Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.388
Filter
1.
Plant Physiol Biochem ; 212: 108797, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850732

ABSTRACT

Long non-coding RNAs (lncRNAs) are a class of RNA transcripts that surpass 200 nucleotides in length and lack discernible coding potential. LncRNAs that have been functionally characterized have pivotal functions in several plant processes, including the regulation of flowering, and development of lateral roots. It also plays a crucial role in the plant's response to abiotic stressors and exhibits vital activities in environmental adaptation. The progress in NGS (next-generation sequencing) and functional genomics technology has facilitated the discovery of lncRNA in plant species. This review is a brief explanation of lncRNA genomics, its molecular role, and the mechanism of action in plants. The review also addresses the challenges encountered in this field and highlights promising molecular and computational methodologies that can aid in the comparative and functional analysis of lncRNAs.


Subject(s)
Plants , RNA, Long Noncoding , RNA, Plant , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Plant/genetics , Plants/genetics , Plants/metabolism , Gene Expression Regulation, Plant/genetics , Plant Physiological Phenomena/genetics
2.
Methods Mol Biol ; 2832: 3-29, 2024.
Article in English | MEDLINE | ID: mdl-38869784

ABSTRACT

Plant growth and survival in their natural environment require versatile mitigation of diverse threats. The task is especially challenging due to the largely unpredictable interaction of countless abiotic and biotic factors. To resist an unfavorable environment, plants have evolved diverse sensing, signaling, and adaptive molecular mechanisms. Recent stress studies have identified molecular elements like secondary messengers (ROS, Ca2+, etc.), hormones (ABA, JA, etc.), and signaling proteins (SnRK, MAPK, etc.). However, major gaps remain in understanding the interaction between these pathways, and in particular under conditions of stress combinations. Here, we highlight the challenge of defining "stress" in such complex natural scenarios. Therefore, defining stress hallmarks for different combinations is crucial. We discuss three examples of robust and dynamic plant acclimation systems, outlining specific plant responses to complex stress overlaps. (a) The high plasticity of root system architecture is a decisive feature in sustainable crop development in times of global climate change. (b) Similarly, broad sensory abilities and apparent control of cellular metabolism under adverse conditions through retrograde signaling make chloroplasts an ideal hub. Functional specificity of the chloroplast-associated molecular patterns (ChAMPs) under combined stresses needs further focus. (c) The molecular integration of several hormonal signaling pathways, which bring together all cellular information to initiate the adaptive changes, needs resolving.


Subject(s)
Acclimatization , Signal Transduction , Stress, Physiological , Plants/metabolism , Plants/genetics , Plant Growth Regulators/metabolism , Chloroplasts/metabolism , Plant Physiological Phenomena , Gene Expression Regulation, Plant , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/physiology
3.
Ying Yong Sheng Tai Xue Bao ; 35(4): 867-876, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884221

ABSTRACT

To investigate the correlation between carbon and oxygen isotope compositions of plant cellulose and climatic factors as well as plant physiological indices on the southeastern margin of the Qinghai-Tibet Plateau, we examined plant species in eight sampling sites with similar latitudes and different longitudes in this region. Through the characteristics of δ13C and δ18O values, fractionation values (Δ13C and Δ18O) in leaf cellulose, we discussed water use efficiency (WUE) and the environmental factors, the variation of carbon and oxygen isotopes in the southeastern margin of the Qinghai-Tibet Plateau with elevation and longitude, and revealed the indication degrees of isotopic signals to different environments and vegetation physiology. By using the semi-quantitative model of carbon and oxygen dual isotopes, we investigated the physiological adaptation mechanisms of plants to varying environmental conditions. The results demonstrated that both Δ13C and Δ18O of cellulose decreased with increasing elevation and longitude, and Δ13C was more influenced by longitude, while Δ18O was more susceptible to elevation variation. Additionally, Δ13C and Δ18O were significantly and positively correlated with temperature (TEM), precipitation (PRE), potential evapotranspiration (PET), and relative humidity (RH). PRE was the dominant meteorological factor driving the variation of Δ13C, while RH was the dominant meteorological factor influencing Δ18O variation. In contrast to Δ13C, WUE showed a stronger correlation with elevation than with longitude, which increased as elevation and longitude increased. According to the carbon-oxygen model, plant stomatal conductance (gs) and photosynthetic capacity (Amax) decreased with increasing precipitation and relative humidity, while the values increased with increasing elevation and longitude. The combined analysis of carbon and oxygen isotopes of organic matters would yield additional environmental and gas exchange information for studies on climate tracing and vegetation physiology studies on the southeastern margin of the Qinghai-Tibet Plateau.


Subject(s)
Carbon Isotopes , Ecosystem , Oxygen Isotopes , Oxygen Isotopes/analysis , China , Carbon Isotopes/analysis , Climate , Altitude , Plants/metabolism , Plants/classification , Plant Physiological Phenomena , Tibet , Cellulose/metabolism , Cellulose/analysis
4.
Plant Signal Behav ; 19(1): 2345413, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38709727

ABSTRACT

The 21st-century "plant neurobiology" movement is an amalgam of scholars interested in how "neural processes", broadly defined, lead to changes in plant behavior. Integral to the movement (now called plant behavioral biology) is a triad of historically marginalized subdisciplines, namely plant ethology, whole plant electrophysiology and plant comparative psychology, that set plant neurobiology apart from the mainstream. A central tenet held by these "triad disciplines" is that plants are exquisitely sensitive to environmental perturbations and that destructive experimental manipulations rapidly and profoundly affect plant function. Since destructive measurements have been the norm in plant physiology, much of our "textbook knowledge" concerning plant physiology is unrelated to normal plant function. As such, scientists in the triad disciplines favor a more natural and holistic approach toward understanding plant function. By examining the history, philosophy, sociology and psychology of the triad disciplines, this paper refutes in eight ways the criticism that plant neurobiology presents nothing new, and that the topics of plant neurobiology fall squarely under the purview of mainstream plant physiology. It is argued that although the triad disciplines and mainstream plant physiology share the common goal of understanding plant function, they are distinct in having their own intellectual histories and epistemologies.


Subject(s)
Neurobiology , Plant Physiological Phenomena , Plants , Plants/metabolism
5.
Plant Physiol Biochem ; 211: 108601, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696867

ABSTRACT

Neurotransmitters are naturally found in many plants, but the molecular processes that govern their actions still need to be better understood. Acetylcholine, γ-Aminobutyric acid, histamine, melatonin, serotonin, and glutamate are the most common neurotransmitters in animals, and they all play a part in the development and information processing. It is worth noting that all these chemicals have been found in plants. Although much emphasis has been placed on understanding how neurotransmitters regulate mood and behaviour in humans, little is known about how they regulate plant growth and development. In this article, the information was reviewed and updated considering current thinking on neurotransmitter signaling in plants' metabolism, growth, development, salt tolerance, and the associated avenues for underlying research. The goal of this study is to advance neurotransmitter signaling research in plant biology, especially in the area of salt stress physiology.


Subject(s)
Neurotransmitter Agents , Salt Stress , Neurotransmitter Agents/metabolism , Plants/metabolism , Plants/drug effects , Salt Tolerance , Plant Physiological Phenomena , Signal Transduction
6.
Cell ; 187(11): 2894-2894.e1, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788692

ABSTRACT

Plant cells share a number of biological condensates with cells from other eukaryotes. There are, however, a growing number of plant-specific condensates that support different cellular functions. Condensates operating in different plant tissues contribute to aspects of development and stress responses. To view this SnapShot, open or download the PDF.


Subject(s)
Biomolecular Condensates , Plant Cells , Plants , Biomolecular Condensates/metabolism , Biomolecular Condensates/chemistry , Plant Cells/chemistry , Plant Cells/metabolism , Plant Physiological Phenomena , Plants/chemistry , Plants/metabolism
8.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732211

ABSTRACT

In the face of climate-induced challenges, understanding the intricate molecular mechanisms underlying drought tolerance in plants has become imperative [...].


Subject(s)
Droughts , Food Security , Stress, Physiological , Plants/genetics , Plants/metabolism , Gene Expression Regulation, Plant , Plant Physiological Phenomena
9.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38726827

ABSTRACT

Metabolism is the key cellular process of plant physiology. Understanding metabolism and its dynamical behavior under different conditions may help plant biotechnologists to design new cultivars with desired goals. Computational systems biochemistry and incorporation of different omics data unravelled active metabolism and its variations in plants. In this review, we mainly focus on the basics of flux balance analysis (FBA), elementary flux mode analysis (EFMA), and some advanced computational tools. We describe some important results that were obtained using these tools. Limitations and challenges are also discussed.


Subject(s)
Plants , Systems Biology , Plants/metabolism , Plants/genetics , Metabolic Networks and Pathways/genetics , Metabolic Flux Analysis , Models, Biological , Plant Physiological Phenomena
10.
Biol Lett ; 20(5): 20230509, 2024 May.
Article in English | MEDLINE | ID: mdl-38746982

ABSTRACT

A central goal in biology is to understand which traits underlie adaptation to different environments. Yet, few studies have examined the relative contribution of competitive ability towards adaptive divergence among species occupying distinct environments. Here, we test the relative importance of competitive ability as an adaptation to relatively benign versus challenging environments, using previously published studies of closely related species pairs of primarily tidal plants subjected to reciprocal removal with transplant experiments in nature. Subordinate species typically occupy more challenging environments and showed consistent evidence for adaptation to challenging conditions, with no significant competitive effect on non-local, dominant species. In contrast, dominant species typically occupy relatively benign environments and performed significantly better than non-local, subordinate species that faced competition from the dominant species. Surprisingly, when the two species were not allowed to compete, the subordinate species performed as well as the dominant species in the benign environments where the subordinate species do not occur. These results suggest that competitive ability is the most important adaptation distinguishing the species that occupy relatively benign environments. The limited scope and number of suitable experimental studies encourage future work to test if these results are generalizable across taxa and environments.


Subject(s)
Adaptation, Physiological , Ecosystem , Species Specificity , Environment , Plants/classification , Plant Physiological Phenomena , Competitive Behavior
11.
Glob Chang Biol ; 30(5): e17319, 2024 May.
Article in English | MEDLINE | ID: mdl-38804095

ABSTRACT

Current ecological communities are in a constant state of flux from climate change and from species introductions. Recent discussion has focused on the positive roles introduced species can play in ecological communities and on the importance of conserving resilient ecosystems, but not how these two ideas intersect. There has been insufficient work to define the attributes needed to support ecosystem resilience to climate change in modern communities. Here, I argue that non-invasive, introduced plant species could play an important role in supporting the resilience of terrestrial ecosystems to climate change. Using examples from multiple taxonomic groups and ecosystems, I discuss how introduced plants can contribute to ecosystem resilience via their roles in plant and insect communities, as well as their associated ecosystem functions. I highlight the current and potential contributions of introduced plants and where there are critical knowledge gaps. Determining when and how introduced plants are contributing to the resilience of ecosystems to climate change will contribute to effective conservation strategies.


Subject(s)
Climate Change , Ecosystem , Introduced Species , Plants , Animals , Conservation of Natural Resources , Insecta/physiology , Plant Physiological Phenomena
12.
Ecol Lett ; 27(6): e14446, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38814284

ABSTRACT

Grime's competitive, stress-tolerant, ruderal (CSR) theory predicts a shift in plant communities from ruderal to stress-tolerant strategies during secondary succession. However, this fundamental tenet lacks empirical validation using long-term continuous successional data. Utilizing a 60-year longitudinal data of old-field succession, we investigated the community-level dynamics of plant strategies over time. Our findings reveal that while plant communities generally transitioned from ruderal to stress-tolerant strategies during succession, initial abandonment conditions crucially shaped early successional strategies, leading to varied strategy trajectories across different fields. Furthermore, we found a notable divergence in the CSR strategies of alien and native species over succession. Initially, alien and native species exhibited similar ruderal strategies, but in later stages, alien species exhibited higher ruderal and lower stress tolerance compared to native species. Overall, our findings underscore the applicability of Grime's predictions regarding temporal shifts in CSR strategies depending on both initial community conditions and species origin.


Subject(s)
Introduced Species , Plants , Plant Physiological Phenomena , Stress, Physiological , Ecosystem , Models, Biological , Plant Development
13.
Plant Commun ; 5(6): 100920, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38616489

ABSTRACT

Stress Knowledge Map (SKM; https://skm.nib.si) is a publicly available resource containing two complementary knowledge graphs that describe the current knowledge of biochemical, signaling, and regulatory molecular interactions in plants: a highly curated model of plant stress signaling (PSS; 543 reactions) and a large comprehensive knowledge network (488 390 interactions). Both were constructed by domain experts through systematic curation of diverse literature and database resources. SKM provides a single entry point for investigations of plant stress response and related growth trade-offs, as well as interactive explorations of current knowledge. PSS is also formulated as a qualitative and quantitative model for systems biology and thus represents a starting point for a plant digital twin. Here, we describe the features of SKM and show, through two case studies, how it can be used for complex analyses, including systematic hypothesis generation and design of validation experiments, or to gain new insights into experimental observations in plant biology.


Subject(s)
Plants , Stress, Physiological , Systems Biology , Plants/genetics , Plants/metabolism , Plant Physiological Phenomena/genetics , Signal Transduction/genetics , Databases, Factual
14.
Sci Total Environ ; 931: 172670, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38679109

ABSTRACT

The trait-based unidimensional plant economics spectrum provides a valuable framework for understanding plant adaptation strategies to the environment. However, it is still uncertain whether there is a general multidimensionality of how variation of both leaf and fine root traits are influenced by environmental factors, and how these relate to microbial resource strategies. Here, we examined the coordination patterns of four pairs of similar leaf and fine root traits of herbaceous plants in an alpine meadow at the community-level, and their environmental driving patterns. We then assessed their correlation with microbial life-history strategies, as these exhibit analogous resource strategies with plants in terms of growth and resource utilization efficiency. Results exhibited an analogous multidimensionality of the economics spectrum for leaf and fine root traits: the first dimension, collaboration gradient, primarily represented a tradeoff between lifespan and resource foraging efficiency; the second dimension, conservation gradient, primarily represented a tradeoff between conservation and acquisition in resource uptake. Climate variables had a stronger impact on both dimensions for leaf and fine root traits than soil variables did; whereas, the primary drivers were more complex for fine root traits than for leaf traits. The collaboration gradient of leaf and fine root traits exhibited consistent relationships with soil microbial life-history strategies, both showed negative and positive correlation with bacterial and fungal strategies, respectively. Our findings suggest that both leaves and fine roots have general multidimensional strategies for adapting to new environments and provide a solid basis for further understanding the relationships between the adaptive strategies of plants and microbes.


Subject(s)
Plant Leaves , Plant Roots , Soil Microbiology , Plant Roots/microbiology , Plants , Grassland , Plant Physiological Phenomena
17.
Ecol Lett ; 27(4): e14419, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613177

ABSTRACT

Plants inhabit stressful environments characterized by a variety of stressors, including mine sites, mountains, deserts, and high latitudes. Populations from stressful and reference (non-stressful) sites often have performance differences. However, while invasive and native species may respond differently to stressful environments, there is limited understanding of the patterns in reaction norms of populations from these sites. Here, we use phylogenetically controlled meta-analysis to assess the performance of populations under stress and non-stress conditions. We ask whether stress populations of natives and invasives differ in the magnitude of lowered performance under non-stress conditions and if they vary in the degree of performance advantage under stress. We also assessed whether these distinctions differ with stress intensity. Our findings revealed that natives not only have greater adaptive advantages but also more performance reductions than invasives. Populations from very stressful sites had more efficient adaptations, and performance costs increased with stress intensity in natives only. Overall, the results support the notion that adaptation is frequently costless. Reproductive output was most closely associated with adaptive costs and benefits. Our study characterized the adaptive strategies used by invasive and native plants under stressful conditions, thereby providing important insights into the limitations of adaptation to extreme sites.


Subject(s)
Plant Physiological Phenomena , Stress, Physiological , Reproduction
19.
Methods Mol Biol ; 2790: 317-332, 2024.
Article in English | MEDLINE | ID: mdl-38649578

ABSTRACT

Infrared thermography offers a rapid, noninvasive method for measuring plant temperature, which provides a proxy for stomatal conductance and plant water status and can therefore be used as an index for plant stress. Thermal imaging can provide an efficient method for high-throughput screening of large numbers of plants. This chapter provides guidelines for using thermal imaging equipment and illustrative methodologies, coupled with essential considerations, to access plant physiological processes.


Subject(s)
Infrared Rays , Phenotype , Thermography , Thermography/methods , Plants , High-Throughput Screening Assays/methods , Plant Physiological Phenomena , Temperature , Plant Stomata/physiology
20.
Plant Signal Behav ; 19(1): 2345984, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38654490

ABSTRACT

In this paper, we propose a crucial supplement to the framework of plant cognition, namely extending cognition. We argue that plants and other organisms with an open-ended body plan actively extend their cognition when growing tissues or organs. Their cognition expands with their body expansion. After considering the defining features of extending cognition, we present a model where growth, along with aspects of plant physiology (e.g. biochemical exudates), as well as the "negative extension" of growing away from obstacles or stressful environments, are the building blocks for a more refined understanding of plant cognition. We conclude by outlining the general implications of the theory of extending cognition and indicating directions for future research.


Subject(s)
Cognition , Cognition/physiology , Models, Biological , Plant Development/physiology , Plant Physiological Phenomena , Plants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...