8-fold higher in SMG, and SMC could be detected only in SMG. In the bioassays, SMG extract and purified signature phytocompounds significantly downregulated oxidative damage in activated macrophages, boosting endogenous antioxidants' activity. SMG extract-treated macrophages significantly suppressed NF-κB expression and related inflammatory indicators such as cytokines, COX-2, iNOS, and NO. Notably, the observed anti-inflammatory and antioxidant bioactivities of SMG extract were comparable to signature phytocompounds and dexamethasone. In addition, SAC being uniformly found in SMG and normal garlic, its comparative pharmacokinetics was studied to validate the pharmacodynamic superiority of SMG over normal garlic. Significantly higher plasma concentrations (Cmax), half-life (t1/2), and area under curve (AUC) of SAC following SMG extract administration than normal garlic validated the proposed hypothesis. Thus, the abundance of bioactive phytocompounds and their better pharmacokinetics in SMG extract might be underlying its medicinal merits over normal garlic.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Garlic , Macrophages , Plant Extracts , Garlic/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/pharmacokinetics , Mice , Antioxidants/pharmacology , Antioxidants/pharmacokinetics , RAW 264.7 Cells , Plant Extracts/pharmacology , Plant Extracts/pharmacokinetics , Macrophages/drug effects , Macrophages/metabolism , Tandem Mass Spectrometry/methods , Cysteine/pharmacology , Chromatography, Liquid/methods , Phytochemicals/pharmacology , Phytochemicals/pharmacokinetics , Oxidative Stress/drug effects , Male
12.
J Ethnopharmacol ; 331: 118219, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38663784

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Veratrum nigrum L. (V. nigrum) is a well-known herb with a lengthy history of use in Asian and European countries. V. nigrum has been traditionally used to treat epilepsy, hypertension, malignant sores, and stroke, and it possesses emetic and insecticide properties. AIM OF THE REVIEW: This review summarized the ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics and metabolism, and toxicity of V. nigrum as well as its incompatibility with other herbs. Current challenges in the use of V. nigrum and possible future research directions were also discussed. MATERIALS AND METHODS: Information on V. nigrum was collected from electronic databases such as PubMed, Google Scholar, Web of Science, CNKI, and WanFang DATA; Masterpieces of Traditional Chinese Medicine; local Chinese Materia Medica Standards; and relevant documents. RESULTS: In ethnomedical practice, V. nigrum has been used as an emetic and insecticide. Approximately 137 compounds have been isolated from V. nigrum, including alkaloids, stilbenes, flavonoids, organic acids, and esters. Its crude extracts and compounds have shown various effects, including anticancer, hypotensive, insecticidal, and antimicrobial activities as well as the ability to improve hemorheological abnormalities. Pharmacokinetic studies have indicated that veratramine (VAM) and jervine have high bioavailability and possibly enterohepatic circulation. In addition, the sex-related pharmacokinetic differences in V. nigrum alkaloids warrant further attention. Toxicological studies have indicated that cevanine-type alkaloids and VAM may be the main toxic components of V. nigrum, and purine metabolism disorders may be related to V. nigrum toxicity. Furthermore, the neurotoxicity and embryotoxicity of V. nigrum have also been observed. The quality control of V. nigrum and the mechanism underlying its incompatibility with other herbs also deserve further research and refinement. CONCLUSION: This review summarized the existing information on V. nigrum, laying the foundation for further studies on this herb and its safe use. Among the various compounds present in V. nigrum, steroid alkaloids are the most numerous and have high content; furthermore, they are closely related to the pharmacological effects of V. nigrum, but their toxicity can not also be ignored. Given that toxicity is a critical issue limiting the clinical application of V. nigrum, more toxicological studies on V. nigrum and its active ingredients, especially steroid alkaloids, should be conducted in the future to further explore its toxicity targets and the underlying mechanisms and to provide more evidence and recommendations to enhance the safety of its clinical application.


Subject(s)
Ethnopharmacology , Phytochemicals , Veratrum , Humans , Animals , Phytochemicals/toxicity , Phytochemicals/pharmacokinetics , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Veratrum/chemistry , Plant Extracts/toxicity , Plant Extracts/pharmacokinetics , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/adverse effects , Phytotherapy
13.
Fitoterapia ; 172: 105732, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37952760

ABSTRACT

Dracocephalum moldavica, known as Xiang-qing-lan (in Chinese), is a traditional folk medicine, which was commonly used by Mongolian and Xinjiang Uyghurs area. Dracocephalum moldavica has the effects of purging liver fire, clearing stomach heat, hemostasis. It is used for treating insufficient heart and blood, weakened brain function, weak feeling and spirit disease etc. This review aimed to summarize the botany, traditional uses, phytochemistry, pharmacology and application of Dracocephalum moldavica, which expected to provide theoretical support for future utilization and highlight the further investigation of this vital plant. In addition to the essential oil, approximately 154 compounds have been isolated and identified from aerial parts of the Dracocephalum moldavica, including flavonoids, terpenoids, lignans, phenylpropanoids, phenols, glycosides, polysaccharide and other compounds. Extensive pharmacological activities of the extracts or compounds of Dracocephalum moldavica in vivo and in vitro were confirmed including cardiovascular protection, antioxidative, antimicrobial, antifungal, anti-complementary and chronic mountain sickness. Moreover, Dracocephalum moldavica is used in a wide range of applications in food, biological pesticides and cosmetics. In the future, Dracocephalum moldavica needs further study, such as paying more attention to quality control, toxicity, pharmacological mechanism and pharmacokinetics.


Subject(s)
Botany , Drugs, Chinese Herbal , Lamiaceae , Drugs, Chinese Herbal/pharmacology , Ethnopharmacology , Medicine, Chinese Traditional , Molecular Structure , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Plant Extracts/pharmacokinetics
14.
Eur J Drug Metab Pharmacokinet ; 49(1): 111-121, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38112917

ABSTRACT

BACKGROUND AND OBJECTIVES: Rhubarb anthraquinones contain five main components, that is, rhein, emodin, aloe-emodin, chrysophanol, and physcion, which demonstrate good therapeutic effects on nonalcoholic fatty liver disease (NAFLD). However, research on its pharmacokinetics in NAFLD remains lacking. This study aimed to investigate the pharmacokinetic differences of rhubarb anthraquinones in normal and NAFLD rats. METHODS: This study developed an NAFLD rat model by high-fat diet feeding for 6 weeks. Normal and NAFLD groups were orally administered different rhubarb anthraquinones doses (37.5, 75, and 150 mg/kg). The concentration of the rhein, emodin, aloe-emodin, chrysophanol, and physcion in plasma was determined by high-performance liquid chromatography-ultraviolet. RESULTS: The results revealed significant differences in pharmacokinetic behavior between normal and NAFLD rats. Compared with normal rats, NAFLD rats demonstrated significantly increased maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC0 → ∞) of rhubarb anthraquinones (P < 0.05), as well as significantly prolonged time to reach maximum plasma concentration (Tmax), terminal elimination half-life (t1/2), and mean residence time (MRT) of rhubarb anthraquinones (P < 0.05). CONCLUSIONS: This study indicates significant differences in the pharmacokinetics of rhubarb anthraquinones between the physiological and NAFLD states of rats. Rhubarb anthraquinone demonstrated a longer retention time and slower absorption rate in NAFLD rats and exhibited higher bioavailability and peak concentration. This finding provides important information for guiding the clinical use of rhubarb anthraquinones under pathological conditions.


Subject(s)
Emodin , Non-alcoholic Fatty Liver Disease , Rheum , Rats , Animals , Emodin/pharmacokinetics , Rats, Sprague-Dawley , Non-alcoholic Fatty Liver Disease/drug therapy , Plant Extracts/pharmacokinetics , Anthraquinones , Chromatography, High Pressure Liquid
15.
Molecules ; 28(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37446946

ABSTRACT

Grape pomace is a by-product of winemaking characterized by a rich chemical composition from which phenolics stand out. Phenolics are health-promoting agents, and their beneficial effects depend on their bioaccessibility, which is influenced by gastrointestinal digestion. The effect of encapsulating phenol-rich grape pomace extract (PRE) with sodium alginate (SA), a mixture of SA with gelatin (SA-GEL), and SA with chitosan (SA-CHIT) on the bioaccessibility index (BI) of phenolics during simulated digestion in vitro was studied. A total of 27 individual phenolic compounds (IPCs) were quantified by UHPLC. The addition of a second coating to SA improved the encapsulation efficiency (EE), and the highest EE was obtained for SA-CHIT microbeads (56.25%). Encapsulation affected the physicochemical properties (size, shape and texture, morphology, crystallinity) of the produced microbeads, which influenced the delivery of phenolics to the intestine and their BI. Thus, SA-GEL microbeads had the largest size parameters, as confirmed by scanning electron microscopy (SEM), and the highest BI for total phenolic compounds and IPCs (gallic acid, 3,4-dihydroxybenzoic acid and o-coumaric acid, epicatechin, and gallocatechin gallate) ranged from 96.20 to 1011.3%. The results suggest that encapsulated PRE has great potential to be used as a functional ingredient in products for oral administration.


Subject(s)
Phenols , Plant Extracts , Vitis , Alginates/chemistry , Biological Availability , Capsules , Chromatography, High Pressure Liquid , Digestion , Gelatin/chemistry , Microscopy, Electron, Scanning , Microspheres , Particle Size , Phenols/chemistry , Phenols/pharmacokinetics , Plant Extracts/chemistry , Plant Extracts/pharmacokinetics , Vitis/chemistry , In Vitro Techniques
16.
Clin Pharmacol Ther ; 114(3): 693-703, 2023 09.
Article in English | MEDLINE | ID: mdl-37313955

ABSTRACT

Understanding cannabis-drug interactions is critical given regulatory changes that have increased access to and use of cannabis. Cannabidiol (CBD) and Δ-9-tetrahydrocannabinol (Δ9-THC), the most abundant phytocannabinoids, are in vitro reversible and time-dependent (CBD only) inhibitors of several cytochrome P450 (CYP) enzymes. Cannabis extracts were used to evaluate quantitatively potential pharmacokinetic cannabinoid-drug interactions in 18 healthy adults. Participant received, in a randomized cross-over manner (separated by ≥ 1 week), a brownie containing (i) no cannabis extract (ethanol/placebo), (ii) CBD-dominant cannabis extract (640 mg CBD + 20 mg Δ9-THC), or (iii) Δ9-THC-dominant cannabis extract (20 mg Δ9-THC and no CBD). After 30 minutes, participants consumed a cytochrome P450 (CYP) drug cocktail consisting of caffeine (CYP1A2), losartan (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), and midazolam (CYP3A). Plasma and urine samples were collected (0-24 hours). The CBD + Δ9-THC brownie inhibited CYP2C19 > CYP2C9 > CYP3A > CYP1A2 (but not CYP2D6) activity, as evidenced by an increase in the geometric mean ratio of probe drug area under the plasma concentration-time curve (AUC) relative to placebo (AUCGMR ) of omeprazole, losartan, midazolam, and caffeine by 207%, 77%, 56%, and 39%, respectively. In contrast, the Δ9-THC brownie did not inhibit any of the CYPs. The CBD + Δ9-THC brownie increased Δ9-THC AUCGMR by 161%, consistent with CBD inhibiting CYP2C9-mediated oral Δ9-THC clearance. Except for caffeine, these interactions were well-predicted by our physiologically-based pharmacokinetic model (within 26% of observed interactions). Results can be used to help guide dose adjustment of drugs co-consumed with cannabis products and the dose of CBD in cannabis products to reduce interaction risk with Δ9-THC.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Hallucinogens , Humans , Adult , Cannabinoids/pharmacology , Cytochrome P-450 CYP1A2 , Cytochrome P-450 CYP2C19 , Caffeine/pharmacokinetics , Midazolam/pharmacokinetics , Cytochrome P-450 CYP3A , Losartan , Cytochrome P-450 CYP2C9 , Cytochrome P-450 Enzyme System , Cytochrome P-450 CYP2D6 , Drug Interactions , Omeprazole/pharmacokinetics , Plant Extracts/pharmacokinetics , Dronabinol/pharmacology
17.
Biomed Chromatogr ; 37(5): e5600, 2023 May.
Article in English | MEDLINE | ID: mdl-36760100

ABSTRACT

Fenugreek seeds are used in numerous marketed herbal formulations with therapeutic benefits. Some of its bioactive components such as 4-hydroxyisoleucine, trigonelline, raffinose, and pinitol are reported to possess potential therapeutic activities, such as antibacterial, antidiabetic, stomach stimulant, and anti-invasive, against hyperandrogenism and other allied diseases, including polycystic ovary syndrome. A fully validated, selective, and sensitive bioanalytical method for the simultaneous rapid quantification of the aforementioned bioactive components has been developed using hyphenated liquid chromatography electrospray tandem mass spectrometry. The analytes were separated within 5 min using gradient elution in a C18 column at a flow rate of 0.5 ml/min. Plasma protein precipitation technique was employed to isolate the analytes from the samples. Oral pharmacokinetic profile of the four bioactive components in Sprague-Dawley rats was further evaluated using noncompartmental analysis using Phoenix WinNonlin software.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Rats , Animals , Female , Rats, Sprague-Dawley , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Plant Extracts/pharmacokinetics , Drugs, Chinese Herbal/pharmacokinetics , Reproducibility of Results , Chromatography, High Pressure Liquid/methods
18.
Pharm Biol ; 61(1): 177-188, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36620922

ABSTRACT

CONTEXT: Polygonum cuspidatum Sieb. et Zucc (Polygonaceae), the root of which is included in the Chinese Pharmcopoeia under the name 'Huzhang', has a long history as a medicinal plant and vegetable. Polygonum cuspidatum has been used in traditional Chinese medicine for the treatment of inflammation, hyperlipemia, etc. OBJECTIVE: This article reviews the pharmacological action and the clinical applications of Polygonum cuspidatum and its extracts, whether in vivo or in vitro. We also summarized the main phytochemical constituents and pharmacokinetics of Polygonum cuspidatum and its extracts. METHODS: The data were retrieved from major medical databases, such as CNKI, PubMed, and SinoMed, from 2014 to 2022. Polygonum cuspidatum, pharmacology, toxicity, clinical application, and pharmacokinetics were used as keywords. RESULTS: The rhizomes, leaves, and flowers of Polygonum cuspidatum have different phytochemical constituents. The plant contains flavonoids, anthraquinones, and stilbenes. Polygonum cuspidatum and the extracts have anti-inflammatory, antioxidation, anticancer, heart protection, and other pharmacological effects. It is used in the clinics to treat dizziness, headaches, traumatic injuries, and water and fire burns. CONCLUSIONS: Polygonum cuspidatum has the potential to treat many diseases, such as arthritis, ulcerative colitis, asthma, and cardiac hypertrophy. It has a broad range of medicinal applications, but mainly focused on root medication; its aerial parts should receive more attention. Pharmacokinetics also need to be further investigated.


Subject(s)
Fallopia japonica , Plants, Medicinal , Polygonum , Plant Extracts/therapeutic use , Plant Extracts/pharmacokinetics , Medicine, Chinese Traditional , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
19.
Forensic Toxicol ; 41(2): 213-220, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36481827

ABSTRACT

PURPOSE: Cannabidiol (CBD) has been gaining popularity in recent years. Knowing that CBD products can contain more tetrahydrocannabinol (THC) than expected, interpretation of cannabinoids concentration in urine can be tricky, especially when low amounts of THC and CBD are found. Moreover, interpretation can also be difficult due to interindividual variation in pharmacokinetics. The objective of this work was to take a critical look at the data from our daily practice as a toxicology laboratory. METHODS: We have collected results obtained in a first batch of 1074 urine samples submitted to cannabinoids analysis, and results of cannabinoids content of a second batch of 719 seized materials. RESULTS: CBD was detected in 163 urine specimens (15%). Its concentration was higher than the limit of quantification of 5 ng/mL in 108 samples only (10% of the sampling population). Most of CBD-positive samples were associated with a high THC-COOH concentration (> 500 ng/mL in 63.8% of CBD-positive samples) suggesting only a few CBD consumers in our population. Cannabinoids composition of seized plant materials (drug type at first glance) revealed CBD in 110 of them (15% of the sampling population), with a concentration mostly below 1%. All of the resin samples were CBD positive, and contained more THC compared to flowers. CONCLUSIONS: We can conclude that urine samples from drug-type cannabis users contained a low amount of CBD, what was not described previously. These findings are useful for the interpretation of cannabinoids results in daily practice.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Drug Users , Humans , Cannabidiol/analysis , Cannabinoids/analysis , Plant Extracts/pharmacokinetics
20.
Molecules ; 27(18)2022 Sep 18.
Article in English | MEDLINE | ID: mdl-36144821

ABSTRACT

Protosappanoside D (PTD) is a new component isolated from the extract of Caesalpinia decapetala for the first time. Its structure was identified as protosappanin B-3-O-ß-D-glucoside by 1H-NMR, 13C-NMR, 2D-NMR and MS techniques. To date, the pharmacological activities, metabolism or pharmacokinetics of PTD has not been reported. Therefore, this research to study the anti-inflammatory activity of PTD was investigated via the LPS-induced RAW264.7 cells model. At the same time, we also used the UHPLC/Q Exactive Plus MS and UPLC-MS/MS methods to study the metabolites and pharmacokinetics of PTD, to calculate its bioavailability for the first time. The results showed that PTD could downregulate secretion of the pro-inflammatory cytokines. In the metabolic study, four metabolites were identified, and the primary degradative pathways in vivo involved the desaturation, oxidation, methylation, alkylation, dehydration, degradation and desugarization. In the pharmacokinetic study, PTD and its main metabolite protosappanin B (PTB) were measured after oral and intravenous administration. After oral administration of PTD, its Tmax was 0.49 h, t1/2z and MRT(0-t) were 3.47 ± 0.78 h and 3.06 ± 0.63 h, respectively. It shows that PTD was quickly absorbed into plasma and it may be eliminated quickly in the body, and its bioavailability is about 0.65%.


Subject(s)
Caesalpinia , Tandem Mass Spectrometry , Administration, Oral , Caesalpinia/chemistry , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Cytokines , Glucosides/metabolism , Lipopolysaccharides/pharmacology , Oxocins , Plant Extracts/pharmacokinetics , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...