Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 22(1): 18, 2022 01 08.
Article in English | MEDLINE | ID: mdl-34996363

ABSTRACT

BACKGROUND: Fe-deficiency chlorosis (FDC) of Asian pear plants is widespread, but little is known about the association between the microbial communities in the rhizosphere soil and leaf chlorosis. The leaf mineral concentration, leaf subcellular structure, soil physiochemical properties, and bacterial species community and distribution had been analysed to gain insights into the FDC in Asian pear plant. RESULTS: The total Fe in leaves with Fe-deficiency was positively correlated with total K, Mg, S, Cu, Zn, Mo and Cl contents, but no differences of available Fe (AFe) were detected between the rhizosphere soil of chlorotic and normal plants. Degraded ribosomes and degraded thylakloid stacks in chloroplast were observed in chlorotic leaves. The annotated microbiome indicated that there were 5 kingdoms, 52 phyla, 94 classes, 206 orders, 404 families, 1,161 genera, and 3,043 species in the rhizosphere soil of chlorotic plants; it was one phylum less and one order, 11 families, 59 genera, and 313 species more than in that of normal plant. Bacterial community and distribution patterns in the rhizosphere soil of chlorotic plants were distinct from those of normal plants and the relative abundance and microbiome diversity were more stable in the rhizosphere soils of normal than in chlorotic plants. Three (Nitrospira defluvii, Gemmatirosa kalamazoonesis, and Sulfuricella denitrificans) of the top five species (N. defluvii, G. kalamazoonesis, S. denitrificans, Candidatus Nitrosoarchaeum koreensis, and Candidatus Koribacter versatilis). were the identical and aerobic in both rhizosphere soils, but their relative abundance decreased by 48, 37, and 22%, respectively, and two of them (G. aurantiaca and Ca. S. usitatus) were substituted by an ammonia-oxidizing soil archaeon, Ca. N. koreensis and a nitrite and nitrate reduction related species, Ca. K. versatilis in that of chlorotic plants, which indicated the adverse soil aeration in the rhizosphere soil of chlorotic plants. A water-impermeable tables was found to reduce the soil aeration, inhibit root growth, and cause some absorption root death from infection by Fusarium solani. CONCLUSIONS: It was waterlogging or/and poor drainage of the soil may inhibit Fe uptake not the amounts of AFe in the rhizosphere soil of chlorotic plants that caused FDC in this study.


Subject(s)
Microbiota , Plant Necrosis and Chlorosis/microbiology , Pyrus/microbiology , Rhizosphere , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Fungi/metabolism , Gene Ontology , Iron/analysis , Iron/metabolism , Metagenomics , Minerals/analysis , Minerals/metabolism , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Leaves/ultrastructure , Plant Roots/growth & development , Plant Roots/microbiology , Pyrus/metabolism , Pyrus/ultrastructure , Soil/chemistry , Soil Microbiology , Water/analysis
2.
Int J Mol Sci ; 21(21)2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33121168

ABSTRACT

'Candidatus Liberibacter asiaticus' (CLas) is the pathogenic bacterium that causes the disease Huanglongbing (HLB) in citrus and some model plants, such as Nicotiana benthamiana. After infection, CLas releases a set of effectors to modulate host responses. One of these critical effectors is Sec-delivered effector 1 (SDE1), which induces chlorosis and cell death in N. benthamiana. In this study, we revealed the DEAD-box RNA helicase (DDX3) interacts with SDE1. Gene silencing study revealed that knockdown of the NbDDX3 gene triggers leaf chlorosis, mimicking the primary symptom of CLas infection in N. benthamiana. The interactions between SDE1 and NbDDX3 were localized in the cell membrane. Overexpression of SDE1 resulted in suppression of NbDDX3 gene expression in N. benthamiana, which suggests a critical role of SDE1 in modulating NbDDX3 expression. Furthermore, we verified the interaction of SDE1 with citrus DDX3 (CsDDX3), and demonstrated that the expression of the CsDDX3 gene was significantly reduced in HLB-affected yellowing and mottled leaves of citrus. Thus, we provide molecular evidence that the downregulation of the host DDX3 gene is a crucial mechanism of leaf chlorosis in HLB-affected plants. The identification of CsDDX3 as a critical target of SDE1 and its association with HLB symptom development indicates that the DDX3 gene is an important target for gene editing, to interrupt the interaction between DDX3 and SDE1, and therefore interfere host susceptibility.


Subject(s)
Citrus/microbiology , DEAD-box RNA Helicases/metabolism , Liberibacter/pathogenicity , Plant Necrosis and Chlorosis/microbiology , RNA-Dependent RNA Polymerase/metabolism , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Citrus/genetics , Citrus/metabolism , DEAD-box RNA Helicases/genetics , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Plant , Gene Silencing , Liberibacter/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Necrosis and Chlorosis/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Binding , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/microbiology
3.
Genes (Basel) ; 11(5)2020 05 07.
Article in English | MEDLINE | ID: mdl-32392723

ABSTRACT

Barley mlo mutants are well known for their profound resistance against powdery mildew disease. Recently, mlo mutant plants were generated in hexaploid bread wheat (Triticum aestivum) with the help of transgenic (transcription-activator-like nuclease, TALEN) and non-transgenic (targeted induced local lesions in genomes, TILLING) biotechnological approaches. While full-gene knockouts in the three wheat Mlo (TaMlo) homoeologs, created via TALEN, confer full resistance to the wheat powdery mildew pathogen (Blumeria graminis f.sp. tritici), the currently available TILLING-derived Tamlo missense mutants provide only partial protection against powdery mildew attack. Here, we studied the infection phenotypes of TALEN- and TILLING-derived Tamlo plants to the two hemibiotrophic pathogens Zymoseptoria tritici, causing Septoria leaf blotch in wheat, and Magnaporthe oryzae pv. Triticum (MoT), the causal agent of wheat blast disease. While Tamlo plants showed unaltered outcomes upon challenge with Z. tritici, we found evidence for allele-specific levels of enhanced susceptibility to MoT, with stronger powdery mildew resistance correlated with more invasive growth by the blast pathogen. Surprisingly, unlike barley mlo mutants, young wheat mlo mutant plants do not show undesired pleiotropic phenotypes such as spontaneous callose deposits in leaf mesophyll cells or signs of early leaf senescence. In conclusion, our study provides evidence for allele-specific levels of enhanced susceptibility of Tamlo plants to the hemibiotrophic wheat pathogen MoT.


Subject(s)
Ascomycota/pathogenicity , Plant Diseases/genetics , Plant Proteins/genetics , Triticum/genetics , Alleles , Disease Resistance/genetics , Gene Knockout Techniques , Genes, Plant , Genetic Predisposition to Disease/genetics , Hordeum/genetics , Hordeum/microbiology , Host-Pathogen Interactions , Mutation, Missense , Plant Diseases/microbiology , Plant Leaves/microbiology , Plant Necrosis and Chlorosis/genetics , Plant Necrosis and Chlorosis/microbiology , Plant Proteins/physiology , Plants, Genetically Modified , Species Specificity , Transcription Activator-Like Effector Nucleases , Triticum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...