Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61.340
Filter
1.
Curr Microbiol ; 81(7): 207, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831110

ABSTRACT

The current study aimed to evaluate the plant growth-promoting (PGP) potential of endophytic strain Bacillus subtilis KU21 isolated from the roots of Rosmarinus officinalis. The strain exhibited multiple traits of plant growth promotion viz., phosphate (P) solubilization, nitrogen fixation, indole-3-acetic acid (IAA), siderophore, hydrogen cyanide (HCN), lytic enzymes production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. The isolate also exhibited antagonistic activity against phytopathogenic fungi, i.e., Fusarium oxysporum, Fusarium graminiarum, and Rhizoctonia solani. The P-solubilization activity of B. subtilis KU21 was further elucidated via detection of glucose dehydrogenase (gdh) gene involved in the production of gluconic acid which is responsible for P-solubilization. Further, B. subtilis KU21 was evaluated for in vivo growth promotion studies of tomato (test crop) under net house conditions. A remarkable increase in seed germination, plant growth parameters, nutrient acquisition, and soil quality parameters (NPK) was observed in B. subtilis KU21-treated plants over untreated control. Hence, the proposed module could be recommended for sustainable tomato production in the Northwest Himalayan region without compromising soil health and fertility.


Subject(s)
Bacillus subtilis , Endophytes , Plant Roots , Rosmarinus , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Bacillus subtilis/isolation & purification , Bacillus subtilis/metabolism , Endophytes/isolation & purification , Endophytes/metabolism , Endophytes/genetics , Endophytes/classification , Rosmarinus/chemistry , Rosmarinus/microbiology , Plant Roots/microbiology , Plant Roots/growth & development , Solanum lycopersicum/microbiology , Solanum lycopersicum/growth & development , Fusarium/growth & development , Fusarium/genetics , Fusarium/metabolism , Soil Microbiology , Plant Development , Germination , Indoleacetic Acids/metabolism , Rhizoctonia/growth & development , Rhizoctonia/drug effects , Nitrogen Fixation , Phosphates/metabolism
2.
BMC Plant Biol ; 24(1): 492, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831289

ABSTRACT

Non-hydraulic root source signaling (nHRS) is a unique positive response to soil drying in the regulation of plant growth and development. However, it is unclear how the nHRS mediates the tradeoff between source and sink at the late growth stages and its adaptive mechanisms in primitive wheat. To address this issue, a root-splitting design was made by inserting solid partition in the middle of the pot culture to induce the occurrence of nHRS using four wheat cultivars (MO1 and MO4, diploid; DM22 and DM31, tetraploid) as materials. Three water treatments were designed as 1) both halves watered (CK), 2) holistic root system watered then droughted (FS), 3) one-half of the root system watered and half droughted (PS). FS and PS were designed to compare the role of the full root system and split root system to induce nHRS. Leaves samples were collected during booting and anthesis to compare the role of nHRS at both growth stages. The data indicated that under PS treatment, ABA concentration was significantly higher than FS and CK, demonstrating the induction of nHRS in split root design and nHRS decreased cytokinin (ZR) levels, particularly in the PS treatment. Soluble sugar and proline accumulation were higher in the anthesis stage as compared to the booting stage. POD activity was higher at anthesis, while CAT was higher at the booting stage. Increased ABA (nHRS) correlated with source-sink relationships and metabolic rate (i.e., leaf) connecting other stress signals. Biomass density showed superior resource acquisition and utilization capabilities in both FS and PS treatment as compared to CK in all plants. Our findings indicate that nHRS-induced alterations in phytohormones and their effect on source-sink relations were allied with the growth stages in primitive wheat.


Subject(s)
Diploidy , Plant Roots , Signal Transduction , Tetraploidy , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Shoots/genetics , Plant Growth Regulators/metabolism , Abscisic Acid/metabolism , Cytokinins/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/genetics
3.
Plant Cell Rep ; 43(6): 160, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825616

ABSTRACT

KEY MESSAGE: LeBAHD56 is preferentially expressed in tissues where shikonin and its derivatives are biosynthesized, and it confers shikonin acylation in vivo. Two WRKY transcriptional factors might regulate LeBAHD56's expression. Shikonin and its derivatives, found in the roots of Lithospermum erythrorhizon, have extensive application in the field of medicine, cosmetics, and other industries. Prior research has demonstrated that LeBAHD1(LeSAT1) is responsible for the biochemical process of shikonin acylation both in vitro and in vivo. However, with the exception of its documented in vitro biochemical function, there is no in vivo genetic evidence supporting the acylation function of the highly homologous gene of LeSAT1, LeBAHD56(LeSAT2), apart from its reported role. Here, we validated the critical acylation function of LeBAHD56 for shikonin using overexpression (OE) and CRISPR/Cas9-based knockout (KO) strategies. The results showed that the OE lines had a significantly higher ratio of acetylshikonin, isobutyrylshikonin or isovalerylshikonin to shikonin than the control. In contrast, the KO lines had a significantly lower ratio of acetylshikonin, isobutyrylshikonin or isovalerylshikonin to shikonin than controls. As for its detailed expression patterns, we found that LeBAHD56 is preferentially expressed in roots and callus cells, which are the biosynthesis sites for shikonin and its derivatives. In addition, we anticipated that a wide range of putative transcription factors might control its transcription and verified the direct binding of two crucial WRKY members to the LeBAHD56 promoter's W-box. Our results not only confirmed the in vivo function of LeBAHD56 in shikonin acylation, but also shed light on its transcriptional regulation.


Subject(s)
Gene Expression Regulation, Plant , Lithospermum , Naphthoquinones , Plant Proteins , Plants, Genetically Modified , Naphthoquinones/metabolism , Lithospermum/genetics , Lithospermum/metabolism , Acylation , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , CRISPR-Cas Systems , Anthraquinones
4.
Pak J Pharm Sci ; 37(2(Special)): 451-458, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38822549

ABSTRACT

The research aimed to explore the antioxidant potential of extracts from different parts of Clinacanthus nutans growing in Vietnam, a member of the Acanthaceae family. The plant's roots, stem and leaves were extracted using 96% ethanol. The antioxidant actions of these extracts were evaluated by DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) assay on thin-layer plates and 96 well plates. The extract with the most potent activity was applied for distribution extraction with solvents with different polarities, including dichloromethane, ethyl acetate and water. Dry column vacuum chromatography was utilized to obtain the most antioxidant-potent extract fractions. The stem extract had the lowest IC50 value of 6.85µg/mL, showing the most potent antioxidant activity. The ethyl acetate fraction from the stem extract expressed the lowest IC50 value of 9.67µg/mL. Meanwhile, fraction 5, separated from the ethyl acetate fraction of the stem extract, had the lowest IC50 value of 9.89µg/mL. In conclusion, the extracts from different parts of Clinacanthus nutans all expressed antioxidant action at different levels, in which the stem extract, the ethyl acetate fraction and fraction 5 from the ethyl acetate fraction displayed the most effective actions. These findings highlight the promising potential of Clinacanthus nutans in treating oxidative stress-associated diseases, inspiring further research and exploration in this area.


Subject(s)
Acanthaceae , Antioxidants , Plant Extracts , Acanthaceae/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Plant Leaves/chemistry , Plant Stems/chemistry , Solvents/chemistry , Biphenyl Compounds/chemistry , Plant Roots/chemistry , Picrates/chemistry
5.
Plant Cell Rep ; 43(6): 159, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822842

ABSTRACT

KEY MESSAGE: AcEXPA1, an aluminum (Al)-inducible expansin gene, is demonstrated to be involved in carpetgrass (Axonopus compressus) root elongation under Al toxicity through analyzing composite carpetgrass plants overexpressing AcEXPA1. Aluminum (Al) toxicity is a major mineral toxicity that limits plant productivity in acidic soils by inhibiting root growth. Carpetgrass (Axonopus compressus), a dominant warm-season turfgrass widely grown in acidic tropical soils, exhibits superior adaptability to Al toxicity. However, the mechanisms underlying its Al tolerance are largely unclear, and knowledge of the functional genes involved in Al detoxification in this turfgrass is limited. In this study, phenotypic variation in Al tolerance, as indicated by relative root elongation, was observed among seventeen carpetgrass genotypes. Al-responsive genes related to cell wall modification were identified in the roots of the Al-tolerant genotype 'A58' via transcriptome analysis. Among them, a gene encoding α-expansin was cloned and designated AcEXPA1 for functional characterization. Observed Al dose effects and temporal responses revealed that Al induced AcEXPA1 expression in carpetgrass roots. Subsequently, an efficient and convenient Agrobacterium rhizogenes-mediated transformation method was established to generate composite carpetgrass plants with transgenic hairy roots for investigating AcEXPA1 involvement in carpetgrass root growth under Al toxicity. AcEXPA1 was successfully overexpressed in the transgenic hairy roots, and AcEXPA1 overexpression enhanced Al tolerance in composite carpetgrass plants through a decrease in Al-induced root growth inhibition. Taken together, these findings suggest that AcEXPA1 contributes to Al tolerance in carpetgrass via root growth regulation.


Subject(s)
Aluminum , Gene Expression Regulation, Plant , Plant Proteins , Plant Roots , Plants, Genetically Modified , Aluminum/toxicity , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/drug effects , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Adaptation, Physiological/genetics , Adaptation, Physiological/drug effects , Poaceae/genetics , Poaceae/drug effects
6.
Bull Environ Contam Toxicol ; 112(6): 83, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822863

ABSTRACT

To investigate the toxicological effects of polystyrene microplastics (PS-MPs), cadmium (Cd), and their combined contamination on the growth and physiological responses of V. faba seedlings, this experiment employed a hydroponic method. The Hoagland nutrient solution served as the control, changes in root growth, physiological and biochemical indicators of V. faba seedlings under different concentrations of PS-MPs (10, 100 mg/L) alone and combined with 0.5 mg/L Cd. The results demonstrated that the root biomass, root vitality, generation rate of superoxide radicals (O2·-), malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity increased with increasing concentration under the influence of PS-MPs alone, while the soluble sugar content and peroxidase (POD) activity decreased. In the combined treatment with Cd, the trends of these indicators are generally similar to the PS-MPs alone treatment group. However, root vitality and SOD activity showed an inverse relationship with the concentration of PS-MPs. Furthermore, laser confocal and electron microscopy scanning revealed that the green fluorescent polystyrene microspheres entered the root tips of the V. faba and underwent agglomeration in the treatment group with a low concentration of PS-MPs alone and a high concentration of composite PS-MPs with Cd.


Subject(s)
Cadmium , Microplastics , Seedlings , Superoxide Dismutase , Vicia faba , Vicia faba/drug effects , Vicia faba/growth & development , Seedlings/drug effects , Seedlings/growth & development , Cadmium/toxicity , Microplastics/toxicity , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Water Pollutants, Chemical/toxicity , Plant Roots/drug effects , Plant Roots/growth & development
7.
Physiol Plant ; 176(3): e14356, 2024.
Article in English | MEDLINE | ID: mdl-38828569

ABSTRACT

Halophyte Halogeton glomeratus mostly grows in saline desert areas in arid and semi-arid regions and is able to adapt to adverse conditions such as salinity and drought. Earlier transcriptomic studies revealed activation of the HgS2 gene in the leaf of H. glomeratus seedlings when exposed to saline conditions. To identify the properties of HgS2 in H. glomeratus, we used yeast transformation and overexpression in Arabidopsis. Yeast cells genetically transformed with HgS2 exhibited K+ uptake and Na+ efflux compared with control (empty vector). Stable overexpression of HgS2 in Arabidopsis improved its resistance to salt stress and led to a notable rise in seed germination in salinity conditions compared to the wild type (WT). Transgenic Arabidopsis regulated ion homeostasis in plant cells by increasing Na+ absorption and decreasing K+ efflux in leaves, while reducing Na+ absorption and K+ efflux in roots. In addition, overexpression of HgS2 altered transcription levels of stress response genes and regulated different metabolic pathways in roots and leaves of Arabidopsis. These results offer new insights into the role of HgS2 in plants' salt tolerance.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Potassium , Salt Tolerance , Salt-Tolerant Plants , Sodium , Arabidopsis/genetics , Arabidopsis/physiology , Salt Tolerance/genetics , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/physiology , Salt-Tolerant Plants/metabolism , Sodium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Potassium/metabolism , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/metabolism , Plant Roots/genetics , Plant Roots/physiology , Plant Roots/metabolism , Sodium Chloride/pharmacology , Germination/genetics , Germination/drug effects , Amaranthaceae/genetics , Amaranthaceae/physiology
8.
Sci Rep ; 14(1): 12754, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38830936

ABSTRACT

Humans are the only species who generate waste materials that cannot be broken down by natural processes. The ideal solution to this waste problem would be to employ only compostable materials. Biodegradable materials play a key role in creating a safer and greener world. Biodegradability is the gift that keeps on giving, in the sense of creating an Earth worth living. The future is thus best served by green energy, sustainability, and renewable resources. To realize such goals, waste should be considered as a valuable resource. In this context, Zea mays (Zm) root fibres, which are normally considered as agricultural waste, can be used as reinforcing substances in polymer matrices to produce structural composite materials. Before being used in composites, such fibres must be analysed for their physical properties. Chemical treatments can be employed to improve the structural quality of fibres, and the changes due to such modification can be analysed. Therefore, the current work examines the effect of permanganate treatment on the surface properties of Zm fibres. The raw and potassium permanganate-treated samples were assayed for various properties. Physical analysis of the fibre samples yielded details concerning the physical aspects of the fibres. The thermal conductivity and moisture absorption behaviour of the samples were analysed. Chemical analysis was employed to characterize the composition of both treated and untreated samples. p-XRD was employed to examine the crystalline nature of the Zm fibres. Numerous functional groups present in each sample were analysed by FTIR. Thermogravimetric analysis was used to determine the thermal stability of Zm fibres. Elemental analysis (CHNS and EDS) was used to determine the elemental concentrations of both raw and treated samples. The surface alterations of Zm fibres brought on by treatment were described using SEM analysis. The characteristics of Zm roots and the changes in quality due to treatment were reviewed, and there were noticeable effects due to the treatment. Both samples would have applications in various fields, and each could be used as a potential reinforcing material in the production of efficient bio-composites.


Subject(s)
Plant Roots , Potassium Permanganate , Zea mays , Zea mays/chemistry , Zea mays/metabolism , Potassium Permanganate/chemistry , Plant Roots/chemistry , Plant Roots/metabolism , Biodegradation, Environmental , Thermal Conductivity
9.
Sci Rep ; 14(1): 12664, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830985

ABSTRACT

Arabidopsis root is a classic model system in plant cell and molecular biology. The sensitivity of plant roots to local environmental perturbation challenges data reproducibility and incentivizes further optimization of imaging and phenotyping tools. Here we present RoPod, an easy-to-use toolkit for low-stress live time-lapse imaging of Arabidopsis roots. RoPod comprises a dedicated protocol for plant cultivation and a customizable 3D-printed vessel with integrated microscopy-grade glass that serves simultaneously as a growth and imaging chamber. RoPod reduces impact of sample handling, preserves live samples for prolonged imaging sessions, and facilitates application of treatments during image acquisition. We describe a protocol for RoPods fabrication and provide illustrative application pipelines for monitoring root hair growth and autophagic activity. Furthermore, we showcase how the use of RoPods advanced our understanding of plant autophagy, a major catabolic pathway and a key player in plant fitness. Specifically, we obtained fine time resolution for autophagy response to commonly used chemical modulators of the pathway and revealed previously overlooked cell type-specific changes in the autophagy response. These results will aid a deeper understanding of the physiological role of autophagy and provide valuable guidelines for choosing sampling time during end-point assays currently employed in plant autophagy research.


Subject(s)
Arabidopsis , Autophagy , Plant Roots , Time-Lapse Imaging/methods
10.
Sci Rep ; 14(1): 12705, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38831025

ABSTRACT

Fifty-nine diverse Brassica juncea (Indian mustard) genotypes were used to find an effective screening method to identify salt tolerance at the germination and seedling stages. Salinity stress limits crop productivity and is difficult to simulate on farms, hindering parental selection for hybridization programmes and the development of tolerant cultivars. To estimate an optimum salt concentration for screening, seeds of 15 genotypes were selected randomly and grown in vitro at 0 mM/L, 75 mM/L, 150 mM/L, 225 mM/L, and 300 mM/L concentrations of NaCl in 2 replications in a complete randomized design. Various morphological parameters, viz., length of seedling, root and shoot length, fresh weight, and dry weight, were observed to determine a single concentration using the Salt Injury Index. Then, this optimum concentration (225 mM/L) was used to assess the salt tolerance of all the 59 genotypes in 4 replications while observing the same morphological parameters. With the help of Mean Membership Function Value evaluation criteria, the genotypes were categorized into 5 grades: 4 highly salt-tolerant (HST), 6 salt-tolerant (ST), 19 moderately salt-tolerant (MST), 21 salt-sensitive (SS), and 9 highly salt-sensitive (HSS). Seedling fresh weight (SFW) at 225 mM/L was found to be an ideal trait, which demonstrates the extent to which B. juncea genotypes respond to saline conditions. This is the first report that establishes a highly efficient and reliable method for evaluating the salinity tolerance of Indian mustard at the seedling stage and will facilitate breeders in the development of salt-tolerant cultivars.


Subject(s)
Genotype , Mustard Plant , Salt Stress , Salt Tolerance , Seedlings , Mustard Plant/genetics , Mustard Plant/growth & development , Mustard Plant/drug effects , Mustard Plant/physiology , Seedlings/growth & development , Seedlings/drug effects , Seedlings/genetics , Salt Tolerance/genetics , Germination/drug effects , Sodium Chloride/pharmacology , Plant Roots/growth & development , Plant Roots/drug effects
11.
Sci Rep ; 14(1): 12854, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834735

ABSTRACT

Salinity stress significantly impacts crops, disrupting their water balance and nutrient uptake, reducing growth, yield, and overall plant health. High salinity in soil can adversely affect plants by disrupting their water balance. Excessive salt levels can lead to dehydration, hinder nutrient absorption, and damage plant cells, ultimately impairing growth and reducing crop yields. Gallic acid (GA) and zinc ferrite (ZnFNP) can effectively overcome this problem. GA can promote root growth, boost photosynthesis, and help plants absorb nutrients efficiently. However, their combined application as an amendment against drought still needs scientific justification. Zinc ferrite nanoparticles possess many beneficial properties for soil remediation and medical applications. That's why the current study used a combination of GA and ZnFNP as amendments to wheat. There were 4 treatments, i.e., 0, 10 µM GA, 15 µM GA, and 20 µM GA, without and with 5 µM ZnFNP applied in 4 replications following a completely randomized design. Results exhibited that 20 µM GA + 5 µM ZnFNP caused significant improvement in wheat shoot length (28.62%), shoot fresh weight (16.52%), shoot dry weight (11.38%), root length (3.64%), root fresh weight (14.72%), and root dry weight (9.71%) in contrast to the control. Significant enrichment in wheat chlorophyll a (19.76%), chlorophyll b (25.16%), total chlorophyll (21.35%), photosynthetic rate (12.72%), transpiration rate (10.09%), and stomatal conductance (15.25%) over the control validate the potential of 20 µM GA + 5 µM ZnFNP. Furthermore, improvement in N, P, and K concentration in grain and shoot verified the effective functioning of 20 µM GA + 5 µM ZnFNP compared to control. In conclusion, 20 µM GA + 5 µM ZnFNP can potentially improve the growth, chlorophyll contents and gas exchange attributes of wheat cultivated in salinity stress. More investigations are suggested to declare 20 µM GA + 5 µM ZnFNP as the best amendment for alleviating salinity stress in different cereal crops.


Subject(s)
Ferric Compounds , Gallic Acid , Salt Stress , Triticum , Triticum/growth & development , Triticum/drug effects , Triticum/metabolism , Gallic Acid/metabolism , Zinc/metabolism , Photosynthesis/drug effects , Nanoparticles/chemistry , Chlorophyll/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/metabolism , Salinity , Soil/chemistry
12.
BMC Plant Biol ; 24(1): 495, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831411

ABSTRACT

BACKGROUND: Phosphorus (P) and iron (Fe) deficiencies are relevant plants nutritional disorders, prompting responses such as increased root exudation to aid nutrient uptake, albeit at an energy cost. Reacquiring and reusing exudates could represent an efficient energy and nitrogen saving strategy. Hence, we investigated the impact of plant development, Fe and P deficiencies on this process. Tomato seedlings were grown hydroponically for 3 weeks in Control, -Fe, and -P conditions and sampled twice a week. We used Isotope Ratio Mass-Spectrometry to measure δ13C in roots and shoots after a 2-h exposure to 13C-labeled glycine (0, 50, or 500 µmol L-1). Plant physiology was assessed with an InfraRed Gas Analyzer and ionome with an Inductively Coupled Plasma Mass-Spectrometry. RESULTS: Glycine uptake varied with concentration, suggesting an involvement of root transporters with different substrate affinities. The uptake decreased over time, with -Fe and -P showing significantly higher values as compared to the Control. This highlights its importance during germination and in nutrient-deficient plants. Translocation to shoots declined over time in -P and Control but increased in -Fe plants, suggesting a role of Gly in the Fe xylem transport. CONCLUSIONS: Root exudates, i.e. glycine, acquisition and their subsequent shoot translocation depend on Fe and P deficiency. The present findings highlight the importance of this adaptation to nutrient deficiencies, that can potentially enhance plants fitness. A thorough comprehension of this trait holds potential significance for selecting cultivars that can better withstand abiotic stresses.


Subject(s)
Glycine , Phosphorus , Plant Roots , Solanum lycopersicum , Solanum lycopersicum/metabolism , Solanum lycopersicum/growth & development , Glycine/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Phosphorus/metabolism , Phosphorus/deficiency , Iron Deficiencies , Iron/metabolism , Biological Transport , Seedlings/metabolism , Seedlings/growth & development , Plant Shoots/metabolism , Plant Shoots/growth & development
13.
PeerJ ; 12: e17472, 2024.
Article in English | MEDLINE | ID: mdl-38827280

ABSTRACT

Excessive aluminum (Al) in acidic soils is a primary factor that hinders plant growth. The objective of the present study was to investigate the effect and physiological mechanism of exogenous silicon (Si) in alleviating aluminum toxicity. Under hydroponic conditions, 4 mM Al significantly impeded the growth of white clover; however, pretreatments with 1 mM Si mitigated this inhibition, as evidenced by notable changes in growth indicators and physiological parameters. Exogenous silicon notably increased both shoot and root length of white clover and significantly decreased electrolyte leakage (EL) and malondialdehyde (MDA) content compared to aluminum treatments. This positive effect was particularly evident in the roots. Further analysis involving hematoxylin staining, scanning electron microscopy (SEM), and examination of organic acids (OAs) demonstrated that silicon relieved the accumulation of bioactive aluminum and ameliorated damage to root tissues in aluminum-stressed plants. Additionally, energy-dispersive X-ray (EDX) analysis revealed that additional silicon was primarily distributed in the root epidermal and cortical layers, effectively reducing the transport of aluminum and maintaining the balance of exchangeable cations absorption. These findings suggest that gradual silicon deposition in root tissues effectively prevents the absorption of biologically active aluminum, thereby reducing the risk of mineral nutrient deficiencies induced by aluminum stress, promoting organic acids exudation, and compartmentalizing aluminum in the outer layer of root tissues. This mechanism helps white clover alleviate the damage caused by aluminum toxicity.


Subject(s)
Aluminum , Plant Roots , Silicon , Trifolium , Trifolium/metabolism , Trifolium/drug effects , Silicon/pharmacology , Aluminum/toxicity , Plant Roots/drug effects , Plant Roots/metabolism , Microscopy, Electron, Scanning , Malondialdehyde/metabolism
14.
Int J Nanomedicine ; 19: 4907-4921, 2024.
Article in English | MEDLINE | ID: mdl-38828197

ABSTRACT

Purpose: Pueraria lobata (P. lobata), a dual-purpose food and medicine, displays limited efficacy in alcohol detoxification and liver protection, with previous research primarily focused on puerarin in its dried roots. In this study, we investigated the potential effects and mechanisms of fresh P. lobata root-derived exosome-like nanovesicles (P-ELNs) for mitigating alcoholic intoxication, promoting alcohol metabolism effects and protecting the liver in C57BL/6J mice. Methods: We isolated P-ELNs from fresh P. lobata root using differential centrifugation and characterized them via transmission electron microscopy, nanoscale particle sizing, ζ potential analysis, and biochemical assays. In Acute Alcoholism (AAI) mice pre-treated with P-ELNs, we evaluated their effects on the timing and duration of the loss of the righting reflex (LORR), liver alcohol metabolism enzymes activity, liver and serum alcohol content, and ferroptosis-related markers. Results: P-ELNs, enriched in proteins, lipids, and small RNAs, exhibited an ideal size (150.7 ± 82.8 nm) and negative surface charge (-31 mV). Pre-treatment with 10 mg/(kg.bw) P-ELNs in both male and female mice significantly prolonged ebriety time, shortened sobriety time, enhanced acetaldehyde dehydrogenase (ALDH) activity while concurrently inhibited alcohol dehydrogenase (ADH) activity, and reduced alcohol content in the liver and serum. Notably, P-ELNs demonstrated more efficacy compared to P-ELNs supernatant fluid (abundant puerarin content), suggesting alternative active components beyond puerarin. Additionally, P-ELNs prevented ferroptosis by inhibiting the reduction of glutathione peroxidase 4 (GPX4) and reduced glutathione (GSH), and suppressing acyl-CoA synthetase long-chain family member 4 (ACSL4) elevation, thereby mitigating pathological liver lipid accumulation. Conclusion: P-ELNs exhibit distinct exosomal characteristics and effectively alleviate alcoholic intoxication, improve alcohol metabolism, suppress ferroptosis, and protect the liver from alcoholic injury. Consequently, P-ELNs hold promise as a therapeutic agent for detoxification, sobriety promotion, and prevention of alcoholic liver injury.


Subject(s)
Alcoholic Intoxication , Exosomes , Liver , Mice, Inbred C57BL , Plant Roots , Pueraria , Animals , Pueraria/chemistry , Exosomes/metabolism , Exosomes/drug effects , Exosomes/chemistry , Mice , Male , Alcoholic Intoxication/drug therapy , Plant Roots/chemistry , Liver/drug effects , Liver/metabolism , Ethanol/chemistry , Ethanol/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Alcoholism/drug therapy , Isoflavones
15.
Nat Commun ; 15(1): 4689, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824148

ABSTRACT

Global warming will lead to significantly increased temperatures on earth. Plants respond to high ambient temperature with altered developmental and growth programs, termed thermomorphogenesis. Here we show that thermomorphogenesis is conserved in Arabidopsis, soybean, and rice and that it is linked to a decrease in the levels of the two macronutrients nitrogen and phosphorus. We also find that low external levels of these nutrients abolish root growth responses to high ambient temperature. We show that in Arabidopsis, this suppression is due to the function of the transcription factor ELONGATED HYPOCOTYL 5 (HY5) and its transcriptional regulation of the transceptor NITRATE TRANSPORTER 1.1 (NRT1.1). Soybean and Rice homologs of these genes are expressed consistently with a conserved role in regulating temperature responses in a nitrogen and phosphorus level dependent manner. Overall, our data show that root thermomorphogenesis is a conserved feature in species of the two major groups of angiosperms, monocots and dicots, that it leads to a reduction of nutrient levels in the plant, and that it is dependent on environmental nitrogen and phosphorus supply, a regulatory process mediated by the HY5-NRT1.1 module.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Glycine max , Nitrogen , Oryza , Phosphorus , Plant Roots , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Phosphorus/metabolism , Nitrogen/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Glycine max/genetics , Glycine max/growth & development , Glycine max/metabolism , Nutrients/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Hot Temperature , Nitrate Transporters , Anion Transport Proteins/metabolism , Anion Transport Proteins/genetics , Temperature , Basic-Leucine Zipper Transcription Factors
16.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731430

ABSTRACT

The root of Carlina acaulis L. has been widely used in traditional medicine for its antimicrobial properties. In this study, the fractionation of methanol extract from the root was conducted. Four fractions (A, B, C, and D) were obtained and tested against a range of bacteria and fungi. The results showed promising antibacterial activity, especially against Bacillus cereus, where the minimal inhibitory concentration (MIC) was determined to be equal to 0.08 mg/mL and 0.16 mg/mL for heptane (fraction B) and ethyl acetate (fraction C), respectively. In the case of the methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300 strain, the same fractions yielded higher MIC values (2.5 and 5.0 mg/mL, respectively). This was accompanied by a lack of apparent cytotoxicity to normal human BJ foreskin fibroblasts, enterocytes derived from CaCo2 cells, and zebrafish embryos. Further analyses revealed the presence of bioactive chlorogenic acids in the fractionated extract, especially in the ethyl acetate fraction (C). These findings support the traditional use of the root from C. acaulis and pave the way for the development of new formulations for treating bacterial infections. This was further evaluated in a proof-of-concept experiment where fraction C was used in the ointment formulation, which maintained high antimicrobial activity against MRSA and displayed low toxicity towards cultured fibroblasts.


Subject(s)
Anti-Bacterial Agents , Bacillus cereus , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Plant Extracts , Plant Roots , Methicillin-Resistant Staphylococcus aureus/drug effects , Bacillus cereus/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Roots/chemistry , Animals , Caco-2 Cells , Methanol/chemistry , Chemical Fractionation , Zebrafish
17.
J Mass Spectrom ; 59(6): e5035, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38726730

ABSTRACT

Bupleuri Radix is an important medicinal plant, which has been used in China and other Asian countries for thousands of years. Cultivated Bupleurum chinense DC. (B. chinense) is the main commodity of Bupleuri Radix. The benefits of intercropping with various crops for B. chinense have been recognized; however, the influence of intercropping on the chemical composition of B. chinense is still unclear yet. In this study, intercropping with sorghum and maize exhibited little effect on the root length, root diameter, and single root mass of B. chinense. Only the intercropping with sorghum increased the root length of B. chinense slightly compared to the monocropping. In addition, 200 compounds were identified by UHPLC-Q-TOF-MS, and metabolomic combined with the Venn diagram and heatmap analysis showed apparent separation between the intercropped and monocropped B. chinense samples. Intercropping with sorghum and maize could both increase the saikosaponins, fatty acyls, and organic acids in B. chinense while decreasing the phospholipids. The influence of intercropping on the saikosaponin biosynthesis was probably related with the light intensity and hormone levels in B. chinense. Moreover, we found intercropping increased the anti-inflammatory activity of B. chinense. This study provides a scientific reference for the beneficial effect of intercropping mode of B. chinense.


Subject(s)
Bupleurum , Metabolomics , Oleanolic Acid , Plant Roots , Saponins , Sorghum , Zea mays , Sorghum/metabolism , Sorghum/chemistry , Bupleurum/chemistry , Bupleurum/metabolism , Zea mays/metabolism , Zea mays/chemistry , Saponins/analysis , Saponins/metabolism , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/analysis , Oleanolic Acid/metabolism , Metabolomics/methods , Chromatography, High Pressure Liquid/methods , Plant Roots/metabolism , Plant Roots/chemistry , Mass Spectrometry/methods , Agriculture/methods , Liquid Chromatography-Mass Spectrometry
18.
Curr Biol ; 34(10): R507-R509, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38772340

ABSTRACT

Arbuscular mycorrhiza, an ancient symbiosis with soil fungi, support mineral nutrition in most plants. How roots recognize such symbiotic fungi has long been debated. Recent research identifies a Medicago truncatula receptor as a key player in triggering symbiont accommodation responses.


Subject(s)
Medicago truncatula , Mycorrhizae , Symbiosis , Symbiosis/physiology , Medicago truncatula/microbiology , Medicago truncatula/metabolism , Medicago truncatula/physiology , Mycorrhizae/physiology , Plant Roots/microbiology , Plant Roots/metabolism , Light , Plant Proteins/metabolism , Plant Proteins/genetics , Green Light
19.
Metabolomics ; 20(3): 58, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773056

ABSTRACT

INTRODUCTION: Bio stimulants are substances and/or microorganisms that are used to improve plant growth and crop yields by modulating physiological processes and metabolism of plants. While research has primarily focused on the broad effects of bio stimulants in crops, understanding their cellular and molecular influences in plants, using metabolomic analysis, could elucidate their effectiveness and offer possibilities for fine-tuning their application. One such bio stimulant containing galacturonic acid as elicitor is used in agriculture to improve wheat vigor and strengthen resistance to lodging. OBJECTIVE: However, whether a metabolic response is evolved by plants treated with this bio stimulant and the manner in which the latter might regulate plant metabolism have not been studied. METHOD: Therefore, the present study used 1H-NMR and LC-MS to assess changes in primary and secondary metabolites in the roots, stems, and leaves of wheat (Triticum aestivum) treated with the bio stimulant. Orthogonal partial least squares discriminant analysis effectively distinguished between treated and control samples, confirming a metabolic response to treatment in the roots, stems, and leaves of wheat. RESULTS: Fold-change analysis indicated that treatment with the bio stimulation solution appeared to increase the levels of hydroxycinnamic acid amides, lignin, and flavonoid metabolism in different plant parts, potentially promoting root growth, implantation, and developmental cell wall maturation and lignification. CONCLUSION: These results demonstrate how non-targeted metabolomic approaches can be utilized to investigate and monitor the effects of new agroecological solutions based on systemic responses.


Subject(s)
Metabolomics , Triticum , Triticum/metabolism , Triticum/drug effects , Metabolomics/methods , Chromatography, Liquid/methods , Mass Spectrometry/methods , Magnetic Resonance Spectroscopy/methods , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Roots/metabolism , Plant Roots/drug effects , Liquid Chromatography-Mass Spectrometry
20.
Sci Rep ; 14(1): 11603, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773236

ABSTRACT

Zikui (Camellia sinensis cv. Zikui) is a recently discovered cultivar of local purple tea in Guizhou, China. It is a purple leaf bud mutation material of Meitan Taicha (Camellia sinensis cv. 'Meitan-taicha') 'N61' strain, which is an important local germplasm resource in Guizhou. It is also a model plant for the study of anthocyanins, but the limited germplasm resources and the limitation of traditional reproduction hinder its application. Here, an efficient regeneration system is established by using hypocotyl as explants for the first time. Different plant growth regulators (PGRs) are evaluated during different regeneration processes including callus and root induction. According to our findings, using the optimal disinfection conditions, the seed embryo contamination rate is 17.58%. Additionally, the mortality rate is 9.69%, while the survival rate is measured as 72.73%. Moreover, the highest germination rate of 93.64% is observed under MS + 2.40 mg/L GA3 medium conditions. The optimal callus induction rate is 95.19%, while the optimal adventitious bud differentiation rate is 20.74%, Medium with 1.6 mg/L IBA achieved 68.6% rooting of the adventitious shoots. The survival rate is more than 65% after 6 days growth in the cultivated matrix. In summary, our research aims to establish a regeneration system for Zikui tea plants and design a transformation system for tea plant tissue seedlings. This will enable transfer of the target gene and ultimately facilitate the cultivation of new tea varieties with unique characteristics.


Subject(s)
Camellia sinensis , Hypocotyl , Plant Growth Regulators , Regeneration , Hypocotyl/growth & development , Camellia sinensis/growth & development , Camellia sinensis/physiology , Camellia sinensis/genetics , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Roots/growth & development , Germination , Tea
SELECTION OF CITATIONS
SEARCH DETAIL
...