Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 307
Filter
1.
Physiol Plant ; 176(3): e14324, 2024.
Article in English | MEDLINE | ID: mdl-38705866

ABSTRACT

Broomrape (Orobanche cumana) negatively affects sunflower, causing severe yield losses, and thus, there is a need to control O. cumana infestation. Brassinosteroids (BRs) play key roles in plant growth and provide resilience to weed infection. This study aims to evaluate the mechanisms by which BRs ameliorate O. cumana infection in sunflower (Helianthus annuus). Seeds were pretreated with BRs (1, 10, and 100 nM) and O. cumana inoculation for 4 weeks under soil conditions. O. cumana infection significantly reduced plant growth traits, photosynthesis, endogenous BRs and regulated the plant defence (POX, GST), BRs signalling (BAK1, BSK1 to BSK4) and synthesis (BRI1, BR6OX2) genes. O. cumana also elevated the levels of malondialdehyde (MDA), hydroxyl radical (OH-), hydrogen peroxide (H2O2) and superoxide (O2 •-) in leaves/roots by 77/112, 63/103, 56/97 and 54/89%, as well as caused ultrastructural cellular damages in both leaves and roots. In response, plants activated a few enzymes, superoxide dismutase (SOD), peroxidase (POD) and reduced glutathione but were unable to stimulate the activity of ascorbate peroxidase (APX) and catalase (CAT) enzymes. The addition of BRs (especially at 10 nM) notably recovered the ultrastructural cellular damages, lowered the production of oxidative stress, activated the key enzymatic antioxidants and induced the phenolic and lignin contents. The downregulation in the particular genes by BRs is attributed to the increased resilience of sunflower via a susceptible reaction. In a nutshell, BRs notably enhanced the sunflower resistance to O. cumana infection by escalating the plant immunity responses, inducing systemic acquired resistance, reducing oxidative or cellular damages, and modulating the expression of BR synthesis or signalling genes.


Subject(s)
Brassinosteroids , Helianthus , Orobanche , Seeds , Helianthus/drug effects , Helianthus/immunology , Helianthus/physiology , Brassinosteroids/pharmacology , Brassinosteroids/metabolism , Orobanche/physiology , Orobanche/drug effects , Seeds/drug effects , Seeds/immunology , Plant Weeds/drug effects , Plant Weeds/physiology , Plant Diseases/parasitology , Plant Diseases/immunology , Plant Immunity/drug effects , Gene Expression Regulation, Plant/drug effects , Photosynthesis/drug effects , Plant Roots/immunology , Plant Roots/drug effects , Hydrogen Peroxide/metabolism , Plant Leaves/drug effects , Plant Leaves/immunology , Plant Proteins/metabolism , Plant Proteins/genetics , Malondialdehyde/metabolism
2.
Plant Cell Physiol ; 65(5): 681-693, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38549511

ABSTRACT

In nature, plants are constantly colonized by a massive diversity of microbes engaged in mutualistic, pathogenic or commensal relationships with the host. Molecular patterns present in these microbes activate pattern-triggered immunity (PTI), which detects microbes in the apoplast or at the tissue surface. Whether and how PTI distinguishes among soil-borne pathogens, opportunistic pathogens, and commensal microbes within the soil microbiota remains unclear. PTI is a multimodal series of molecular events initiated by pattern perception, such as Ca2+ influx, reactive oxygen burst, and extensive transcriptional and metabolic reprogramming. These short-term responses may manifest within minutes to hours, while the long-term consequences of chronic PTI activation persist for days to weeks. Chronic activation of PTI is detrimental to plant growth, so plants need to coordinate growth and defense depending on the surrounding biotic and abiotic environments. Recent studies have demonstrated that root-associated commensal microbes can activate or suppress immune responses to variable extents, clearly pointing to the role of PTI in root-microbiota interactions. However, the molecular mechanisms by which root commensals interfere with root immunity and root immunity modulates microbial behavior remain largely elusive. Here, with a focus on the difference between short-term and long-term PTI responses, we summarize what is known about microbial interference with host PTI, especially in the context of root microbiota. We emphasize some missing pieces that remain to be characterized to promote the ultimate understanding of the role of plant immunity in root-microbiota interactions.


Subject(s)
Microbiota , Plant Immunity , Plant Roots , Plant Roots/microbiology , Plant Roots/immunology , Microbiota/physiology , Symbiosis , Soil Microbiology , Plants/microbiology , Plants/immunology , Plants/metabolism
3.
Plant J ; 118(5): 1500-1515, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38516730

ABSTRACT

Meloidogyne incognita is one of the most widely distributed plant-parasitic nematodes and causes severe economic losses annually. The parasite produces effector proteins that play essential roles in successful parasitism. Here, we identified one such effector named MiCE108, which is exclusively expressed within the nematode subventral esophageal gland cells and is upregulated in the early parasitic stage of M. incognita. A yeast signal sequence trap assay showed that MiCE108 contains a functional signal peptide for secretion. Virus-induced gene silencing of MiCE108 impaired the parasitism of M. incognita in Nicotiana benthamiana. The ectopic expression of MiCE108 in Arabidopsis suppressed the deposition of callose, the generation of reactive oxygen species, and the expression of marker genes for bacterial flagellin epitope flg22-triggered immunity, resulting in increased susceptibility to M. incognita, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst) DC3000. The MiCE108 protein physically associates with the plant defense protease RD21A and promotes its degradation via the endosomal-dependent pathway, or 26S proteasome. Consistent with this, knockout of RD21A compromises the innate immunity of Arabidopsis and increases its susceptibility to a broad range of pathogens, including M. incognita, strongly indicating a role in defense against this nematode. Together, our data suggest that M. incognita deploys the effector MiCE108 to target Arabidopsis cysteine protease RD21A and affect its stability, thereby suppressing plant innate immunity and facilitating parasitism.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Nicotiana , Plant Diseases , Tylenchoidea , Animals , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/parasitology , Tylenchoidea/physiology , Tylenchoidea/pathogenicity , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Diseases/parasitology , Plant Diseases/immunology , Plant Diseases/microbiology , Nicotiana/genetics , Nicotiana/parasitology , Nicotiana/immunology , Nicotiana/metabolism , Pseudomonas syringae/physiology , Pseudomonas syringae/pathogenicity , Botrytis/physiology , Botrytis/pathogenicity , Cysteine Proteases/metabolism , Cysteine Proteases/genetics , Plant Immunity , Host-Parasite Interactions , Plant Roots/parasitology , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Helminth Proteins/metabolism , Helminth Proteins/genetics
4.
Nature ; 625(7996): 750-759, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38200311

ABSTRACT

Iron is critical during host-microorganism interactions1-4. Restriction of available iron by the host during infection is an important defence strategy, described as nutritional immunity5. However, this poses a conundrum for externally facing, absorptive tissues such as the gut epithelium or the plant root epidermis that generate environments that favour iron bioavailability. For example, plant roots acquire iron mostly from the soil and, when iron deficient, increase iron availability through mechanisms that include rhizosphere acidification and secretion of iron chelators6-9. Yet, the elevated iron bioavailability would also be beneficial for the growth of bacteria that threaten plant health. Here we report that microorganism-associated molecular patterns such as flagellin lead to suppression of root iron acquisition through a localized degradation of the systemic iron-deficiency signalling peptide Iron Man 1 (IMA1) in Arabidopsis thaliana. This response is also elicited when bacteria enter root tissues, but not when they dwell on the outer root surface. IMA1 itself has a role in modulating immunity in root and shoot, affecting the levels of root colonization and the resistance to a bacterial foliar pathogen. Our findings reveal an adaptive molecular mechanism of nutritional immunity that affects iron bioavailability and uptake, as well as immune responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Bacteria , Intracellular Signaling Peptides and Proteins , Iron , Pathogen-Associated Molecular Pattern Molecules , Plant Roots , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis/microbiology , Arabidopsis Proteins/metabolism , Bacteria/immunology , Bacteria/metabolism , Flagellin/immunology , Gene Expression Regulation, Plant , Intracellular Signaling Peptides and Proteins/metabolism , Iron/metabolism , Plant Immunity , Plant Roots/immunology , Plant Roots/metabolism , Plant Roots/microbiology , Plant Shoots/immunology , Plant Shoots/metabolism , Plant Shoots/microbiology , Rhizosphere , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism
5.
Carbohydr Polym ; 277: 118839, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34893256

ABSTRACT

Lipopolysaccharides, the major outer membrane components of Gram-negative bacteria, are crucial actors of the host-microbial dialogue. They can contribute to the establishment of either symbiosis or bacterial virulence, depending on the bacterial lifestyle. Plant microbiota shows great complexity, promotes plant health and growth and assures protection from pathogens. How plants perceive LPS from plant-associated bacteria and discriminate between beneficial and pathogenic microbes is an open and urgent question. Here, we report on the structure, conformation, membrane properties and immune recognition of LPS isolated from the Arabidopsis thaliana root microbiota member Herbaspirillum sp. Root189. The LPS consists of an O-methylated and variously acetylated D-rhamnose containing polysaccharide with a rather hydrophobic surface. Plant immunology studies in A. thaliana demonstrate that the native acetylated O-antigen shields the LPS from immune recognition whereas the O-deacylated one does not. These findings highlight the role of Herbaspirillum LPS within plant-microbial crosstalk, and how O-antigen modifications influence membrane properties and modulate LPS host recognition.


Subject(s)
Arabidopsis/chemistry , Herbaspirillum/immunology , Lipopolysaccharides/immunology , O Antigens/immunology , Plant Roots/chemistry , Arabidopsis/immunology , Arabidopsis/microbiology , Lipopolysaccharides/chemistry , Lipopolysaccharides/isolation & purification , O Antigens/chemistry , O Antigens/isolation & purification , Plant Roots/immunology , Plant Roots/microbiology
6.
Int J Mol Sci ; 22(23)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34884977

ABSTRACT

Soybean cyst nematode (SCN, Heterodera glycines) is an obligate sedentary biotroph that poses major threats to soybean production globally. Recently, multiple miRNAome studies revealed that miRNAs participate in complicated soybean-SCN interactions by regulating their target genes. However, the functional roles of miRNA and target genes regulatory network are still poorly understood. In present study, we firstly investigated the expression patterns of miR159 and targeted GmMYB33 genes. The results showed miR159-3p downregulation during SCN infection; conversely, GmMYB33 genes upregulated. Furthermore, miR159 overexpressing and silencing soybean hairy roots exhibited strong resistance and susceptibility to H. glycines, respectively. In particular, miR159-GAMYB genes are reported to be involve in GA signaling and metabolism. Therefore, we then investigated the effects of GA application on the expression of miR159-GAMYB module and the development of H. glycines. We found that GA directly controls the miR159-GAMYB module, and exogenous GA application enhanced endogenous biologically active GA1 and GA3, the abundance of miR159, lowered the expression of GmMYB33 genes and delayed the development of H. glycines. Moreover, SCN infection also results in endogenous GA content decreased in soybean roots. In summary, the soybean miR159-GmMYB33 module was directly involved in the GA-modulated soybean resistance to H. glycines.


Subject(s)
Gene Expression Regulation, Plant , Gibberellins/pharmacology , Glycine max/immunology , MicroRNAs/genetics , Plant Diseases/immunology , Plant Proteins/metabolism , Tylenchoidea/physiology , Animals , Plant Diseases/parasitology , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/immunology , Plant Roots/parasitology , Glycine max/drug effects , Glycine max/growth & development , Glycine max/parasitology
7.
Cell Host Microbe ; 29(10): 1507-1520.e4, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34610294

ABSTRACT

Although plant roots encounter a plethora of microorganisms in the surrounding soil, at the rhizosphere, plants exert selective forces on their bacterial colonizers. Unlike immune recognition of pathogenic bacteria, the mechanisms by which beneficial bacteria are selected and how they interact with the plant immune system are not well understood. To better understand this process, we studied the interaction of auxin-producing Bacillus velezensis FZB42 with Arabidopsis roots and found that activation of the plant immune system is necessary for efficient bacterial colonization and auxin secretion. A feedback loop is established in which bacterial colonization triggers an immune reaction and production of reactive oxygen species, which, in turn, stimulate auxin production by the bacteria. Auxin promotes bacterial survival and efficient root colonization, allowing the bacteria to inhibit fungal infection and promote plant health. Thus, a feedback loop between bacteria and the plant immune system promotes the fitness of both partners.


Subject(s)
Arabidopsis/immunology , Indoleacetic Acids/metabolism , Plant Immunity , Plant Roots/microbiology , Arabidopsis/genetics , Arabidopsis/microbiology , Bacillus/genetics , Bacillus/growth & development , Bacillus/metabolism , Host Microbial Interactions , Plant Roots/immunology , Reactive Oxygen Species/immunology , Rhizosphere
8.
Sci Rep ; 11(1): 17491, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34471168

ABSTRACT

The root-lesion nematode, Pratylenchus thornei, is one of the major plant-parasitic nematode species causing significant yield losses in chickpea (Cicer arietinum). In order to identify the underlying mechanisms of resistance to P. thornei, the transcriptomes of control and inoculated roots of three chickpea genotypes viz. D05253 > F3TMWR2AB001 (resistant advanced breeding line), PBA HatTrick (moderately resistant cultivar), and Kyabra (susceptible cultivar) were studied at 20 and 50 days post inoculation using the RNA-seq approach. On analyzing the 633.3 million reads generated, 962 differentially expressed genes (DEGs) were identified. Comparative analysis revealed that the majority of DEGs upregulated in the resistant genotype were downregulated in the moderately resistant and susceptible genotypes. Transcription factor families WRKY and bZIP were uniquely expressed in the resistant genotype. The genes Cysteine-rich receptor-like protein kinase 10, Protein lifeguard-like, Protein detoxification, Bidirectional sugar transporter Sugars Will Eventually be Exported Transporters1 (SWEET1), and Subtilisin-like protease were found to play cross-functional roles in the resistant chickpea genotype against P. thornei. The identified candidate genes for resistance to P. thornei in chickpea can be explored further to develop markers and accelerate the introgression of P. thornei resistance into elite chickpea cultivars.


Subject(s)
Cicer/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant , Plant Diseases/genetics , Plant Proteins/metabolism , Transcriptome , Tylenchoidea/physiology , Animals , Cicer/immunology , Cicer/parasitology , Disease Resistance/immunology , Host-Parasite Interactions , Plant Diseases/parasitology , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/parasitology
9.
BMC Plant Biol ; 21(1): 392, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34418971

ABSTRACT

BACKGROUND: Sorghum yields in sub-Saharan Africa (SSA) are greatly reduced by parasitic plants of the genus Striga (witchweed). Vast global sorghum genetic diversity collections, as well as the availability of modern sequencing technologies, can be potentially harnessed to effectively manage the parasite. RESULTS: We used laboratory assays - rhizotrons to screen a global sorghum diversity panel to identify new sources of resistance to Striga; determine mechanisms of resistance, and elucidate genetic loci underlying the resistance using genome-wide association studies (GWAS). New Striga resistant sorghum determined by the number, size and biomass of parasite attachments were identified. Resistance was by; i) mechanical barriers that blocked parasite entry, ii) elicitation of a hypersensitive reaction that interfered with parasite development, and iii) the inability of the parasite to develop vascular connections with hosts. Resistance genes underpinning the resistance corresponded with the resistance mechanisms and included pleiotropic drug resistance proteins that transport resistance molecules; xylanase inhibitors involved in cell wall fortification and hormonal regulators of resistance response, Ethylene Response Factors. CONCLUSIONS: Our findings are of fundamental importance to developing durable and broad-spectrum resistance against Striga and have far-reaching applications in many SSA countries where Striga threatens the livelihoods of millions of smallholder farmers that rely on sorghum as a food staple.


Subject(s)
Geography , Host-Parasite Interactions/genetics , Plant Diseases/parasitology , Plant Immunity/genetics , Sorghum/genetics , Sorghum/immunology , Striga/genetics , Striga/parasitology , Africa South of the Sahara , Edible Grain/genetics , Edible Grain/immunology , Genetic Variation , Genome-Wide Association Study , Genotype , Host-Parasite Interactions/physiology , Plant Diseases/immunology , Plant Immunity/physiology , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/parasitology
10.
Plant J ; 107(5): 1432-1446, 2021 09.
Article in English | MEDLINE | ID: mdl-34171147

ABSTRACT

Non-host resistance (NHR), which protects all members of a plant species from non-adapted or non-host plant pathogens, is the most common form of plant immunity. NHR provides the most durable and robust form of broad-spectrum immunity against non-adaptive pathogens pathogenic to other crop species. In a mutant screen for loss of Arabidopsis (Arabidopsis thaliana) NHR against the soybean (Glycine max (L.) Merr.) pathogen Phytophthora sojae, the Phytophthora sojae-susceptible 30 (pss30) mutant was identified. The pss30 mutant is also susceptible to the soybean pathogen Fusarium virguliforme. PSS30 encodes a folate transporter, AtFOLT1, which was previously localized to chloroplasts and implicated in the transport of folate from the cytosol to plastids. We show that two Arabidopsis folate biosynthesis mutants with reduced folate levels exhibit a loss of non-host immunity against P. sojae. As compared to the wild-type Col-0 ecotype, the steady-state folate levels are reduced in the pss1, atfolt1 and two folate biosynthesis mutants, suggesting that folate is required for non-host immunity. Overexpression of AtFOLT1 enhances immunity of transgenic soybean lines against two serious soybean pathogens, the fungal pathogen F. virguliforme and the soybean cyst nematode (SCN) Heterodera glycines. Transgenic lines showing enhanced SCN resistance also showed increased levels of folate accumulation. This study thus suggests that folate contributes to non-host plant immunity and that overexpression of a non-host resistance gene could be a suitable strategy for generating broad-spectrum disease resistance in crop plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Disease Resistance/genetics , Glycine max/immunology , Membrane Transport Proteins/metabolism , Plant Diseases/immunology , Plant Immunity/genetics , Animals , Arabidopsis Proteins/genetics , Ecotype , Folic Acid/metabolism , Fusarium/physiology , Gene Expression , Membrane Transport Proteins/genetics , Mutation , Phytophthora/physiology , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Leaves/parasitology , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/microbiology , Plant Roots/parasitology , Plants, Genetically Modified , Glycine max/genetics , Glycine max/microbiology , Glycine max/parasitology , Tylenchoidea/physiology
11.
BMC Plant Biol ; 21(1): 272, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34130637

ABSTRACT

BACKGROUND: Late blight seriously threatens potato cultivation worldwide. The severe and widespread damage caused by the fungal pathogen can lead to drastic decreases in potato yield. Although grafting technology has been widely used to improve crop resistance, the effects of grafting on potato late blight resistance as well as the associated molecular mechanisms remain unclear. Therefore, we performed RNA transcriptome sequencing analysis and the late blight resistance testing of the scion when the potato late blight-resistant variety Qingshu 9 and the susceptible variety Favorita were used as the rootstock and scion, respectively, and vice versa. The objective of this study was to evaluate the influence of the rootstock on scion disease resistance and to clarify the related molecular mechanisms. RESULTS: A Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that the expression levels of genes related to plant-pathogen interactions, plant mitogen-activated protein kinase (MAPK) signaling pathways, and plant hormone signal transduction pathways were significantly up-regulated in the scion when Qingshu 9 was used as the rootstock. Some of these genes encoded calcium-dependent protein kinases (CDPKs), chitin elicitor receptor kinases (CERKs), LRR receptor serine/threonine protein kinases (LRR-LRKs), NPR family proteins in the salicylic acid synthesis pathway, and MAPKs which were potato late blight response proteins. When Favorita was used as the rootstock, only a few genes of late blight response genes were upregulated in the scion of Qingshu 9. Grafted plants using resistant variety as rootstocks inoculated with P. infestans spores showed significant reductions in lesion size while no significant difference in lesion size was observed when susceptible variety was used as the rootstock. We also showed that this induction of disease resistance in scions, especially scions derived from susceptible potato varieties was mediated by the up-regulation of expression of genes involved in plant disease resistance in scions. CONCLUSIONS: Our results showed that potato grafting using late blight resistant varieties as rootstocks could render or enhance resistance to late blight in scions derived from susceptible varieties via up-regulating the expression of disease resistant genes in scions. The results provide the basis for exploring the molecular mechanism underlying the effects of rootstocks on scion disease resistance.


Subject(s)
Phytophthora infestans , Plant Diseases/microbiology , Plant Roots/immunology , Solanum tuberosum/genetics , Disease Resistance/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Genome, Plant , Horticulture/methods , MAP Kinase Signaling System , Plant Diseases/immunology , Solanum tuberosum/immunology , Solanum tuberosum/microbiology
12.
Plant Cell Environ ; 44(9): 3122-3139, 2021 09.
Article in English | MEDLINE | ID: mdl-34053100

ABSTRACT

Although many phenylpropanoid pathway-derived molecules act as physical and chemical barriers to pests and pathogens, comparatively little is known about their role in regulating plant immunity. To explore this research field, we transiently perturbed the phenylpropanoid pathway through application of the CINNAMIC ACID-4-HYDROXYLASE (C4H) inhibitor piperonylic acid (PA). Using bioassays involving diverse pests and pathogens, we show that transient C4H inhibition triggers systemic, broad-spectrum resistance in higher plants without affecting growth. PA treatment enhances tomato (Solanum lycopersicum) resistance in field and laboratory conditions, thereby illustrating the potential of phenylpropanoid pathway perturbation in crop protection. At the molecular level, transcriptome and metabolome analyses reveal that transient C4H inhibition in tomato reprograms phenylpropanoid and flavonoid metabolism, systemically induces immune signalling and pathogenesis-related genes, and locally affects reactive oxygen species metabolism. Furthermore, C4H inhibition primes cell wall modification and phenolic compound accumulation in response to root-knot nematode infection. Although PA treatment induces local accumulation of the phytohormone salicylic acid, the PA resistance phenotype is preserved in tomato plants expressing the salicylic acid-degrading NahG construct. Together, our results demonstrate that transient phenylpropanoid pathway perturbation is a conserved inducer of plant resistance and thus highlight the crucial regulatory role of this pathway in plant immunity.


Subject(s)
Benzoates/pharmacology , Disease Resistance/drug effects , Animals , Botrytis , Flavonoids/metabolism , Gene Expression Profiling , Solanum lycopersicum/drug effects , Solanum lycopersicum/immunology , Solanum lycopersicum/microbiology , Metabolic Networks and Pathways/drug effects , Nematoda/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Diseases/parasitology , Plant Growth Regulators/metabolism , Plant Roots/immunology , Plant Roots/parasitology , Pseudomonas syringae , Transcriptome
13.
BMC Plant Biol ; 21(1): 217, 2021 May 14.
Article in English | MEDLINE | ID: mdl-33990182

ABSTRACT

BACKGROUND: Soybean cyst nematode, Heterodera glycines, is one of the most devastating pathogens of soybean and causes severe annual yield losses worldwide. Different soybean varieties exhibit different responses to H. glycines infection at various levels, such as the genomic, transcriptional, proteomic and metabolomic levels. However, there have not yet been any reports of the differential responses of incompatible and compatible soybean varieties infected with H. glycines based on combined metabolomic and transcriptomic analyses. RESULTS: In this study, the incompatible soybean variety PI437654 and three compatible soybean varieties, Williams 82, Zhonghuang 13 and Hefeng 47, were used to clarify the differences in metabolites and transcriptomics before and after the infection with HG1.2.3.5.7. A local metabolite-calibrated database was used to identify potentially differential metabolites, and the differences in metabolites and metabolic pathways were compared between the incompatible and compatible soybean varieties after inoculation with HG1.2.3.5.7. In total, 37 differential metabolites and 20 KEGG metabolic pathways were identified, which were divided into three categories: metabolites/pathways overlapped in the incompatible and compatible soybeans, and metabolites/pathways specific to either the incompatible or compatible soybean varieties. Twelve differential metabolites were found to be involved in predicted KEGG metabolite pathways. Moreover, 14 specific differential metabolites (such as significantly up-regulated nicotine and down-regulated D-aspartic acid) and their associated KEGG pathways (such as the tropane, piperidine and pyridine alkaloid biosynthesis, alanine, aspartate and glutamate metabolism, sphingolipid metabolism and arginine biosynthesis) were significantly altered and abundantly enriched in the incompatible soybean variety PI437654, and likely played pivotal roles in defending against HG1.2.3.5.7 infection. Three key metabolites (N-acetyltranexamic acid, nicotine and D,L-tryptophan) found to be significantly up-regulated in the incompatible soybean variety PI437654 infected by HG1.2.3.5.7 were classified into two types and used for combined analyses with the transcriptomic expression profiling. Associated genes were predicted, along with the likely corresponding biological processes, cellular components, molecular functions and pathways. CONCLUSIONS: Our results not only identified potential novel metabolites and associated genes involved in the incompatible response of PI437654 to soybean cyst nematode HG1.2.3.5.7, but also provided new insights into the interactions between soybeans and soybean cyst nematodes.


Subject(s)
Glycine max/genetics , Glycine max/immunology , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Nematode Infections/immunology , Plant Diseases/genetics , Plant Diseases/immunology , Animals , Crops, Agricultural/genetics , Crops, Agricultural/immunology , Crops, Agricultural/metabolism , Gene Expression Regulation, Plant , Genetic Variation , Genomics , Genotype , Plant Roots/genetics , Plant Roots/immunology , Proteomics , Glycine max/metabolism , Transcriptome , Tylenchoidea/physiology
14.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article in English | MEDLINE | ID: mdl-33879573

ABSTRACT

Plants have an innate immune system to fight off potential invaders that is based on the perception of nonself or modified-self molecules. Microbe-associated molecular patterns (MAMPs) are evolutionarily conserved microbial molecules whose extracellular detection by specific cell surface receptors initiates an array of biochemical responses collectively known as MAMP-triggered immunity (MTI). Well-characterized MAMPs include chitin, peptidoglycan, and flg22, a 22-amino acid epitope found in the major building block of the bacterial flagellum, FliC. The importance of MAMP detection by the plant immune system is underscored by the large diversity of strategies used by pathogens to interfere with MTI and that failure to do so is often associated with loss of virulence. Yet, whether or how MTI functions beyond pathogenic interactions is not well understood. Here we demonstrate that a community of root commensal bacteria modulates a specific and evolutionarily conserved sector of the Arabidopsis immune system. We identify a set of robust, taxonomically diverse MTI suppressor strains that are efficient root colonizers and, notably, can enhance the colonization capacity of other tested commensal bacteria. We highlight the importance of extracellular strategies for MTI suppression by showing that the type 2, not the type 3, secretion system is required for the immunomodulatory activity of one robust MTI suppressor. Our findings reveal that root colonization by commensals is controlled by MTI, which, in turn, can be selectively modulated by specific members of a representative bacterial root microbiota.


Subject(s)
Microbiota/physiology , Plant Immunity/immunology , Plant Roots/microbiology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Bacteria/metabolism , Gene Expression/genetics , Gene Expression Regulation, Plant/genetics , Immunity , Microbiota/immunology , Plant Diseases/microbiology , Plant Roots/immunology , Plants/microbiology , Soil Microbiology , Symbiosis/immunology , Virulence
15.
Commun Biol ; 4(1): 372, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33742112

ABSTRACT

Phytophthora sojae is a pathogen that causes stem and root rot in soybean (Glycine max [L.] Merr.). We previously demonstrated that GmBTB/POZ, a BTB/POZ domain-containing nuclear protein, enhances resistance to P. sojae in soybean, via a process that depends on salicylic acid (SA). Here, we demonstrate that GmBTB/POZ associates directly with soybean LIKE HETEROCHROMATIN PROTEIN1 (GmLHP1) in vitro and in vivo and promotes its ubiquitination and degradation. Both overexpression and RNA interference analysis of transgenic lines demonstrate that GmLHP1 negatively regulates the response of soybean to P. sojae by reducing SA levels and repressing GmPR1 expression. The WRKY transcription factor gene, GmWRKY40, a SA-induced gene in the SA signaling pathway, is targeted by GmLHP1, which represses its expression via at least two mechanisms (directly binding to its promoter and impairing SA accumulation). Furthermore, the nuclear localization of GmLHP1 is required for the GmLHP1-mediated negative regulation of immunity, SA levels and the suppression of GmWRKY40 expression. Finally, GmBTB/POZ releases GmLHP1-regulated GmWRKY40 suppression and increases resistance to P. sojae in GmLHP1-OE hairy roots. These findings uncover a regulatory mechanism by which GmBTB/POZ-GmLHP1 modulates resistance to P. sojae in soybean, likely by regulating the expression of downstream target gene GmWRKY40.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Glycine max/microbiology , Phytophthora/pathogenicity , Plant Roots/microbiology , Plants, Genetically Modified/microbiology , Soybean Proteins/metabolism , BTB-POZ Domain , Chromosomal Proteins, Non-Histone/genetics , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Phytophthora/immunology , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/immunology , Plants, Genetically Modified/metabolism , Proteolysis , Soybean Proteins/genetics , Glycine max/genetics , Glycine max/immunology , Glycine max/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitination
16.
Mol Plant Pathol ; 22(5): 495-507, 2021 05.
Article in English | MEDLINE | ID: mdl-33709540

ABSTRACT

TAXONOMY: Phylum Nematoda; class Chromadorea; order Rhabditida; suborder Tylenchina; infraorder Tylenchomorpha; superfamily Tylenchoidea; family Heteroderidae; subfamily Heteroderinae; Genus Globodera. BIOLOGY: Potato cyst nematodes (PCN) are biotrophic, sedentary endoparasitic nematodes. Invasive (second) stage juveniles (J2) hatch from eggs in response to the presence of host root exudates and subsequently locate and invade the host. The nematodes induce the formation of a large, multinucleate syncytium in host roots, formed by fusion of up to 300 root cell protoplasts. The nematodes rely on this single syncytium for the nutrients required to develop through a further three moults to the adult male or female stage. This extended period of biotrophy-between 4 and 6 weeks in total-is almost unparalleled in plant-pathogen interactions. Females remain at the root while adult males revert to the vermiform body plan of the J2 and leave the root to locate and fertilize the female nematodes. The female body forms a cyst that contains the next generation of eggs. HOST RANGE: The host range of PCN is limited to plants of the Solanaceae family. While the most economically important hosts are potato (Solanum tuberosum), tomato (Solanum lycopersicum), and aubergine (Solanum melongena), over 170 species of Solanaceae are thought to be potential hosts for PCN (Sullivan et al., 2007). DISEASE SYMPTOMS: Symptoms are similar to those associated with nutrient deficiency, such as stunted growth, yellowing of leaves and reduced yields. This absence of specific symptoms reduces awareness of the disease among growers. DISEASE CONTROL: Resistance genes (where available in suitable cultivars), application of nematicides, crop rotation. Great effort is put into reducing the spread of PCN through quarantine measures and use of certified seed stocks. USEFUL WEBSITES: Genomic information for PCN is accessible through WormBase ParaSite.


Subject(s)
Genome, Helminth/genetics , Host-Parasite Interactions , Plant Diseases/parasitology , Solanum lycopersicum/parasitology , Solanum tuberosum/parasitology , Tylenchoidea/physiology , Animals , Disease Resistance/genetics , Female , Genomics , Host Specificity/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/immunology , Male , Plant Diseases/prevention & control , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/parasitology , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/parasitology , Solanum tuberosum/genetics , Solanum tuberosum/immunology , Tylenchoidea/genetics
17.
Plant Physiol ; 185(2): 424-440, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33721890

ABSTRACT

Orobanche cumana is a holoparasitic plant that attaches to host-plant roots and seriously reduces the yield of sunflower (Helianthus annuus L.). Effective control methods are lacking with only a few known sources of genetic resistance. In this study, a seed-soak agroinoculation (SSA) method was established, and recombinant tobacco rattle virus vectors were constructed to express RNA interference (RNAi) inducers to cause virus-induced gene silencing (VIGS) in sunflower. A host target gene HaTubulin was systemically silenced in both leaf and root tissues by the SSA-VIGS approach. Trans-species silencing of O. cumana genes were confirmed for 10 out of 11 target genes with silencing efficiency of 23.43%-92.67%. Knockdown of target OcQR1, OcCKX5, and OcWRI1 genes reduced the haustoria number, and silencing of OcEXPA6 caused further phenotypic abnormalities such as shorter tubercles and necrosis. Overexpression of OcEXPA6 caused retarded root growth in alfalfa (Medicago sativa). The results demonstrate that these genes play an important role in the processes of O. cumana parasitism. High-throughput small RNA (sRNA) sequencing and bioinformatics analyses unveiled the distinct features of target gene-derived siRNAs in O. cumana such as siRNA transitivity, strand polarity, hotspot region, and 21/22-nt siRNA predominance, the latter of which was confirmed by Northern blot experiments. The possible RNAi mechanism is also discussed by analyzing RNAi machinery genes in O. cumana. Taken together, we established an efficient host-induced gene silencing technology for both functional genetics studies and potential control of O. cumana. The ease and effectiveness of this strategy could potentially be useful for other species provided they are amenable to SSA.


Subject(s)
Disease Resistance/genetics , Helianthus/genetics , Orobanche/physiology , Plant Diseases/immunology , Plant Proteins/genetics , Computational Biology , Gene Expression , Gene Silencing , Helianthus/immunology , High-Throughput Nucleotide Sequencing , Medicago sativa/genetics , Medicago sativa/growth & development , Necrosis , Orobanche/genetics , Plant Leaves/genetics , Plant Leaves/immunology , Plant Roots/genetics , Plant Roots/immunology , Plant Viruses/genetics , RNA Interference , Seeds/genetics , Seeds/immunology , Sequence Analysis, RNA , Tubulin/genetics
18.
Int J Biol Macromol ; 179: 333-344, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33675834

ABSTRACT

A new strategy regarding the fabrication of chitosan (CS) or ethylene diamine tetraacetic acid (EDTA) on graphene oxide (GO) was performed. The nematocidal potential against Meloidogyne incognita causing root-knot infection in eggplant was tested. The plant immune response was investigated through measuring the photosynthetic pigments, phenols and proline contents, oxidative stress, and antioxidant enzymes activity. Results indicating that, the treatment by pure GO recorded the most mortality percentages of M. incognita 2nd juveniles followed by GO-CS then GO-EDTA. In vivo greenhouse experiments reveals that, the most potent treatment in reducing nematodes was GO-CS which recorded 85.42%, 75.3%, 55.5%, 87.81%, and 81.32% in numbers of 2nd juveniles, galls, females, egg masses and the developmental stage, respectively. The highest chlorophyll a (104%), chlorophyll b (46%), total phenols (137.5%), and free proline (145.2%) were recorded in GO-CS. The highest malondialdehyde (MDA) value was achieved by GO-EDTA (7.22%), and hydrogen peroxide (H2O2) content by 47.51% after the treatment with pure GO. Treatment with GO-CS increased the activities of catalase (CAT) by 98.3%, peroxidase (POD) by 97.52%, polyphenol oxidase (PPO) by 113.8%, and superoxide dismutase (SOD) by 42.43%. The synthesized nanocomposites increases not only the nematocidal activity but also the plant systematic immune response.


Subject(s)
Chitosan/pharmacology , Graphite/pharmacology , Nematoda/drug effects , Plant Diseases , Plant Immunity/drug effects , Solanum melongena , Animals , Edetic Acid , Nematode Infections/immunology , Plant Diseases/immunology , Plant Diseases/parasitology , Plant Roots/immunology , Plant Roots/parasitology , Solanum melongena/immunology , Solanum melongena/parasitology
19.
BMC Plant Biol ; 21(1): 62, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33494714

ABSTRACT

BACKGROUND: Mexico is considered the diversification center for chili species, but these crops are susceptible to infection by pathogens such as Colletotrichum spp., which causes anthracnose disease and postharvest decay in general. Studies have been carried out with isolated strains of Colletotrichum in Capsicum plants; however, under growing conditions, microorganisms generally interact with others, resulting in an increase or decrease of their ability to infect the roots of C. chinense seedlings and thus, cause disease. RESULTS: Morphological changes were evident 24 h after inoculation (hai) with the microbial consortium, which consisted primarily of C. ignotum. High levels of diacylglycerol pyrophosphate (DGPP) and phosphatidic acid (PA) were found around 6 hai. These metabolic changes could be correlated with high transcription levels of diacylglycerol-kinase (CchDGK1 and CchDG31) at 3, 6 and 12 hai and also to pathogen gene markers, such as CchPR1 and CchPR5. CONCLUSIONS: Our data constitute the first evidence for the phospholipids signalling events, specifically DGPP and PA participation in the phospholipase C/DGK (PI-PLC/DGK) pathway, in the response of Capsicum to the consortium, offering new insights on chilis' defense responses to damping-off diseases.


Subject(s)
Capsicum/immunology , Colletotrichum/physiology , Microbial Consortia/physiology , Phospholipids/metabolism , Plant Diseases/immunology , Plant Immunity , Signal Transduction , Capsicum/genetics , Capsicum/microbiology , Colletotrichum/isolation & purification , Diacylglycerol Kinase , Diphosphates/metabolism , Glycerol/analogs & derivatives , Glycerol/metabolism , Host-Pathogen Interactions , Phosphatidic Acids/metabolism , Phylogeny , Plant Diseases/microbiology , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/microbiology , Seedlings/genetics , Seedlings/immunology , Seedlings/microbiology , Type C Phospholipases/metabolism
20.
PLoS One ; 16(1): e0245148, 2021.
Article in English | MEDLINE | ID: mdl-33481834

ABSTRACT

The pathological interaction between oak trees and Phytophthora cinnamomi has implications in the cork oak decline observed over the last decades in the Iberian Peninsula. During host colonization, the phytopathogen secretes effector molecules like elicitins to increase disease effectiveness. The objective of this study was to unravel the proteome changes associated with the cork oak immune response triggered by P. cinnamomi inoculation in a long-term assay, through SWATH-MS quantitative proteomics performed in the oak leaves. Using the Arabidopis proteome database as a reference, 424 proteins were confidently quantified in cork oak leaves, of which 80 proteins showed a p-value below 0.05 or a fold-change greater than 2 or less than 0.5 in their levels between inoculated and control samples being considered as altered. The inoculation of cork oak roots with P. cinnamomi increased the levels of proteins associated with protein-DNA complex assembly, lipid oxidation, response to endoplasmic reticulum stress, and pyridine-containing compound metabolic process in the leaves. In opposition, several proteins associated with cellular metabolic compound salvage and monosaccharide catabolic process had significantly decreased abundances. The most significant abundance variations were observed for the Ribulose 1,5-Bisphosphate Carboxylase small subunit (RBCS1A), Heat Shock protein 90-1 (Hsp90-1), Lipoxygenase 2 (LOX2) and Histone superfamily protein H3.3 (A8MRLO/At4G40030) revealing a pertinent role for these proteins in the host-pathogen interaction mechanism. This work represents the first SWATH-MS analysis performed in cork oak plants inoculated with P. cinnamomi and highlights host proteins that have a relevant action in the homeostatic states that emerge from the interaction between the oomycete and the host in the long term and in a distal organ.


Subject(s)
Phytophthora/immunology , Plant Diseases , Plant Proteins/immunology , Plant Roots , Quercus , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Roots/immunology , Plant Roots/microbiology , Proteomics , Quercus/immunology , Quercus/microbiology , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...