Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Signal Behav ; 12(1): e1268313, 2017 01 02.
Article in English | MEDLINE | ID: mdl-27935414

ABSTRACT

Earlier, we reported that root nodulation was inhibited by blue light irradiation of Lotus japonicus. Because some legumes do not establish nodules exclusively on underground roots, we investigated whether nodule formation in Sesbania rostrata, which forms both root and "stem" nodules following inoculation with Azorhizobium caulinodans, is inhibited by blue light as are L. japonicus nodules. We found that neither S. rostrata nodulation nor nitrogen fixation was inhibited by blue light exposure. Moreover, although A. caulinodans proliferation was not affected by blue light irradiation, bacterial survival was decreased. Therefore, blue light appears to impose different responses depending on the legume-rhizobial symbiosis.


Subject(s)
Azorhizobium caulinodans/physiology , Light , Plant Root Nodulation/radiation effects , Sesbania/microbiology , Sesbania/radiation effects
2.
Mol Plant Microbe Interact ; 29(10): 786-796, 2016 10.
Article in English | MEDLINE | ID: mdl-27611874

ABSTRACT

In many legumes, roots that are exposed to light do not form nodules. Here, we report that blue light inhibits nodulation in Lotus japonicus roots inoculated with Mesorhizobium loti. Using RNA interference, we suppressed the expression of the phototropin and cryptochrome genes in L. japonicus hairy roots. Under blue light, plants transformed with an empty vector did not develop nodules, whereas plants exhibiting suppressed expression of cry1 and cry2 genes formed nodules. We also measured rhizobial growth to investigate whether the inhibition of nodulation could be caused by a reduced population of rhizobia in response to light. Although red light had no effect on rhizobial growth, blue light had a strong inhibitory effect. Rhizobial growth under blue light was partially restored in signature-tagged mutagenesis (STM) strains in which LOV-HK/PAS- and photolyase-related genes were disrupted. Moreover, when Ljcry1A and Ljcry2B-silenced plants were inoculated with the STM strains, nodulation was additively increased. Our data show that blue light receptors in both the host plant and the symbiont have a profound effect on nodule development. The exact mechanism by which these photomorphogenetic responses function in the symbiosis needs further study, but they are clearly involved in optimizing legume nodulation.


Subject(s)
Lotus/radiation effects , Mesorhizobium/radiation effects , Plant Root Nodulation/radiation effects , Symbiosis/radiation effects , Cryptochromes/genetics , Light , Lotus/genetics , Lotus/microbiology , Lotus/physiology , Mesorhizobium/physiology , Mutagenesis , Phototropins/genetics , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/microbiology , Plant Roots/physiology , Plant Roots/radiation effects , RNA Interference
3.
Proc Natl Acad Sci U S A ; 109(30): 12135-40, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22773814

ABSTRACT

Rhizobium leguminosarum is a soil bacterium that infects root hairs and induces the formation of nitrogen-fixing nodules on leguminous plants. Light, oxygen, and voltage (LOV)-domain proteins are blue-light receptors found in higher plants and many algae, fungi, and bacteria. The genome of R. leguminosarum bv. viciae 3841, a pea-nodulating endosymbiont, encodes a sensor histidine kinase containing a LOV domain at the N-terminal end (R-LOV-HK). R-LOV-HK has a typical LOV domain absorption spectrum with broad bands in the blue and UV-A regions and shows a truncated photocycle. Here we show that the R-LOV-HK protein regulates attachment to an abiotic surface and production of flagellar proteins and exopolysaccharide in response to light. Also, illumination of bacterial cultures before inoculation of pea roots increases the number of nodules per plant and the number of intranodular bacteroids. The effects of light on nodulation are dependent on a functional lov gene. The results presented in this work suggest that light, sensed by R-LOV-HK, is an important environmental factor that controls adaptive responses and the symbiotic efficiency of R. leguminosarum.


Subject(s)
Bacterial Adhesion/physiology , Light , Photoreceptors, Microbial/metabolism , Pisum sativum/microbiology , Plant Root Nodulation/physiology , Rhizobium leguminosarum/physiology , Symbiosis , Amino Acid Sequence , Bacterial Adhesion/radiation effects , Base Sequence , Biofilms/growth & development , Blotting, Western , Flagella/metabolism , Gentian Violet , Histidine Kinase , Microscopy, Electron, Scanning , Molecular Sequence Data , Plant Root Nodulation/radiation effects , Polysaccharides, Bacterial/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Structure, Tertiary/genetics , Real-Time Polymerase Chain Reaction , Rhizobium leguminosarum/radiation effects , Rhizobium leguminosarum/ultrastructure , Sequence Alignment , Sequence Analysis, DNA , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL
...