Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.391
Filter
1.
Theor Appl Genet ; 137(6): 145, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822827

ABSTRACT

KEY MESSAGE: qLA3.1, controlling leaf angle in tomato, was fine-mapped to an interval of 4.45 kb on chromosome A03, and one gene encoding auxin response factor was identified as a candidate gene. Leaf angle is a crucial trait in plant architecture that plays an important role in achieving optimal plant structure. However, there are limited reports on gene localization, cloning, and the function of plant architecture in horticultural crops, particularly regarding leaf angle. In this study, we selected 'Z3' with erect leaves and 'Heinz1706' with horizontal leaves as the phenotype and cytological observation. We combined bulked segregant analysis and fine genetic mapping to identify a candidate gene, known as, i.e., qLA3.1, which was related to tomato leaf angle. Through multiple analyses, we found that Solyc03g113410 was the most probably candidate for qLA3.1, which encoded the auxin response factor SlARF11 in tomato and was homologous to OsARF11 related to leaf angle in rice. We discovered that silencing SlARF11 resulted in upright leaves, while plants with over-expressed SlARF11 exhibited horizontal leaves. We also found that cultivars with erect leaves had a mutation from base G to base A. Moreover, quantitative analysis of plants treated with hormones indicated that SlARF11 might participate in cell elongation and the activation of genes related to auxin and brassinosteroid pathways. Transcriptome analysis further validated that SlARF11 may regulate leaf angle through hormone signaling pathways. These data support the idea that the auxin response factor SlARF11 may have an important function in tomato leaf petiole angles.


Subject(s)
Chromosome Mapping , Phenotype , Plant Leaves , Plant Proteins , Quantitative Trait Loci , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/anatomy & histology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/anatomy & histology , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Genes, Plant
2.
PeerJ ; 12: e17500, 2024.
Article in English | MEDLINE | ID: mdl-38827286

ABSTRACT

Plants growing along wide elevation gradients in mountains experience considerable variations in environmental factors that vary across elevations. The most pronounced elevational changes are in climate conditions with characteristic decrease in air temperature with an increase in elevation. Studying intraspecific elevational variations in plant morphological traits and biomass allocation gives opportunity to understand how plants adapted to steep environmental gradients that change with elevation and how they may respond to climate changes related to global warming. In this study, phenotypic variation of an alpine plant Soldanella carpatica Vierh. (Primulaceae) was investigated on 40 sites distributed continuously across a 1,480-m elevation gradient in the Tatra Mountains, Central Europe. Mixed-effects models, by which plant traits were fitted to elevation, revealed that on most part of the gradient total leaf mass, leaf size and scape height decreased gradually with an increase in elevation, whereas dry mass investment in roots and flowers as well as individual flower mass did not vary with elevation. Unexpectedly, in the uppermost part of the elevation gradient overall plant size, including both below-and aboveground plant parts, decreased rapidly causing abrupt plant miniaturization. Despite the plant miniaturization at the highest elevations, biomass partitioning traits changed gradually across the entire species elevation range, namely, the leaf mass fraction decreased continuously, whereas the flower mass fraction and the root:shoot ratio increased steadily from the lowest to the highest elevations. Observed variations in S. carpatica phenotypes are seen as structural adjustments to environmental changes across elevations that increase chances of plant survival and reproduction at different elevations. Moreover, results of the present study agreed with the observations that populations of species from the 'Soldanella' intrageneric group adapted to alpine and subnival zones still maintain typical 'Soldanella'-like appearance, despite considerable reduction in overall plant size.


Subject(s)
Altitude , Biomass , Plant Leaves , Plant Leaves/anatomy & histology , Flowers/anatomy & histology , Flowers/growth & development , Climate Change
3.
BMC Plant Biol ; 24(1): 371, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724940

ABSTRACT

Variations in functional traits serve as measures of plants' ability to adapt to environment. Exploring the patterns of functional traits of desert plants along elevational gradients is helpful to understand the responses and adaptation strategies of species to changing environments. However, it is unknown whether the relationship between functional traits and elevation is affected by differences in the species' elevational distributions (elevation preference and species' range). Importantly, most researches have concerned with differences in mean trait values and ignored intraspecific trait variation. Here, we measured functional traits of desert plants along a wide elevational gradient in the Tibetan Plateau and adjacent areas and explored functional trait patterns over elevation in species with different elevational distributions. We decomposed trait variation and further investigated characterizations of intraspecific variation. Ultimately, the main drivers of trait variation were identified using redundancy analysis. We found that species' elevational distributions significantly influenced the relationship of functional traits such as plant height, leaf dry matter content, leaf thickness, leaf nitrogen and carbon content with elevation. Species with a lower elevational preference showed greater trait variation than species with a higher elevational preference, suggesting that species that prefer high elevation are more conservative facing environmental changes. We provide evidence that interspecific trait variation in leaf thickness and leaf carbon content decreased with increasing species' range, indicating that increased variations in resistance traits within species make greater responsiveness to environmental changes, enabling species a wider range. Elevation, temperature and precipitation were the main drivers of trait variation in species with a low elevational preference, while the effect of precipitation on trait variation in species with a high elevational preference was not significant. This study sheds new insights on how plants with different elevational distributions regulate their ecological strategies to cope with changing environments.


Subject(s)
Altitude , Desert Climate , Tibet , Plant Leaves/physiology , Plant Leaves/anatomy & histology
4.
Physiol Plant ; 176(3): e14334, 2024.
Article in English | MEDLINE | ID: mdl-38705836

ABSTRACT

European beech is negatively affected by climate change and a further growth decline is predicted for large parts of its distribution range. Despite the importance of this species, little is known about its genetic adaptation and especially the genetic basis of its physiological traits. Here, we used genotyping by sequencing to identify SNPs in 43 German European beech populations growing under different environmental conditions. In total, 28 of these populations were located along a precipitation and temperature gradient in northern Germany, and single tree-based hydraulic and morphological traits were available. We obtained a set of 13,493 high-quality SNPs that were used for environmental and SNP-trait association analysis. In total, 22 SNPs were identified that were significantly associated with environmental variables or specific leaf area (SLA). Several SNPs were located in genes related to stress response. The majority of the significant SNPs were located in non-coding (intergenic and intronic) regions. These may be in linkage disequilibrium with the causative coding or regulatory regions. Our study gives insights into the genetic basis of abiotic adaptation in European beech, and provides genetic resources that can be used in future studies on this species. Besides clear patterns of local adaptation to environmental conditions of the investigated populations, the analyzed morphological and hydraulic traits explained most of the explainable genetic variation. Thus, they could successfully be altered in tree breeding programs, which may help to increase the adaptation of European beech to changing environmental conditions in the future.


Subject(s)
Fagus , Genome-Wide Association Study , Plant Leaves , Polymorphism, Single Nucleotide , Fagus/genetics , Fagus/physiology , Polymorphism, Single Nucleotide/genetics , Plant Leaves/genetics , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Linkage Disequilibrium/genetics , Environment , Phenotype , Genotype , Germany
5.
An Acad Bras Cienc ; 96(2): e20230207, 2024.
Article in English | MEDLINE | ID: mdl-38747833

ABSTRACT

Glicophyllum is well supported, presenting four homoplasies, easily differentiated from the other genera of the clade due to characteristics related to the reproductive organs, which can make the identification of their species difficult when they are not in the reproductive phase. Therefore, there are provided the leaf anatomical and morphological description of the leaf glands of seven species of Glicophyllum to assist in the identification of their species. The samples for the study were obtained from several national and international herbaria, sectioned freehand, stained with basic fuchsin - astra blue and compared through a binary matrix using the Sorensen's coefficient in the MVSP software. Among the leaf anatomical characters found, the following stand out: presence/absence of trichomes; petiole contour; contour of the main vein; organization of the mesophyll, presence/absence of bundle sheath extension and the surface of the glands. In this study, an identification key with leaf anatomical data is presented for the first time, demonstrating the applicability of leaf anatomy for the taxonomy of Glicophyllum. In the multivariate analysis, it is observed that the characteristics of leaf venation and topology of the glands are more representative to differentiate the taxa. Therefore, the data obtained can support future taxonomic and phylogenetic studies of the genus.


Subject(s)
Malpighiaceae , Plant Leaves , Plant Leaves/anatomy & histology , Brazil , Malpighiaceae/anatomy & histology , Malpighiaceae/classification , Species Specificity
6.
BMC Plant Biol ; 24(1): 439, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778255

ABSTRACT

BACKGROUND: Glehnia littoralis is a medicinal and edible plant species having commercial value and has several hundred years of cultivation history. Polyploid breeding is one of the most important and fastest ways to generate novel varieties. To obtain tetraploids of G. littoralis in vitro, colchicine treatment was given to the seeds and then were screened based on morphology, flow cytometry, and root tip pressing assays. Furthermore, transcriptome analysis was performed to identity the differentially expressed genes associated with phenotypic changes in tetraploid G. littoralis. RESULTS: The results showed that 0.05% (w/v) colchicine treatment for 48 h was effective in inducing tetraploids in G. littoralis. The tetraploid G. littoralis (2n = 4x = 44) was superior in leaf area, leaf thickness, petiole diameter, SPAD value (Chl SPAD), stomatal size, epidermal tissues thickness, palisade tissues thickness, and spongy tissues thickness to the diploid ones, while the stomatal density of tetraploids was significantly lower. Transcriptome sequencing revealed, a total of 1336 differentially expressed genes (DEGs) between tetraploids and diploids. Chromosome doubling may lead to DNA content change and gene dosage effect, which directly affects changes in quantitative traits, with changes such as increased chlorophyll content, larger stomata and thicker tissue of leaves. Several up-regulated DEGs were found related to growth and development in tetraploid G. littoralis such as CKI, PPDK, hisD and MDP1. KEGG pathway enrichment analyses showed that most of DEGs were enriched in metabolic pathways. CONCLUSIONS: This is the first report of the successful induction of tetraploids in G. littoralis. The information presented in this study facilitate breeding programs and molecular breeding of G. littoralis varieties.


Subject(s)
Gene Expression Profiling , Phenotype , Tetraploidy , Transcriptome , Colchicine/pharmacology , Caryophyllales/genetics , Gene Expression Regulation, Plant , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/anatomy & histology
7.
PeerJ ; 12: e17337, 2024.
Article in English | MEDLINE | ID: mdl-38784401

ABSTRACT

Chinese cabbage (Brassica campestris L. ssp. chinensis (L.) Makino) stands as a widely cultivated leafy vegetable in China, with its leaf morphology significantly influencing both quality and yield. Despite its agricultural importance, the precise mechanisms governing leaf wrinkling development remain elusive. This investigation focuses on 'Wutacai', a representative cultivar of the Tacai variety (Brassica campestris L. ssp. chinensis var. rosularis Tsen et Lee), renowned for its distinct leaf wrinkling characteristics. Within the genome of 'Wutacai', we identified a total of 18 YUCs, designated as BraWTC_YUCs, revealing their conservation within the Brassica genus, and their close homology to YUCs in Arabidopsis. Expression profiling unveiled that BraWTC_YUCs in Chinese Cabbage exhibited organ-specific and leaf position-dependent variation. Additionally, transcriptome sequencing data from the flat leaf cultivar 'Suzhouqing' and the wrinkled leaf cultivar 'Wutacai' revealed differentially expressed genes (DEGs) related to auxin during the early phases of leaf development, particularly the YUC gene. In summary, this study successfully identified the YUC gene family in 'Wutacai' and elucidated its potential function in leaf wrinkling trait, to provide valuable insights into the prospective molecular mechanisms that regulate leaf wrinkling in Chinese cabbage.


Subject(s)
Brassica , Gene Expression Regulation, Plant , Plant Leaves , Brassica/genetics , Brassica/growth & development , Plant Leaves/genetics , Plant Leaves/anatomy & histology , Gene Expression Profiling , Plant Proteins/genetics , Plant Proteins/metabolism , China , Oxygenases/genetics , Oxygenases/metabolism , Genes, Plant
8.
BMC Plant Biol ; 24(1): 449, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783181

ABSTRACT

Drosera intermedia grows in acidic bogs in parts of valleys that are flooded in winter, and that often dry out in summer. It is also described as the sundew of the most heavily hydrated habitats in peatlands, and it is often found in water and even underwater. This sundew is the only one that can tolerate long periods of submersion, and more importantly produces a typical submerged form that can live in such conditions for many years. Submerged habitats are occupied by D. intermedia relatively frequently. The aim of the study was to determine the environmental conditions and architecture of individuals in the submerged form of D. intermedia. The features of the morphological and anatomical structure and chlorophyll a fluorescence of this form that were measured were compared with analogous ones in individuals that occurred in emerged and peatland habitats. The submerged form occurred to a depth of 20 cm. Compared to the other forms, its habitat had the highest pH (4.71-4.92; Me = 4.71), the highest temperature and substrate hydration, and above all, the lowest photosynthetically active radiation (PAR; 20.4-59.4%). This form differed from the other forms in almost all of the features of the plant's architecture. It is particularly noteworthy that it had the largest main axis height among all of the forms, which exceeded 18 cm. The number of living leaves in a rosette was notable (18.1 ± 8.1), while the number of dead leaves was very low (6.9 ± 3.8). The most significant differences were in the shape of its submerged leaves, in which the length of the leaf blade was the lowest of all of the forms (0.493 ± 0.15 mm; p < 0.001) and usually the widest. The stem cross-sectional area was noticeably smaller in the submerged form than in the other forms, the xylem was less developed and collaterally closed vascular bundles occurred. Our analysis of the parameters of chlorophyll fluorescence in vivo revealed that the maximum quantum yield of the primary photochemistry of photosystem II is the highest for the submerged form (Me = 0.681), the same as the maximum quantum yield of the electron transport (Me φE0 = 0.183). The efficiency of energy use per one active reaction center of photosystem II (RC) was the lowest in the submerged form (Me = 2.978), same as the fraction of energy trapped by one active RC (Me = 1.976) and the non-photochemical energy dissipation (DI0/RC; Me = 0.916). The ET0/RC parameter, associated with the efficiency of the energy utilization for electron transport by one RC, in the submerged plant reached the highest value (Me = 0.489). The submerged form of D. intermedia clearly differed from the emerged and peatland forms in its plant architecture. The submerged plants had a thinner leaf blade and less developed xylem than the other forms, however, their stems were much longer. The relatively high photosynthetic efficiency of the submerged forms suggests that most of the trapped energy is utilized to drive photosynthesis with a minimum energy loss, which may be a mechanism to compensate for the relatively small size of the leaf blade.


Subject(s)
Chlorophyll , Photosynthesis , Photosynthesis/physiology , Chlorophyll/metabolism , Plant Leaves/physiology , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Ecosystem , Chlorophyll A/metabolism , Temperature , Hydrogen-Ion Concentration , Water/metabolism
9.
Cells ; 13(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786049

ABSTRACT

Plant structure-related agronomic traits like plant height and leaf size are critical for growth, development, and crop yield. Defining the types of genes involved in regulating plant structure size is essential for the molecular-assisted breeding of peppers. This research conducted comparative transcriptome analyses using Capsicum baccatum germplasm HNUCB0112 and HNUCB0222 and their F2 generation as materials. A total of 6574 differentially expressed genes (DEGs) were detected, which contain 379 differentially expressed transcription factors, mainly including transcription factor families such as TCP, WRKY, AUX/IAA, and MYB. Seven classes of DEGs were annotated in the plant hormone signal transduction pathway, including indole acetic acid (IAA), gibberellin (GA), cytokinin (CK), abscisic acid (ABA), jasmonic acid (JA), ethylene (ET), and salicylic acid (SA). The 26 modules were obtained by WGCNA analysis, and the MEpink module was positively correlated with plant height and leaf size, and hub genes associated with plant height and leaf size were anticipated. Differential genes were verified by qRT-PCR, which was consistent with the RNA-Seq results, demonstrating the accuracy of the sequencing results. These results enhance our understanding of the developmental regulatory networks governing pepper key traits like plant height and leaf size and offer new information for future research on the pepper plant architecture system.


Subject(s)
Capsicum , Gene Expression Regulation, Plant , Plant Growth Regulators , Plant Leaves , Signal Transduction , Transcriptome , Capsicum/genetics , Capsicum/growth & development , Capsicum/anatomy & histology , Plant Growth Regulators/metabolism , Plant Growth Regulators/genetics , Plant Leaves/genetics , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Leaves/metabolism , Transcriptome/genetics , Signal Transduction/genetics , Metabolome/genetics , Gene Expression Profiling , Genes, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
10.
Curr Opin Plant Biol ; 79: 102545, 2024 06.
Article in English | MEDLINE | ID: mdl-38710125

ABSTRACT

Instead of leaves, in a few species the main photosynthetic organ is a flattened structure that can be a modified branch (e.g. Ruscus, Jacksonia) or a fused combination of branch and leaf tissue (e.g. Phyllocladus) called a phylloclade. The phylloclades of Phyllocladus lack xeromorphic features in their wet habitat. They are broad under the low light conditions as are those of Ruscus which can occur in forest understories. However Ruscus is also common in dry habitats and shows numerous xeromorphic features. In Jacksonia extensive sclerenchyma and thick cuticle protect the phylloclades from desiccation damage in xeric seasonal conditions. Despite former contrary definitions of phylloclades we advocate they be defined as pseudo-petiolate organs determinate in growth which arise from axillary buds in the axil of reduced leaves and resemble a leaf.


Subject(s)
Biological Evolution , Plant Leaves , Plant Leaves/growth & development , Plant Leaves/anatomy & histology , Ecosystem , Photosynthesis
11.
Theor Appl Genet ; 137(6): 121, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709317

ABSTRACT

KEY MESSAGE: This study precisely mapped and validated a quantitative trait locus (QTL) located on chromosome 4B for flag leaf angle in wheat. Flag leaf angle (FLANG) is closely related to crop architecture and yield. We previously identified the quantitative trait locus (QTL) QFLANG-4B for FLANG on chromosome 4B, located within a 14-cM interval flanked by the markers Xbarc20 and Xzyh357, using a mapping population of recombinant inbred lines (RILs) derived from a cross between Nongda3331 (ND3331) and Zang1817. In this study, we fine-mapped QFLANG-4B and validated its associated genetic effect. We developed a BC3F3 population using ND3331 as the recurrent parent through marker-assisted selection, as well as near-isogenic lines (NILs) by selfing BC3F3 plants carrying different heterozygous segments for the QFLANG-4B region. We obtained eight recombinant types for QFLANG-4B, narrowing its location down to a 5.3-Mb region. This region contained 76 predicted genes, 7 of which we considered to be likely candidate genes for QFLANG-4B. Marker and phenotypic analyses of individual plants from the secondary mapping populations and their progeny revealed that the FLANG of the ND3331 allele is significantly higher than that of the Zang1817 allele in multiple environments. These results not only provide a basis for the map-based cloning of QFLANG-4B, but also indicate that QFLANG-4B has great potential for marker-assisted selection in wheat breeding programs designed to improve plant architecture and yield.


Subject(s)
Chromosome Mapping , Plant Leaves , Quantitative Trait Loci , Triticum , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Genes, Plant , Genetic Linkage , Genetic Markers , Phenotype , Plant Breeding , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Plant Leaves/growth & development , Triticum/genetics , Triticum/growth & development , Triticum/anatomy & histology
12.
Am J Bot ; 111(5): e16349, 2024 May.
Article in English | MEDLINE | ID: mdl-38783552

ABSTRACT

PREMISE: Leaf tensile resistance, a leaf's ability to withstand pulling forces, is an important determinant of plant ecological strategies. One potential driver of leaf tensile resistance is growing season length. When growing seasons are long, strong leaves, which often require more time and resources to construct than weak leaves, may be more advantageous than when growing seasons are short. Growing season length and other ecological conditions may also impact the morphological traits that underlie leaf tensile resistance. METHODS: To understand variation in leaf tensile resistance, we measured size-dependent leaf strength and size-independent leaf toughness in diverse genotypes of the widespread perennial grass Panicum virgatum (switchgrass) in a common garden. We then used quantitative genetic approaches to estimate the heritability of leaf tensile resistance and whether there were genetic correlations between leaf tensile resistance and other morphological traits. RESULTS: Leaf tensile resistance was positively associated with aboveground biomass (a proxy for fitness). Moreover, both measures of leaf tensile resistance exhibited high heritability and were positively genetically correlated with leaf lamina thickness and leaf mass per area (LMA). Leaf tensile resistance also increased with the growing season length in the habitat of origin, and this effect was mediated by both LMA and leaf thickness. CONCLUSIONS: Differences in growing season length may promote selection for different leaf lifespans and may explain existing variation in leaf tensile resistance in P. virgatum. In addition, the high heritability of leaf tensile resistance suggests that P. virgatum will be able to respond to climate change as growing seasons lengthen.


Subject(s)
Plant Leaves , Seasons , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/growth & development , Panicum/genetics , Panicum/physiology , Panicum/anatomy & histology , Panicum/growth & development , Tensile Strength , Biomass , Phenotype , Genotype , Quantitative Trait, Heritable
13.
Sci Total Environ ; 937: 173309, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38782268

ABSTRACT

The grass family (Poaceae) dominates ~43 % of Earth's land area and contributes 33 % of terrestrial primary productivity that is critical to naturally regulating atmosphere CO2 concentration and global climate change. Currently grasses comprise ~11,780 species and ~50 % of them (~6000 species) utilize C4 photosynthetic pathway. Generally, grass species have smaller leaves under colder and drier environments, but it is unclear whether the primary drivers of leaf size differ between C3 and C4 grasses on a global scale. Here, we analyzed 34 environmental variables, such as latitude, elevation, mean annual temperature, mean annual precipitation, and solar radiation etc., through a comparatively comprehensive database of ~3.0 million occurrence records from 1380 C3 and 978 C4 grass species (2358 species in total). Results from this study confirm that C4 grasses have occupied habitats with lower latitudes and elevations, characterized by warmer, sunnier, drier and less fertile environmental conditions. Grass leaf size correlates positively with mean annual temperature and precipitation as expected. Our results also demonstrate that the mean temperature of the wettest quarter of the year is the primary control for C3 leaf size, whereas C4 leaf size is negatively correlated with the difference between summer and winter temperatures. For C4 grasses, phylogeny exerts a significant effect on leaf size but is less important than environmental factors. Our findings highlight the importance of evolutionarily contrasting variations in leaf size between C3 and C4 grasses for shaping their geographical distribution and habitat suitability at the global scale.


Subject(s)
Ecosystem , Plant Leaves , Poaceae , Poaceae/anatomy & histology , Plant Leaves/anatomy & histology , Photosynthesis , Climate Change
14.
New Phytol ; 243(1): 111-131, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38708434

ABSTRACT

Leaf traits are essential for understanding many physiological and ecological processes. Partial least squares regression (PLSR) models with leaf spectroscopy are widely applied for trait estimation, but their transferability across space, time, and plant functional types (PFTs) remains unclear. We compiled a novel dataset of paired leaf traits and spectra, with 47 393 records for > 700 species and eight PFTs at 101 globally distributed locations across multiple seasons. Using this dataset, we conducted an unprecedented comprehensive analysis to assess the transferability of PLSR models in estimating leaf traits. While PLSR models demonstrate commendable performance in predicting chlorophyll content, carotenoid, leaf water, and leaf mass per area prediction within their training data space, their efficacy diminishes when extrapolating to new contexts. Specifically, extrapolating to locations, seasons, and PFTs beyond the training data leads to reduced R2 (0.12-0.49, 0.15-0.42, and 0.25-0.56) and increased NRMSE (3.58-18.24%, 6.27-11.55%, and 7.0-33.12%) compared with nonspatial random cross-validation. The results underscore the importance of incorporating greater spectral diversity in model training to boost its transferability. These findings highlight potential errors in estimating leaf traits across large spatial domains, diverse PFTs, and time due to biased validation schemes, and provide guidance for future field sampling strategies and remote sensing applications.


Subject(s)
Plant Leaves , Plant Leaves/physiology , Plant Leaves/anatomy & histology , Least-Squares Analysis , Quantitative Trait, Heritable , Chlorophyll/metabolism , Seasons , Models, Biological , Water , Carotenoids/metabolism
15.
Environ Res ; 252(Pt 4): 119069, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38735376

ABSTRACT

Dwarf bamboo (Indocalamus decorus) is an O3-tolerant plant species. To identify the possible mechanism and response of leaf morphological, antioxidant, and anatomical characteristics to elevated atmospheric O3 (EO3) concentrations, we exposed three-year-old I. decorus seedlings to three O3 levels (low O3-LO: ambient air; medium O3-MO: Ambient air+70 ppb high O3-HO: Ambient air+140 ppb O3) over a growing season using open-top chambers. Leaf shape and stomatal characteristics, and leaf microscopic structure of I. decorus were examined. The results indicated that 1) the stomata O3 flux (Fst) of HO decreased more rapidly under EO3 as the exposure time increased. The foliar O3 injury of HO and MO occurred when AOT40 was 26.62 ppm h and 33.20 ppm h, respectively, 2) under EO3, leaf number, leaf mass per area, leaf area, and stomata length/width all decreased, while leaf thickness, stomatal density, width, and area increased compared to the control, 3) MDA and total soluble protein contents all showed significantly increase under HO (36.57% and 32.77%) and MO(31.91% and 19.52%) while proline contents only increased under HO(33.27%). 4) MO and HO increased bulliform cells numbers in the leaves by 6.28% and 23.01%, respectively. HO reduced the transverse area of bulliform cells by 13.73%, while MO treatments had no effect, and 5) the number of fusoid cells interspace, the transverse area of fusoid cells interspace, and mesophyll thickness of HO significantly increased by 11.16%, 28.58%, and 13.42%, respectively. In conclusion, I. decorus exhibits strong O3 tolerance characteristics, which stem from adaptions in the leaf's morphological, structural, antioxidant, and anatomical features. One critical attribute was the enlargement of the bulliform cell transverse area and the transverse area of fusoid cells interspace that drove this resistance to O3. Local bamboo species with high resistance to O3 pollution thus need to be promoted for sustained productivity and ecosystem services in areas with high O3 pollution.


Subject(s)
Air Pollutants , Ozone , Plant Leaves , Plant Leaves/anatomy & histology , Plant Leaves/drug effects , Ozone/toxicity , Air Pollutants/toxicity , Air Pollutants/analysis , Poaceae/drug effects , Poaceae/anatomy & histology , Plant Stomata/drug effects , Plant Stomata/anatomy & histology
16.
Planta ; 260(1): 2, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761315

ABSTRACT

MAIN CONCLUSION: Leaf vein network cost (total vein surface area per leaf volume) for major veins and vascular bundles did not differ between monocot and dicot species in 21 species from the eastern Colorado steppe. Dicots possessed significantly larger minor vein networks than monocots. Across the tree of life, there is evidence that dendritic vascular transport networks are optimized, balancing maximum speed and integrity of resource delivery with minimal resource investment in transport and infrastructure. Monocot venation, however, is not dendritic, and remains parallel down to the smallest vein orders with no space-filling capillary networks. Given this departure from the "optimized" dendritic network, one would assume that monocots are operating at a significant energetic disadvantage. In this study, we investigate whether monocot venation networks bear significantly greater carbon/construction costs per leaf volume than co-occurring dicots in the same ecosystem, and if so, what physiological or ecological advantage the monocot life form possesses to compensate for this deficit. Given that venation networks could also be optimized for leaf mechanical support or provide herbivory defense, we measured the vascular system of both monocot and dicots at three scales to distinguish between leaf investment in mechanical support (macroscopic vein), total transport and capacitance (vascular bundle), or exclusively water transport (xylem) for both parallel and dendritic venation networks. We observed that vein network cost (total vein surface area per leaf volume) for major veins and vascular bundles was not significantly different between monocot species and dicot species. Dicots, however, possess significantly larger minor vein networks than monocots. The 19 species subjected to gas-exchange measurement in the field displayed a broad range of Amax and but demonstrated no significant relationships with any metric of vascular network size in major or minor vein classes. Given that monocots do not seem to display any leaf hydraulic disadvantage relative to dicots, it remains an important research question why parallel venation (truly parallel, down to the smallest vessels) has not arisen more than once in the history of plant evolution.


Subject(s)
Plant Leaves , Plant Leaves/anatomy & histology , Colorado , Plant Vascular Bundle/anatomy & histology , Plant Vascular Bundle/physiology , Xylem/anatomy & histology , Xylem/physiology , Grassland , Magnoliopsida/physiology , Magnoliopsida/anatomy & histology , Carbon/metabolism , Ecosystem
18.
BMC Ecol Evol ; 24(1): 43, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600505

ABSTRACT

Leaf traits were affected by soil factors and displayed varietal differences in forest. However, few examples have been reported on the Island ecosystems. We comprehensively investigated 9 leaf traits (leaf length, leaf width, leaf area, SLA, leaf fresh weight, leaf C content, leaf N content, leaf K content, leaf C:N ratio) of 54 main subtropical woody species and soil parameters (soil pH, total C content, total N content, total K content, available N content, available P content, available K content and soil moisture) in Neilingding Island, Shenzhen, southern China. Intra-and interspecific variation of leaf traits were measured and their correlations with soil parameters were explored. The interspecific variations of leaf C:N ratio, leaf N content and leaf fresh weight were higher than their intraspecific variations. The intraspecific variation of leaf K content was larger than that of interspecific one, accounting for 80.69% of the total variance. Positive correlations were found among intraspecific coefficients of variations in leaf morphological traits. The correlation analysis between the variation of intraspecific traits and the variation of soil parameters showed that changes in soil factors affected leaf morphology and stoichiometry. The interaction between soil moisture and soil available P content was the key factor on intraspecific variations of leaf traits including leaf area, leaf fresh weight, leaf C and leaf K content. We concluded that leaf traits of plants in the island were tightly related to soil parameters. Soil parameters, especially soil moisture and available P content, affected plant leaf morphology and stoichiometry at the local scale.


Subject(s)
Ecosystem , Soil , Soil/chemistry , Forests , Plant Leaves/anatomy & histology , China
19.
Ying Yong Sheng Tai Xue Bao ; 35(3): 597-605, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646746

ABSTRACT

We investigated the inter- and intra-species differences of leaf vein traits of three dominant Quercus species, Q. wutaishanica, Q. aliena var. acutiserrata, and Q. variabilis of Niubeiling (subtropical humid climate) and Taohuagou (warm temperate semi-humid climate), located in the eastern and western Qinling Mountains. The nine examined leaf vein traits included primary leaf vein width, secondary leaf vein width, mean fine vein width, primary vein density, fine vein density, vein areole diameter, areole density, 3D fine vein surface area, and fine vein volume. We further elucidated the influencing mechanisms and regulatory pathways of biotic and abiotic factors on leaf vein traits. The results showed that species identity had significant effects on eight out of nine leaf vein traits except 3D fine vein surface area, while habitat had significant effects on primary leaf vein width, secondary leaf vein width, vein areole diameter, fine vein density, and areole density. Altitude had significant effects on primary vein density, mean fine vein width, vein areole diameter, fine vein density and areole density. Habitat, tree species identity, and altitude had significantly interactive effects on primary leaf vein density, 3D fine vein surface area, and fine vein volume. There were significant differences in primary leaf vein width, mean fine vein width, areole density, 3D fine vein surface area, fine vein volume, primary vein density of Q. wutaishanica between the two studied habitats, but the differences were only found in secondary leaf vein width and areole density of Q. aliena var. acutiserrata and Q. variabilis. The examined leaf vein traits were influenced both by biotic and abiotic factors, with varying effect sizes. Among the biotic factors, petiole length, leaf length and width ratio had strong effect on leaf vein traits. Among the abiotic factors, climatic and soil factors had high effect size on vein traits, with the former being higher than the latter. Leaf vein traits were affected directly by biotic factors, but indirectly by abiotic factors (soil and climatic factors) via regulating biotic factors (leaf stoichiometry and leaf phenotypic traits).


Subject(s)
Ecosystem , Plant Leaves , Quercus , Quercus/anatomy & histology , Plant Leaves/anatomy & histology , China , Species Specificity , Altitude
20.
Curr Opin Plant Biol ; 79: 102542, 2024 06.
Article in English | MEDLINE | ID: mdl-38688201

ABSTRACT

As the main location of photosynthesis, leaf mesophyll cells are one of the most abundant and essential cell types on earth. Forming the bulk of the internal tissues of the leaf, their size, shape, and patterns of interconnectivity define the internal structure and surface area of the leaf, which in turn determines the efficiency of light capture and carbon fixation. Understanding how these cellular traits are controlled and translated into tissue- and organ-scale traits, and how they influence photosynthetic performance will be key to our ability to improve crop plants in the face of a changing climate. In contrast to the extensive literature on the anatomical and physiological aspects of mesophyll function, our understanding of the cell-level morphogenetic processes underpinning mesophyll cell growth and differentiation is scant. In this review, we focus on how cell division, expansion, and separation are coordinated to create the intricate architecture of the spongy mesophyll.


Subject(s)
Cell Division , Mesophyll Cells , Mesophyll Cells/metabolism , Plant Leaves/growth & development , Plant Leaves/anatomy & histology , Plant Leaves/cytology , Photosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...