Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.946
Filter
1.
Sci Rep ; 14(1): 12685, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830962

ABSTRACT

White kidney bean (Phaseolus vulgaris L.) extracts can aid weight management by reducing calorie intake from complex carbohydrates through alpha-amylase inhibition. We examined the impact of a proprietary aqueous extract from whole dried white kidney beans standardized by its alpha-amylase inhibitor activity (Phase 2 white kidney bean extract (WKBE)) on weight management in subjects with overweight and moderate obesity. In a randomized, double-blind, placebo-controlled fashion, 81 participants completed the study and ingested either a high dose of Phase 2 (1000 mg, WKBE HIGH), a low dose (700 mg, WKBE LOW), or a matching placebo (microcrystalline cellulose, PLA) three times a day, 30 min before meals, for 12 weeks during a calorie restricted diet. In a dose-dependent manner, Phase 2 significantly reduced body weight, fat mass, BMI, waist, hip and in the WKBE HIGH group thigh circumference. Phase 2 is an effective and safe supplement aiding weight and fat loss. ClinicalTrials.gov identifier NCT02930668.


Subject(s)
Phaseolus , Plant Extracts , Humans , Male , Female , Double-Blind Method , Phaseolus/chemistry , Middle Aged , Adult , Plant Extracts/chemistry , Plant Extracts/pharmacology , Weight Loss/drug effects , Obesity/drug therapy , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Overweight/drug therapy , Plant Lectins
2.
Scand J Immunol ; 99(6): e13366, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720518

ABSTRACT

Antiphospholipid syndrome is a rare autoimmune disease characterized by persistent antiphospholipid antibodies. Immunoglobulin G plays a vital role in disease progression, with its structure and function affected by glycosylation. We aimed to investigate the changes in the serum immunoglobulin G glycosylation pattern in antiphospholipid syndrome patients. We applied lectin microarray on samples from 178 antiphospholipid syndrome patients, 135 disease controls (including Takayasu arteritis, rheumatoid arthritis and cardiovascular disease) and 100 healthy controls. Lectin blots were performed for validation of significant differences. Here, we show an increased immunoglobulin G-binding level of soybean agglutinin (p = 0.047, preferring N-acetylgalactosamine) in antiphospholipid syndrome patients compared with healthy and disease controls. Additionally, the immunoglobulin G from antiphospholipid syndrome patients diagnosed with pregnancy events had lower levels of fucosylation (p = 0.001, recognized by Lotus tetragonolobus) and sialylation (p = 0.030, recognized by Sambucus nigra I) than those with simple thrombotic events. These results suggest the unique serum immunoglobulin G glycosylation profile of antiphospholipid syndrome patients, which may inform future studies to design biomarkers for more accurate diagnosis of antiphospholipid syndrome and even for the prediction of clinical symptoms in patients.


Subject(s)
Antiphospholipid Syndrome , Immunoglobulin G , Humans , Antiphospholipid Syndrome/immunology , Antiphospholipid Syndrome/blood , Antiphospholipid Syndrome/diagnosis , Glycosylation , Female , Male , Immunoglobulin G/blood , Immunoglobulin G/immunology , Adult , Middle Aged , Pregnancy , Lectins/blood , Lectins/metabolism , Lectins/immunology , Biomarkers/blood , Protein Array Analysis/methods , Antibodies, Antiphospholipid/blood , Antibodies, Antiphospholipid/immunology , Plant Lectins/metabolism , Plant Lectins/immunology , Aged , Glycoproteins
3.
J Cancer Res Clin Oncol ; 150(5): 241, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713414

ABSTRACT

BACKGROUND: Currently, the high recurrence rate still forms severe challenges in hepatocellular carcinoma (HCC) treatment. The GALAD score, including age, gender, alpha-fetoprotein (AFP), lens culinaris agglutinin-reactive AFP (AFP-L3), and des-gamma-carboxyprothrombin (DCP) was developed as a diagnostic model. However, evidence is still lacking to confirm the capability of the GALAD score to predict the recurrence of HCC. METHODS: This study included 390 HCC patients after local ablation at Beijing You'an Hospital from January 1, 2018, to December 31, 2022. Firstly, the area under the receiver operating characteristic (ROC) curve (AUC) was calculated to assess the predictive capability of the GALAD score. Then, the Kaplan-Meier (KM) curve and log-rank test were used to compare the prognosis between two groups classified by GALAD score. Finally, a nomogram for high-risk patients was established by Lasso-Cox regression. It was assessed by ROC curves, calibration curves, and decision curve analysis (DCA). RESULTS: The ROC curve (AUC: 0.749) and KM curve showed the GALAD score had good predictive ability and could clearly stratify patients into two groups through the risk of recurrence. Prognostic factors selected by Lasso-Cox regression contained tumor number, tumor size, and globulin. The nomogram for high-risk patients showed reliable discrimination, calibration, and clinical utility. CONCLUSION: This research displayed that the GALAD score is an effective model for predicting the recurrence of HCC. Meanwhile, we found the poor prognosis of the high-risk group and created a nomogram for these patients.


Subject(s)
Biomarkers , Carcinoma, Hepatocellular , Liver Neoplasms , Neoplasm Recurrence, Local , Nomograms , alpha-Fetoproteins , Humans , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Liver Neoplasms/surgery , Female , Male , Neoplasm Recurrence, Local/pathology , Middle Aged , Prognosis , alpha-Fetoproteins/analysis , alpha-Fetoproteins/metabolism , Prothrombin , Retrospective Studies , Aged , Protein Precursors , Biomarkers, Tumor , Adult , ROC Curve , Plant Lectins
4.
mBio ; 15(5): e0074124, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38587427

ABSTRACT

Outbreaks of acute respiratory viral diseases, such as influenza and COVID-19 caused by influenza A virus (IAV) and SARS-CoV-2, pose a serious threat to global public health, economic security, and social stability. This calls for the development of broad-spectrum antivirals to prevent or treat infection or co-infection of IAV and SARS-CoV-2. Hemagglutinin (HA) on IAV and spike (S) protein on SARS-CoV-2, which contain various types of glycans, play crucial roles in mediating viral entry into host cells. Therefore, they are key targets for the development of carbohydrate-binding protein-based antivirals. This study demonstrated that griffithsin (GRFT) and the GRFT-based bivalent entry inhibitor GL25E (GRFT-L25-EK1) showed broad-spectrum antiviral effects against IAV infection in vitro by binding to HA in a carbohydrate-dependent manner and effectively protected mice from lethal IAV infection. Although both GRFT and GL25E could inhibit infection of SARS-CoV-2 Omicron variants, GL25E proved to be significantly more effective than GRFT and EK1 alone. Furthermore, GL25E effectively inhibited in vitro co-infection of IAV and SARS-CoV-2 and demonstrated good druggability, including favorable safety and stability profiles. These findings suggest that GL25E is a promising candidate for further development as a broad-spectrum antiviral drug for the prevention and treatment of infection or co-infection from IAV and SARS-CoV-2.IMPORTANCEInfluenza and COVID-19 are highly contagious respiratory illnesses caused by the influenza A virus (IAV) and SARS-CoV-2, respectively. IAV and SARS-CoV-2 co-infection exacerbates damage to lung tissue and leads to more severe clinical symptoms, thus calling for the development of broad-spectrum antivirals for combating IAV and SARS-CoV-2 infection or co-infection. Here we found that griffithsin (GRFT), a carbohydrate-binding protein, and GL25E, a recombinant protein consisting of GRFT, a 25 amino acid linker, and EK1, a broad-spectrum coronavirus inhibitor, could effectively inhibit IAV and SARS-CoV-2 infection and co-infection by targeting glycans on HA of IAV and spike (S) protein of SARS-CoV-2. GL25E is more effective than GRFT because GL25E can also interact with the HR1 domain in SARS-CoV-2 S protein. Furthermore, GL25E possesses favorable safety and stability profiles, suggesting that it is a promising candidate for development as a drug to prevent and treat IAV and SARS-CoV-2 infection or co-infection.


Subject(s)
Antiviral Agents , COVID-19 , Coinfection , Influenza A virus , Plant Lectins , SARS-CoV-2 , Virus Internalization , Animals , Antiviral Agents/pharmacology , Influenza A virus/drug effects , Mice , SARS-CoV-2/drug effects , Humans , Virus Internalization/drug effects , Coinfection/drug therapy , Coinfection/virology , Plant Lectins/pharmacology , COVID-19/virology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , COVID-19 Drug Treatment , Dogs , Mice, Inbred BALB C , Female , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza, Human/drug therapy , Influenza, Human/virology , Madin Darby Canine Kidney Cells
5.
Protein Expr Purif ; 219: 106484, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38614377

ABSTRACT

Cancer and antibiotic resistance represent significant global challenges, affecting public health and healthcare systems worldwide. Lectin, a carbohydrate-binding protein, displays various biological properties, including antimicrobial and anticancer activities. This study focused on anticancer and antibacterial properties of Alocasia macrorrhiza lectin (AML). AML, with a molecular weight of 11.0 ± 1.0 kDa was purified using Ion-exchange chromatography, and the homotetrameric form was detected by gel-filtration chromatography. It agglutinates mouse erythrocytes, that was inhibited by 4-Nitrophenyl-α-d-mannopyranoside. Maximum hemagglutination activity was observed below 60 °C and within a pH range from 8 to 11. Additionally, it exhibited moderate toxicity against brine shrimp nauplii with LD50 values of 321 µg/ml and showed antibacterial activity against Escherichia coli and Shigella dysenteriae. In vitro experiments demonstrated that AML suppressed the proliferation of mice Ehrlich ascites carcinoma (EAC) cells by 35 % and human lung cancer (A549) cells by 40 % at 512 µg/ml concentration. In vivo experiments involved intraperitoneal injection of AML in EAC-bearing mice for five consecutive days at doses of 2.5 and 5.0 mg/kg/day, and the results indicated that AML inhibited EAC cell growth by 37 % and 54 %, respectively. Finally, it can be concluded that AML can be used for further anticancer and antibacterial studies.


Subject(s)
Anti-Bacterial Agents , Carcinoma, Ehrlich Tumor , Animals , Mice , Humans , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Lectins/pharmacology , Plant Lectins/chemistry , Plant Lectins/isolation & purification , Rhizome/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , A549 Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Escherichia coli/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
6.
Mol Cell Proteomics ; 23(5): 100765, 2024 May.
Article in English | MEDLINE | ID: mdl-38608840

ABSTRACT

Pseudomonas putida KT2440 is an important bioplastic-producing industrial microorganism capable of synthesizing the polymeric carbon-rich storage material, polyhydroxyalkanoate (PHA). PHA is sequestered in discrete PHA granules, or carbonosomes, and accumulates under conditions of stress, for example, low levels of available nitrogen. The pha locus responsible for PHA metabolism encodes both anabolic and catabolic enzymes, a transcription factor, and carbonosome-localized proteins termed phasins. The functions of phasins are incompletely understood but genetic disruption of their function causes PHA-related phenotypes. To improve our understanding of these proteins, we investigated the PHA pathways of P.putida KT2440 using three types of experiments. First, we profiled cells grown in nitrogen-limited and nitrogen-excess media using global expression proteomics, identifying sets of proteins found to coordinately increase or decrease within clustered pathways. Next, we analyzed the protein composition of isolated carbonosomes, identifying two new putative components. We carried out physical interaction screens focused on PHA-related proteins, generating a protein-protein network comprising 434 connected proteins. Finally, we confirmed that the outer membrane protein OprL (the Pal component of the Pal-Tol system) localizes to the carbonosome and shows a PHA-related phenotype and therefore is a novel phasin. The combined datasets represent a valuable overview of the protein components of the PHA system in P.putida highlighting the complex nature of regulatory interactions responsive to nutrient stress.


Subject(s)
Lipoproteins , Polyhydroxyalkanoates , Proteomics , Pseudomonas putida , Polyhydroxyalkanoates/metabolism , Pseudomonas putida/metabolism , Pseudomonas putida/genetics , Proteomics/methods , Lipoproteins/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/metabolism , Nitrogen/metabolism , Plant Lectins
7.
Protein J ; 43(3): 559-576, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615284

ABSTRACT

In this study, we purified a lectin isolated from the seeds of Dioclea bicolor (DBL) via affinity purification. Electrophoresis analysis revealed that DBL had three bands, α, ß, and γ chains, with molecular masses of approximately 29, 14, and 12 kDa, respectively. Gel filtration chromatography revealed that the native form of DBL had a molecular mass of approximately 100 kDa, indicating that it is a tetramer. Interestingly, DBL-induced hemagglutination was inhibited by several glucosides, mannosides, ampicillin, and tetracycline with minimum inhibitory concentration (MIC) values of 1.56-50 mM. Analysis of the complete amino acid sequence of DBL revealed the presence of 237 amino acids with high similarity to other Diocleinae lectins. Circular dichroism showed the prominent ß-sheet secondary structure of DBL. Furthermore, DBL structure prediction revealed a Discrete Optimized Protein Energy (DOPE) score of -26,642.69141/Normalized DOPE score of -1.84041. The DBL monomer was found to consist a ß-sandwich based on its 3D structure. Molecular docking showed the interactions between DBL and α-D-glucose, N-acetyl-D-glucosamine, α-D-mannose, α-methyl-D-mannoside, ampicillin, and tetracycline. In addition, DBL showed antimicrobial activity with an MIC of 125 µg/mL and exerted synergistic effects in combination with ampicillin and tetracycline (fractional inhibitory concentration index ≤ 0.5). Additionally, DBL significantly inhibited biofilm formation and showed no toxicity in murine fibroblasts (p < 0.05). These results suggest that DBL exhibits antimicrobial activity and works synergistically with antibiotics.


Subject(s)
Anti-Bacterial Agents , Dioclea , Plant Lectins , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Mice , Animals , Plant Lectins/chemistry , Plant Lectins/pharmacology , Plant Lectins/isolation & purification , Dioclea/chemistry , Molecular Docking Simulation , Microbial Sensitivity Tests , Ampicillin/pharmacology , Ampicillin/chemistry
9.
Neuroscience ; 546: 63-74, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38537894

ABSTRACT

GABAergic interneurons and perineuronal nets (PNNs) are important regulators of plasticity throughout life and their dysfunction has been implicated in the pathogenesis of several neuropsychiatric conditions, including autism spectrum disorders (ASD). PNNs are condensed portions of the extracellular matrix (ECM) that are crucial for neural development and proper formation of synaptic connections. We previously showed a reduced expression of GABAergic interneuron markers in the hippocampus and somatosensory cortex of adult mice lacking the Engrailed2 gene (En2-/- mice), a mouse model of ASD. Since alterations in PNNs have been proposed as a possible pathogenic mechanism in ASD, we hypothesized that the PNN dysfunction may contribute to the neural and behavioral abnormalities of En2-/- mice. Here, we show an increase in the PNN fluorescence intensity, evaluated by Wisteria floribunda agglutinin, in brain regions involved in social behavior and somatosensory processing. In addition, we found that En2-/- mice exhibit altered texture discrimination through whiskers and display a marked decrease in the preference for social novelty. Our results raise the possibility that altered expression of PNNs, together with defects of GABAergic interneurons, might contribute to the pathogenesis of social and sensory behavioral abnormalities.


Subject(s)
Homeodomain Proteins , Mice, Knockout , Nerve Tissue Proteins , Plant Lectins , Social Behavior , Vibrissae , Animals , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Male , Mice, Inbred C57BL , Extracellular Matrix/metabolism , Interneurons/metabolism , Disease Models, Animal , Mice , Somatosensory Cortex/metabolism , Discrimination, Psychological/physiology , Receptors, N-Acetylglucosamine/metabolism , GABAergic Neurons/metabolism , GABAergic Neurons/pathology , Brain/metabolism , Brain/pathology
10.
Histochem Cell Biol ; 161(5): 423-434, 2024 May.
Article in English | MEDLINE | ID: mdl-38393396

ABSTRACT

Aberrant glycosylation is an important factor in facilitating tumor progression and therapeutic resistance. In this study, using Wisteria floribunda agglutinin (WFA), we examined the expression of WFA-binding glycans (WFAG) in cholangiocarcinoma (CCA). The results showed that WFAG was highly detected in precancerous and cancerous lesions of human CCA tissues, although it was rarely detected in normal bile ducts. The positive signal of WFAG in the cancerous lesion accounted for 96.2% (50/52) of the cases. Overexpression of WFAG was significantly associated with lymph node and distant metastasis (P < 0.05). The study using the CCA hamster model showed that WFAG is elevated in preneoplastic and neoplastic bile ducts as early as 1 month after being infected with liver fluke and exposed to N-nitrosodimethylamine. Functional analysis was performed to reveal the role of WFAG in CCA. The CCA cell lines KKU-213A and KKU-213B were treated with WFA, followed by migration assay. Our data suggested that WFAG facilitates the migration of CCA cells via the activation of the Akt and ERK signaling pathways. In conclusion, we have demonstrated the association of WFAG with carcinogenesis and metastasis of CCA, suggesting its potential as a target for the treatment of the disease.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Plant Lectins , Polysaccharides , Receptors, N-Acetylglucosamine , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Animals , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Humans , Plant Lectins/metabolism , Polysaccharides/metabolism , Polysaccharides/chemistry , Receptors, N-Acetylglucosamine/metabolism , Cricetinae , Male , Carcinogenesis/metabolism , Carcinogenesis/pathology , Neoplasm Metastasis , Female , Middle Aged , Cell Movement/drug effects
11.
Int Immunopharmacol ; 129: 111615, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38330799

ABSTRACT

Maclurin is a natural phenolic compound isolated from Morus alba(white mulberry) andGarcinia mangostana (purple mangosteen) and has been reported to regulate cancer progression, oxidative stress, and melanogenesis. The regulatory role of maclurin, however, has never been demonstrated. This study investigated in vitro and in vivo anti-inflammatory roles of maclurin and the underlying mechanism in caspase-11 non-canonical inflammasome-stimulated inflammatory responses in macrophages and an animal model of acute lethal sepsis. Maclurin protected J774A.1 macrophages from LPS-induced cytotoxicity and suppressed caspase-11 non-canonical inflammasome-stimulated pyroptosis. Maclurin decreased the secretion and mRNA expression of pro-inflammatory cytokines and inflammatory mediators, such as IL-1ß, IL-18, TNF-α, IL-6, nitric oxide (NO), and inducible NO synthase (iNOS) in caspase-11 non-canonical inflammasome-stimulated J774A.1 macrophages. Mechanistic studies revealed that maclurin markedly suppressed the proteolytic activation of caspase-11 and gasdermin D (GSDMD) in caspase-11 non-canonical inflammasome-stimulated J774A.1 macrophages, while it did not inhibit caspase-11-mediated direct sensing of LPS. In vivo study revealed that maclurin ameliorated acute lethal sepsis in mice by increasing the survival rate and decreasing the serum levels of IL-1ß and IL-18 without significant toxicity. In conclusion, this study suggests that maclurin is a novel anti-inflammatory agent in inflammatory responses and against acute lethal sepsis via the inhibition of the caspase-11 non-canonical inflammasome in macrophages, which justifies its potential as an anti-inflammatory therapeutic agent in traditional medicine.


Subject(s)
Inflammasomes , Plant Lectins , Sepsis , Animals , Mice , Inflammasomes/metabolism , Caspases/metabolism , Interleukin-18/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Sepsis/drug therapy , Sepsis/metabolism , Anti-Inflammatory Agents/pharmacology
12.
Glycoconj J ; 41(1): 1-33, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38244136

ABSTRACT

Lectins are non-immunological carbohydrate-binding proteins classified on the basis of their structure, origin, and sugar specificity. The binding specificity of such proteins with the surface glycan moiety determines their activity and clinical applications. Thus, lectins hold great potential as diagnostic and drug discovery agents and as novel biopharmaceutical products. In recent years, significant advancements have been made in understanding plant and microbial lectins as therapeutic agents against various viral diseases. Among them, mannose-specific lectins have being proven as promising antiviral agents against a variety of viruses, such as HIV, Influenza, Herpes, Ebola, Hepatitis, Severe Acute Respiratory Syndrome Coronavirus-1 (SARS-CoV-1), Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) and most recent Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The binding of mannose-binding lectins (MBLs) from plants and microbes to high-mannose containing N-glycans (which may be simple or complex) of glycoproteins found on the surface of viruses has been found to be highly specific and mainly responsible for their antiviral activity. MBLs target various steps in the viral life cycle, including viral attachment, entry and replication. The present review discusses the brief classification and structure of lectins along with antiviral activity of various mannose-specific lectins from plants and microbial sources and their diagnostic and therapeutic applications against viral diseases.


Subject(s)
Lectins , Virus Diseases , Humans , Lectins/metabolism , Mannose , Glycoproteins , SARS-CoV-2 , Polysaccharides , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Virus Diseases/drug therapy , Plant Lectins/pharmacology , Mannose-Binding Lectins/chemistry
13.
Biosensors (Basel) ; 14(1)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38248411

ABSTRACT

Pap smear screening is a widespread technique used to detect premalignant lesions of cervical cancer (CC); however, it lacks sensitivity, leading to identifying biomarkers that improve early diagnosis sensitivity. A characteristic of cancer is the aberrant sialylation that involves the abnormal expression of α2,6 sialic acid, a specific carbohydrate linked to glycoproteins and glycolipids on the cell surface, which has been reported in premalignant CC lesions. This work aimed to develop a method to differentiate CC cell lines and primary fibroblasts using a novel lectin-based biosensor to detect α2,6 sialic acid based on attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and chemometric. The biosensor was developed by conjugating gold nanoparticles (AuNPs) with 5 µg of Sambucus nigra (SNA) lectin as the biorecognition element. Sialic acid detection was associated with the signal amplification in the 1500-1350 cm-1 region observed by the surface-enhanced infrared absorption spectroscopy (SEIRA) effect from ATR-FTIR results. This region was further analyzed for the clustering of samples by applying principal component analysis (PCA) and confidence ellipses at a 95% interval. This work demonstrates the feasibility of employing SNA biosensors to discriminate between tumoral and non-tumoral cells, that have the potential for the early detection of premalignant lesions of CC.


Subject(s)
Metal Nanoparticles , Plant Lectins , Ribosome Inactivating Proteins , Sambucus nigra , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/diagnosis , Lectins , N-Acetylneuraminic Acid , Gold , Cell Line
14.
Food Chem ; 442: 138376, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38219572

ABSTRACT

Soybean agglutinin (SBA) was purified using ammonium sulfate precipitation and liquid chromatography. Purified SBA was used to produce monoclonal antibodies through hybridoma technology. SBA secondary structure was studied using circular dichroism. pH-stressed (pHs 3.0, 7.2, 8.5, and 9.6) SBA physical properties (particle size, ζ-potential, and aggregation temperature) were investigated. Gel electrophoresis (non-native and native) was used to study heat-induced structural configuration changes in SBA. The effect of pH and temperature on the immunoreactivity of SBA was analyzed using enzyme-linked immunosorbent assay and immunoblots probed with two anti-SBA monoclonal antibodies with either linear or conformational epitopes. The hemagglutinating activity of heated SBA was measured by hemagglutination assay. Our results indicated that SBA had the least thermostability at pH 3.0 and the highest at pH 8.5. Temperature-induced structural configuration change on pH-stressed SBA led to immunoreactivity change. Heat-induced (70 and 80 °C) soluble SBA aggregation was proportionally related to hemagglutinating activity reduction.


Subject(s)
Agglutinins , Glycine max , Temperature , Soybean Proteins/chemistry , Plant Lectins/chemistry , Antibodies, Monoclonal
15.
Int J Mol Sci ; 25(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38279312

ABSTRACT

Serum and plasma exhibit a broad dynamic range of protein concentrations, posing challenges for proteome analysis. Various technologies have been developed to reduce this complexity, including high-abundance depletion methods utilizing antibody columns, extracellular vesicle enrichment techniques, and trace protein enrichment using nanobead cocktails. Here, we employed lectins to address this, thereby extending the scope of biomarker discovery in serum or plasma using a novel approach. We enriched serum proteins using 37 different lectins and subjected them to LC-MS/MS analysis with data-independent acquisition. Solanum tuberosum lectin (STL) and Lycopersicon esculentum lectin (LEL) enabled the detection of more serum proteins than the other lectins. STL and LEL bind to N-acetylglucosamine oligomers, emphasizing the significance of capturing these oligomer-binding proteins when analyzing serum trace proteins. Combining STL and LEL proved more effective than using them separately, allowing us to identify over 3000 proteins from serum through single-shot proteome analysis. We applied the STL/LEL trace-protein enrichment method to the sera of systemic lupus erythematosus model mice. This revealed differences in >1300 proteins between the systemic lupus erythematosus model and control mouse sera, underscoring the utility of this method for biomarker discovery.


Subject(s)
Lupus Erythematosus, Systemic , Solanum lycopersicum , Solanum tuberosum , Animals , Mice , Proteome , Solanum tuberosum/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Plant Lectins/metabolism , Lectins/metabolism , Blood Proteins , Biomarkers
16.
Plant Commun ; 5(2): 100825, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38268193
17.
Bioresour Technol ; 395: 130355, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272145

ABSTRACT

In this study, the goal was to enhance the tolerance of Clostridium acetobutylicum ATCC 824 to biomass-based inhibitory compounds for biohydrogen production and evaluate various known genes that enhance the production of biochemicals in various hosts. The introduction of phaP, the major polyhydroxyalkanoate granule-associated protein that has been reported as a chaperone-like protein resulted in increased tolerance to inhibitors and leads to higher levels of hydrogen production, cell growth, and glucose consumption in the presence of these inhibitors. It was observed that the introduction of phaP led to an increase in the transcription of the hydrogenase gene, whereas transcription of the chaperone functional genes decreased compared to the wild type. Finally, the introduction of phaP could significantly enhance biohydrogen production by 2.6-fold from lignocellulosic hydrolysates compared to that of wild type. These findings suggested that the introduction of phaP could enhance growth and biohydrogen production, even in non-polyhydroxyalkanoate-producing strains.


Subject(s)
Clostridium acetobutylicum , Clostridium acetobutylicum/genetics , Clostridium acetobutylicum/metabolism , Plant Lectins/genetics , Plant Lectins/metabolism , Fermentation , Hydrogen/metabolism
18.
Int J Biol Macromol ; 260(Pt 2): 129451, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232886

ABSTRACT

Jacalin, the jackfruit seed lectin, exhibits high specificity for the tumor-specific T-antigen and is used in various biomedical and biotechnological applications. Here, we report biophysical studies on the thermal unfolding of jacalin and the effect of pH and temperature on its secondary structure. Differential scanning calorimetric (DSC) studies revealed that native jacalin unfolds at ∼60 °C and that carbohydrate binding stabilizes the protein structure. Circular dichroism spectroscopic studies indicated that the secondary structure of jacalin remains mostly unaffected over pH 2.0-9.0, whereas considerable changes were observed in the tertiary structure. DSC experiments demonstrated that jacalin exhibits two overlapping transitions between pH 2 and 5, which could be attributed to dissociation of the tetrameric protein into subunits and their unfolding. Interestingly, only one transition between pH 6 and 9 was observed, suggesting that the subunit dissociation and unfolding occur simultaneously. While quenching of the protein intrinsic fluorescence by acrylamide increased significantly upon carbohydrate binding, quenching by succinimide is essentially unaffected. We attribute this difference to increased exposure of Trp-123 in the α-chain as it is involved in carbohydrate binding. Both acrylamide and succinimide gave biphasic Stern-Volmer plots, consistent with differential accessibility of the two tryptophan residues of jacalin to them.


Subject(s)
Lectins , Neoplasms , Plant Lectins , Humans , Lectins/chemistry , Temperature , Tryptophan/chemistry , Protein Denaturation , Hydrogen-Ion Concentration , Succinimides , Carbohydrates , Acrylamides , Circular Dichroism , Spectrometry, Fluorescence , Protein Folding
19.
Mol Biotechnol ; 66(2): 288-299, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37097521

ABSTRACT

Lectins are proteins that reversibly bind to carbohydrates and are commonly found across many species. The Banana Lectin (BanLec) is a member of the Jacalin-related Lectins, heavily studied for its immunomodulatory, antiproliferative, and antiviral activity. In this study, a novel sequence was generated in silico considering the native BanLec amino acid sequence and 9 other lectins belonging to JRL. Based on multiple alignment of these proteins, 11 amino acids of the BanLec sequence were modified because of their potential for interference in active binding site properties resulting in a new lectin named recombinant BanLec-type Lectin (rBTL). rBTL was expressed in E. coli and was able to keep biological activity in hemagglutination assay (rat erythrocytes), maintaining similar structure with the native lectin. Antiproliferative activity was demonstrated on human melanoma lineage (A375), evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT). rBTL was able to inhibit cellular growth in a concentration-dependent manner, in an 8-h incubation, 12 µg/mL of rBTL led to a 28.94% of cell survival compared to cell control with 100%. Through a nonlinear fit out log-concentration versus biological response, an IC50% of 3.649 µg/mL of rBTL was determined. In conclusion, it is possible to state that the changes made to the rBTL sequence maintained the structure of the carbohydrate-binding site without changing specificity. The new lectin is biologically active, with an improved carbohydrate recognition spectrum compared to nBanLec, and can also be considered cytotoxic for A375 cells.


Subject(s)
Escherichia coli , Lectins , Humans , Animals , Rats , Lectins/genetics , Lectins/pharmacology , Escherichia coli/genetics , Plant Lectins/genetics , Plant Lectins/pharmacology , Plant Lectins/chemistry , Amino Acid Sequence , Carbohydrates
20.
Anticancer Agents Med Chem ; 24(3): 193-202, 2024.
Article in English | MEDLINE | ID: mdl-38037833

ABSTRACT

BACKGROUND: Lectins are carbohydrate-binding proteins with various pharmacological activities, such as antimicrobial, antidiabetic, antioxidant, and anticancer. Punica granatum fruit extract has traditional uses, however, the anti-cancer activity of purified lectin isolated from P. granatum pulp is yet to be reported. OBJECTIVE: The goals of this study are purification, characterization of the lectin from P. granatum, and examination of the purified lectin's anticancer potential. METHODS: Diethylaminoethyl (DEAE) ion-exchange chromatography was used to purify the lectin, and SDSPAGE was used to check the purity and homogeneity of the lectin. Spectrometric and chemical analysis were used to characterize the lectin. The anticancer activity of the lectin was examined using in vivo and in vitro functional assays. RESULTS: A lectin, designated as PgL of 28.0 ± 1.0 kDa molecular mass, was isolated and purified from the pulps of P. granatum and the lectin contains 40% sugar. Also, it is a bivalent ion-dependent lectin and lost its 75% activity in the presence of urea (8M). The lectin agglutinated blood cells of humans and rats, and sugar molecules such as 4-nitrophenyl-α-D-manopyranoside and 2- nitrophenyl -ß- D-glucopyranoside inhibited PgL's hemagglutination activity. At pH ranges of 6.0-8.0 and temperature ranges of 30°C -80°C, PgL exhibited the highest agglutination activity. In vitro MTT assay showed that PgL inhibited Ehrlich ascites carcinoma (EAC) cell growth in a dose-dependent manner. PgL exhibited 39 % and 58.52 % growth inhibition of EAC cells in the mice model at 1.5 and 3.0 mg/kg/day (i.p.), respectively. In addition, PgL significantly increased the survival time (32.0 % and 49.3 %) of EAC-bearing mice at 1.5 and 3.0 mg/kg/day doses (i.p.), respectively, in comparison to untreated EAC-bearing animals (p < 0.01). Also, PgL reduced the tumor weight of EAC-bearing mice (66.6 versus 39.13%; p < 0.01) at the dose of 3.0 mg/kg/day treatment. Furthermore, supplementation of PgL restored the haematological parameters toward normal levels deteriorated in EAC-bearing animals by the toxicity of EAC cells. CONCLUSION: The results indicated that the purified lectin has anticancer activity and has the potential to be developed as an effective chemotherapy agent.


Subject(s)
Carcinoma, Ehrlich Tumor , Pomegranate , Humans , Mice , Rats , Animals , Lectins/pharmacology , Apoptosis , Plant Lectins/pharmacology , Plant Lectins/chemistry , Cell Proliferation , Ascites , Cell Line, Tumor , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Sugars/pharmacology , Sugars/therapeutic use , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...