Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 624
Filter
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 523-533, jul. 2024. tab
Article in English | LILACS | ID: biblio-1538056

ABSTRACT

Leaves of Croton stipulaceuswere extracted (EHex, ECHCl3and EEtOH extracts) to assesstheir antioxidant potential, anti-inflammatory activity in murine models and acute toxicity. EEtOH showed the highest effect in DPPH (37.80% inhibition), FRAP (1065.00 ± 55.30 µmolFe2+) and total polyphenols (231.24 ± 9.05 meq AG/gM). EHex was the most active, ~ 50% inhibition of TPA-induced ear edema; while EEtOH (dose of 2 mg/ear) showed the highest inhibition in the chronic model (97% inhibition), and inhibited MPO activity (48%). In carrageenan-induced edema, ECHCl3(dose 500 mg/kg) was the most active. None of the extracts showed acute toxicity (LD50) at 2 g/kg (p.o.). This work is the first report that supports the traditional use of C. stipulaceusas an anti-inflammatory.


De las hojas de Croton stipulaceusse obtuvieron diferentes extractos (EHex, ECHCl3y EEtOH) evaluando el potencial antioxidante y la actividad antiinflamatoria en modelos murinos y la toxicidad aguda. El EEtOH mostró mayor efecto en DPPH (37.80% inhibición), FRAP (1065.00 ± 55.30 µmolFe2+) y polifenolestotales (231.24 ± 9.05 meq AG/gM). El EHex fue el más activo, cercano al 50% de inhibición del edema auricular inducido con TPA; mientras que el EEtOH (dosis de 2 mg/oreja) mostró la mayor inhibición en el modelo crónico (97% inhibición), e inhibió la actividad de la MPO (48%). En el edema inducido con carragenina, el ECHCl3(dosis 500 mg/kg) fue el más activo. Ninguno de los extractos mostró una toxicidad aguda (DL50) mayor a 2 g/kg (p.o). Este trabajo es el primer reporte que sustenta el uso tradicional de C. stipulaceuscomo antiinflamatorio.


Subject(s)
Plant Leaves/chemistry , Croton/chemistry , Plant Extracts/metabolism , Plant Extracts/chemistry , Plant Structures/metabolism , Plant Structures/chemistry , Plant Leaves/metabolism , Croton/metabolism , Anti-Inflammatory Agents , Antioxidants
2.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 608-635, jul. 2024. tab, ilus, graf
Article in English | LILACS | ID: biblio-1538071

ABSTRACT

Chile has two certified origin olive products: Extra-Virgin Olive Oil (EVOO) from Huasco valley and the Azapa variety table olive from the Azapa valley. However, efficient methodologies are needed to determine the varieties and raw materials involved in the end products. In this study, we assessed the size of alleles from ten microsatellites in 20 EVOOs and in leaves and fruits of 16 olive varieties cultivated in Chile to authenticate their origins. The identification of varieties relied on specific allele sizes derived from microsatellites markers UDO99-011 and DCA18-M found in leaves and fruit mesocarp. While most Chilean single-variety EVOOs matched the variety declared on the label, inconsistencies were observed in single-variety EVOOs containing multiple varieties. Our findings confirm that microsatellites serve as a valuable as diagnostic tools for ensuring the quality control of Geographical Indication certification for Azapa olives and EVOO with Designation of Origin from Huasco.


Chile cuenta con dos productos de oliva de origen certificado: El aceite de oliva virgen extra (AOVE) del valle del Huasco y la aceituna de mesa de la variedad Azapa del valle de Azapa. Sin embargo, se necesitan metodologías eficientes para determinar las variedades y materias primas involucradas en los productos finales. En este estudio, evaluamos el tamaño de los alelos de diez microsatélites en 20 AOVEs y en hojas y frutos de 16 variedades de aceituna cultivadas en Chile para autentificar sus orígenes. La identificación de las variedades se basó en los tamaños alélicos específicos derivados de los marcadores microsatélites UDO99-011 y DCA18-M encontrados en las hojas y el mesocarpio de los frutos. Aunque la mayoría de los AOVEs chilenos monovarietales coincidían con la variedad declarada en la etiqueta, se observaron incoherencias en los AOVEs monovarietales que contenían múltiples variedades. Nuestros hallazgos confirman que los microsatélites sirven como valiosas herramientas de diagnóstico para asegurar el control de calidad de la certificación de Indicación Geográfica para aceitunas de Azapa y AOVE con Denominación de Origen de Huasco.


Subject(s)
Olive Oil/chemistry , Geography , Plant Extracts/chemistry , Chile , Plant Structures/chemistry
3.
Food Res Int ; 177: 113915, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225151

ABSTRACT

The need to provide novel, nutritious plant-based products requires seeking high-value, sustainable protein sources, like quinoa and lentils, having an increased digestibility and lacking antinutrients. Fungal fermentation has evidenced enhanced nutritional value of flours obtained from these grains. However, research into techno-functional properties, essential to the new product development, is lacking. This study investigated the techno-functional properties of flours made from lentil and quinoa after fermenting them with Pleurotus ostreatus and subjecting them to two drying techniques (lyophilisation and hot air drying). In both cases, the fermentation led to noteworthy improvements in swelling and water holding capacity, especially in those lyophilised than those dried. In contrast, the emulsifying, foaming, thickening, and gelling capacities decreased significantly. The loss of abilities was more severe for dried grains than for lyophilized ones. The thermomechanical analysis of the fermented flours showed lower thickening and gelling potential compared to untreated flours. Microscopy images revealed that the state and structure of starch granules were affected by both fermentation and drying processes. Starch granules in lentils were partly pre-gelatinised and trapped in the cotyledon cell, resulting in limited thickening and gelling abilities. In contrast, in quinoa, starch underwent pre-gelatinisation and retrogradation during the fermentation process, promoting the production of resistant starch and increasing fibre content. This study presents the potential of treated flours as ingredients possessing unique attributes compared to protein and fibre-rich conventional products.


Subject(s)
Chenopodium quinoa , Flour , Lens Plant , Chenopodium quinoa/chemistry , Flour/analysis , Plant Structures/chemistry , Starch/chemistry
4.
Food Res Int ; 167: 112667, 2023 05.
Article in English | MEDLINE | ID: mdl-37087254

ABSTRACT

Corn silk is commonly consumed in teas, food ingredients, and herbal medicines. Several varieties of corn silk are grown in different habitats in China. However, as information regarding their phytochemistry and genetic diversity is limited, their medicinal potential has not been utilized thoroughly. Thus, we aimed to use a combination of DNA barcoding based on specific primer ITSC sequences and ultra-performance liquid chromatography coupled with linear trap quadrupole-Orbitrap mass spectrometry (UPLC-LTQ/Orbitrap MS) approach for identifying and evaluating corn silk. ITSC barcoding helped us to identify that 52 samples could be classified into 7 groups of corn silk varieties, but the widely used nrITS and psbA-trnH barcodes failed to identify these varieties. UPLC-LTQ/Orbitrap MS was used to study the components in alcohol extracts derived from different corn silk varieties, and the detected chemical components were analyzed via bioinformatics techniques. We proposed 199 components using untargeted UPLC-LTQ/Orbitrap MS-based metabolomics analysis and identified 67 components. PCA and OPLS-DA analysis revealed two distinct chemotypes by selecting 27 components that could act as difference indicators. KEGG analysis showed that the 199 components were enriched in 12 metabolic pathways. The results showed that corn silk is rich in many types of chemicals and DNA barcoding is better than UPLC-LTQ/Orbitrap MS in distinguishing the differences between different varieties of corn silk. Our findings provide new insights into the chemical and molecular characteristics of different varieties of corn silk, which play a crucial role in the utilization of corn silk resources.


Subject(s)
DNA Barcoding, Taxonomic , Zea mays , Chromatography, High Pressure Liquid/methods , Gas Chromatography-Mass Spectrometry , Zea mays/genetics , Plant Structures/chemistry , Plant Structures/genetics
5.
Molecules ; 27(9)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35565971

ABSTRACT

This study aimed to investigate the possibility of utilizing oat by-products for fiber preparation. Oat husk (OH) and oat bran (OB) were micronized and used to prepare a novel product rich in fiber and with enhanced antioxidant properties. The basic chemical composition and phenolic acid profile were determined in OH and OB. The antioxidant properties of OH and OB were also analyzed. The type and strength of interactions between the biologically active compounds from their mixtures were characterized by an isobolographic analysis. The analyses showed that the sum of phenolic acids was higher in OH than in OB. Ferulic acid was dominant in both OH and OB; however, its content in OH was over sixfold higher than that in OB. The results also suggested that both OH and OB can be used for preparing fiber with enhanced antioxidant properties. The optimal composition of the preparation, with 60-70% of OH and 30-40% of OB, allows for obtaining a product with 60-70% fiber and enhanced antioxidant activity due to bioactive substances and their synergistic effect. The resulting product can be a valuable additive to various food and dietary supplements.


Subject(s)
Antioxidants , Avena , Antioxidants/chemistry , Avena/chemistry , Dietary Fiber/analysis , Plant Structures/chemistry
6.
Food Chem ; 390: 133187, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35569400

ABSTRACT

Distiller's grains (DGs) possessed great potential utilization value due to their rich active ingredients. However, its utilization efficiency was limited by the large amount of lignocellulose components and water-insoluble proteins. In this work, single screw extrusion was applied to modify physicochemical properties of DGs. Results indicated that extruded distiller's grains (EDGs) exhibited the lower crude fiber content (26.01%), the higher soluble fiber (9.07%) and the smaller particle size when compared with those of Control, and subsequently achieving the increased bulk density, swelling capacity and water/oil holding capacity. The crude protein in EDGs decreased slightly, while the total amount of acid hydrolyzed amino acids showed a significant increase. Additionally, the looser, coarser and fragmentary microstructure of EDGs were observed. The main macromolecules in EDGs had been modified distinctly based on thermal analysis, crystallinity and functional groups analyses, while the possible schematic diagram was conducted to better understand the modification mechanism.


Subject(s)
Amino Acids , Edible Grain , Amino Acids/analysis , Animal Feed/analysis , Edible Grain/chemistry , Plant Structures/chemistry , Proteins/analysis , Water/chemistry
7.
Anal Bioanal Chem ; 414(16): 4633-4643, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35445835

ABSTRACT

A sharp metal needle used as the ionization emitter in conventional atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) is usually required for analyte ionization through corona discharge (i.e., gas discharge). Nevertheless, we herein demonstrate that an insulating fiber (tip diameter: 10-60 µm; length: ~ 1 cm) made of glass or bamboo can function as an APCI-like ionization emitter. Although no direct electric contact is made on the fiber, the ionization of volatiles and semi-volatiles occurs when the fiber is placed close (~ 1 mm) to the inlet of the mass spectrometer. No analyte ion signals can be observed without placing the insulating fiber in front of the mass spectrometer. The generation of ion species mainly relies on the electric field provided by the mass spectrometer. Presumably, owing to the high electric field provided by the mass spectrometer, the dielectric breakdown voltages of gas molecules in the air and the fiber are overcome, leading to the ionization of analytes in gas phase. In addition, the insulating fiber can function as a holder for sample solutions. Electrospray ionization-like processes derived from polar analytes such as amino acids, peptides, and proteins can readily occur when the insulating fiber deposited with a sample droplet is placed close to the inlet of the mass spectrometer. The feasibility of using the current approach for the detection of nonpolar and polar analytes from complex fetal bovine serum samples without tedious sample pretreatment is demonstrated in this work. The main advantage of using the suggested fiber is that the fiber can be used as the sampling probe to pick up samples and placed in front of a mass spectrometer for direct MS analysis. The application of using a robust, insulating, and disposable probe to pick up samples from real samples such as onion, honey, and pork samples followed by direct MS analysis is also demonstrated.


Subject(s)
Atmospheric Pressure , Spectrometry, Mass, Electrospray Ionization , Amino Acids , Peptides/analysis , Plant Structures/chemistry , Spectrometry, Mass, Electrospray Ionization/methods
8.
Molecules ; 27(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35163888

ABSTRACT

This study aimed at investigating the impact of early versus normal grain harvesting on the chemical composition and secondary metabolites of Amaranthus cruentus species grown in South Africa. Mature harvested grain had higher (p < 0.05) DM, CF, NDF and ADF content compared to prematurely harvested grain. There were no significant (p > 0.05) differences between CP, ADL and GE of premature and mature harvested grains. Mature harvesting resulted in higher grain Ca, P, Mg and K content. Essential amino acids spectrum and content remained similar regardless of maturity at harvest. The grains displayed an ample amount of unsaturated fatty acids; the highest percentage was linoleic acid: 38.75% and 39.74% in premature and mature grains, respectively. ß-Tocotrienol was detected at 5.92 and 9.67 mg/kg in premature and mature grains, respectively. The lowest was δ-tocotrienol which was 0.01 and 0.54 mg/kg in premature and mature grains, respectively. Mature harvested grain had a higher secondary metabolite content compared to premature harvested grains. The results suggest that mature harvested Amaranthus cruentus grain contain more minerals and phytochemicals that have health benefits for human and livestock immunity and gut function, which ultimately improves performance. This study concludes that A. cruentus grown in South Africa is a potential alternative cereal to major conventional cereals.


Subject(s)
Amaranthus , Amaranthus/chemistry , Edible Grain/chemistry , Humans , Metabolomics , Minerals/analysis , Plant Structures/chemistry
9.
Food Chem ; 371: 131099, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34537619

ABSTRACT

Contamination of rice by cadmium (Cd) is threatening a large population in China. In this study, we report that soaking rice grains in a hydrochloric acid (HCl) solution can remove Cd to a desirable extent. The results indicated that the degree of Cd removal was up to 45%∼85% at different soaking times and concentrations of HCl (0.06 M âˆ¼ 0.18 M), which was found to be logarithmically correlated with the reaction time at the optimized liquid-solid ratio of 1:2. Three HCl concentration-dependent mathematical models were established, which revealed various optimal soaking conditions depending on the initial Cd contamination. Four Cd-contaminated rice grain samples with different degrees of contamination were then tested based on the mathematical models, and the final Cd content was reduced to an acceptable extent. Moreover, the physicochemical and food properties of rice flours and rice grains after Cd removal were evaluated to highlight their potential applications.


Subject(s)
Oryza , Soil Pollutants , Cadmium/analysis , Edible Grain/chemistry , Plant Structures/chemistry , Soil , Soil Pollutants/analysis
10.
Nat Commun ; 12(1): 889, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33563999

ABSTRACT

A key uncertainty in quantifying dead wood carbon (C) stocks-which comprise ~8% of total forest C pools globally-is a lack of accurate dead wood C fractions (CFs) that are employed to convert dead woody biomass into C. Most C estimation protocols utilize a default dead wood CF of 50%, but live tree studies suggest this value is an over-estimate. Here, we compile and analyze a global database of dead wood CFs in trees, showing that dead wood CFs average 48.5% across forests, deviating significantly from 50%, and varying systematically among biomes, taxonomic divisions, tissue types, and decay classes. Utilizing data-driven dead wood CFs in tropical forests alone may correct systematic overestimates in dead wood C stocks of ~3.0 Pg C: an estimate approaching nearly the entire dead wood C pool in the temperate forest biome. We provide for the first time, robust empirical dead wood CFs to inform global forest C estimation.


Subject(s)
Carbon/analysis , Wood/chemistry , Biodegradation, Environmental , Carbon/metabolism , Carbon Cycle , Climate , Forests , Plant Structures/chemistry , Plant Structures/classification , Trees/chemistry , Trees/classification , Wood/metabolism
11.
J Ethnopharmacol ; 270: 113852, 2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33485985

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Lilium (family Liliaceae) is native to China and is mainly distributed in the temperate regions of the Northern Hemisphere such as Eastern Asia, Europe, and North America. There are about 109 species of this genus and 55 species in China. In America, the bulbs were used as food. In Europe, the petals and bulbs of Lilium candidum uesd as pectoral poultices, wound-healing remedy and a treatment for mastitis and shingles, the bulbs of L. martagon were used to treat every liver disease. In India, the bulbs are used medicinally as galactagogue, expectorant, aphrodisiac, diuretic, antipyretic and revitalizing tonic. In Asia, bulbs of this genus are often used to treat coughs, lung diseases, burns and swellings. AIM OF THE STUDY: The aim of this work was to summarize traditional uses, phytochemistry, pharmacology and toxicity, which provided a theoretical basis for the further study of Lilium plants and their applications in medicine, food and other industries. MATERIALS AND METHODS: Online scientific databases including Science Direct, American chemical society (ACS), Wiley Online Library, the Web of Science, China national knowledge internet (CNKI) and others were searched to identify eligible studies. More data were obtained from other Chinese medicine books. RESULTS: The literature survey revealed diverse traditional uses of the genus Lilium, mainly for the treatment of lung deficiency, hemostasis, anxiety, palpitations, asthma and vomiting. Over 180 compounds have been isolated and identified from the genus Lilium, including steroidal saponins, polysaccharides, phenolic glycerides, flavonoids and alkaloids. Different extracts and monomer compounds were so far evaluated for number of pharmacological activities including anti-tumor, anti-inflammatory, antioxidant, antibacterial, immunomodulatory, antidepressant and hepatoprotective activities. CONCLUSIONS: Lilium spp. are of much significance as ornamental flowers, but also have potential to treat various diseases, especially anti-inflammatory and antioxidant. However, most of the studies on pharmacological effects are still in in vitro, and further studies on mechanism-based pharmacological activities in vivo and in vitro are needed in the future. At present, there are limited researches on its safety and toxicological effects, which should be further explored.


Subject(s)
Lilium/chemistry , Medicine, Traditional , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Animals , Humans , Phytochemicals/chemistry , Phytochemicals/toxicity , Plant Extracts/chemistry , Plant Extracts/toxicity , Plant Structures/chemistry
12.
Ecotoxicol Environ Saf ; 211: 111952, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33513523

ABSTRACT

The accumulation of cadmium (Cd) in Oryza sativa L., the world's most significant staple crop, is a health threat to millions of people. The objective of this study was to evaluate the effectiveness of commercially available biofertilizers (with high (BF2) and low organic matter (OM) content (BF1)) on Cd accumulation in two types of soils and to determine the bacterial community responses by high-throughput sequencing. The study was conducted in the form of pot experiment in greenhouse in 2018. Four treatments were set: BF1, BF2, organic fertilizer (OF), and control (CK) and the amendments were applied before the rice cultivation. The results showed that the addition of biofertilizers immobilized or mobilized Cd in soils, depending on the soil type and the OM content in biofertilizers. The exogenous OM in biofertilizers was the driving factor for the difference in pH and Cd accumulation in rice grains. The application of biofertilizers with high OM content was effective in reducing Cd accumulation in the rice grains (19.7% lower than CK) by significantly increasing soil pH (from 6.02 to 6.67) in acid silt loam soil (TZ). The consumption of acid fermentation products by soil chemoorganotrophs and the complexation of organic anions in the biofertilizer treatment tended to buffer the pH drop in the drainage and decrease the Cd availability. However, in the weak acid silty clay loam soil (SX), the addition of biofertilizer with high OM significantly increased Cd accumulation in rice grains (21.9% higher than CK), probably owing to the release of acid substances, resulting from the significant increase of the predominant bacteria Chloroflexi. The addition of biofertilizer with low OM content did not significantly change Cd accumulation in rice grains or affect the soil microbial structures in both soils. In conclusion, the effects of biofertilizer on rice Cd accumulation were related to the OM content and soil bacterial community. Biofertilizers with high organic matter may not be suitable for amendments in the paddy soils with high clay content to reduce Cd accumulation in rice grains.


Subject(s)
Cadmium/metabolism , Oryza/metabolism , Soil Pollutants/metabolism , Bacteria , Cadmium/analysis , Fertilizers/analysis , Oryza/drug effects , Plant Structures/chemistry , Soil/chemistry , Soil Pollutants/analysis
13.
Article in English | MEDLINE | ID: mdl-32727342

ABSTRACT

Nature has the potential to reduce metal salts to their relative nanoparticles. Traditionally, physical and chemical methods were used for the synthesis of nanoparticles but due to the use of toxic chemicals, non-ecofriendly methods and other harmful effects, green chemistry approaches are now employed for synthesizing nanoparticles which are basically the most cost effective, ecofriendly and non-hazardous methods. In this review, we aimed to evaluate and study the details of various mechanisms used for green synthesis of silver nanoparticles from plants, their size, shape and potential applications. A total of 150 articles comprising both research and review articles from 2009 to 2019 were selected and studied in detail to get in-depth knowledge about the synthesis of silver nanoparticles specifically through green chemistry approaches. Silver ions and their salts are well known for their antimicrobial properties and have been used in various medical and non-medical applications since the emergence of human civilization. Miscellaneous attempts have been made to synthesize nanoparticles using plants and such nanoparticles are more efficient and beneficial in terms of their antibacterial, antifungal, antioxidant, anti-biofilm and cytotoxic activities than nanoparticles synthesized through physical and chemical processes. Silver nanoparticles have been studied as an important research area due to their specific and tunable properties and their application in the field of biomedicine such as tissue and tumor imaging and drug delivery. These nanoparticles can be further investigated to find out their antimicrobial potential in cell lines and animal models.


Subject(s)
Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Plant Extracts/chemical synthesis , Plant Structures/chemistry , Silver/chemistry , Animals , Anti-Bacterial Agents/chemical synthesis , Antioxidants/chemical synthesis , Green Chemistry Technology/trends , Humans , Plant Extracts/isolation & purification
14.
Food Chem ; 343: 128472, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33139121

ABSTRACT

Cadmium is a toxic environmental pollutant that is readily absorbed by rice grains and poses serious threats to human health. The selection and breeding of rice varieties with low cadmium accumulation is one of the most economical and ecological methods to reduce cadmium exposure. In this study, two different indica rice grains under cadmium stress were subjected to mass spectrometry-based metabolomics analysis for the first time. When the cadmium concentration increased in rice grains, most carbohydrates and amino acids were down-regulated, except myoinositol that can prevent cadmium toxicity, which was up-regulated. d-Mannitol and l-cysteine were up-regulated with the increase of cadmium concentration in low-cadmium-accumulating rice. Also, organic acids were activated especially 13-(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoicacid that is related to the alpha-linolenic acid metabolism and jasmonic acid production. The determination of biomarkers and characterization of metabolic pathways might be helpful for the selection of rice varieties with low cadmium accumulation.


Subject(s)
Cadmium/toxicity , Oryza/drug effects , Oryza/metabolism , Soil Pollutants/toxicity , Amino Acids/metabolism , Biomarkers/analysis , Biomarkers/metabolism , Cadmium/pharmacokinetics , Carbohydrate Metabolism/drug effects , Cyclopentanes/metabolism , Gas Chromatography-Mass Spectrometry , Linolenic Acids/metabolism , Lipid Peroxides/metabolism , Mannitol/metabolism , Mass Spectrometry , Metabolomics/methods , Oryza/chemistry , Oxylipins/metabolism , Plant Structures/chemistry , Soil Pollutants/pharmacokinetics
15.
Photochem Photobiol Sci ; 19(12): 1630-1635, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33290493

ABSTRACT

We investigated the association of blue fluorescence (excitation at 365 nm) with the traits of the fruit, pericarp, and epidermis in green peppers. The fruits were manually classified into two groups based on fluorescence brightness. The dark fluorescence group showed the accumulation of blue-absorbing pigments and a thicker cuticular structure, suggesting epidermal development.


Subject(s)
Capsicum/chemistry , Plant Structures/chemistry , Fluorescence , Pigments, Biological/analysis , Plant Structures/growth & development , Surface Properties
16.
Molecules ; 25(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105614

ABSTRACT

Little is known about the pharmacological activity of Monarda fistulosa L. essential oils. To address this issue, we isolated essential oils from the flowers and leaves of M. fistulosa and analyzed their chemical composition. We also analyzed the pharmacological effects of M. fistulosa essential oils on transient receptor potential (TRP) channel activity, as these channels are known targets of various essential oil constituents. Flower (MEOFl) and leaf (MEOLv) essential oils were comprised mainly of monoterpenes (43.1% and 21.1%) and oxygenated monoterpenes (54.8% and 77.7%), respectively, with a high abundance of monoterpene hydrocarbons, including p-cymene, γ-terpinene, α-terpinene, and α-thujene. Major oxygenated monoterpenes of MEOFl and MEOLv included carvacrol and thymol. Both MEOFl and MEOLv stimulated a transient increase in intracellular free Ca2+ concentration ([Ca2+]i) in TRPA1 but not in TRPV1 or TRPV4-transfected cells, with MEOLv being much more effective than MEOFl. Furthermore, the pure monoterpenes carvacrol, thymol, and ß-myrcene activated TRPA1 but not the TRPV1 or TRPV4 channels, suggesting that these compounds represented the TRPA1-activating components of M. fistulosa essential oils. The transient increase in [Ca2+]i induced by MEOFl/MEOLv, carvacrol, ß-myrcene, and thymol in TRPA1-transfected cells was blocked by a selective TRPA1 antagonist, HC-030031. Although carvacrol and thymol have been reported previously to activate the TRPA1 channels, this is the first report to show that ß-myrcene is also a TRPA1 channel agonist. Finally, molecular modeling studies showed a substantial similarity between the docking poses of carvacrol, thymol, and ß-myrcene in the binding site of human TRPA1. Thus, our results provide a cellular and molecular basis to explain at least part of the therapeutic properties of these essential oils, laying the foundation for prospective pharmacological studies involving TRP ion channels.


Subject(s)
Flowers/chemistry , Monarda/chemistry , Monoterpenes/chemistry , Oils, Volatile/chemistry , Oils, Volatile/metabolism , Plant Leaves/chemistry , TRPA1 Cation Channel/metabolism , Calcium/metabolism , Cyclohexane Monoterpenes/chemistry , Cymenes/chemistry , Gas Chromatography-Mass Spectrometry , HEK293 Cells , Humans , Molecular Docking Simulation , Plant Structures/chemistry , Thymol/chemistry
17.
Food Chem ; 332: 127393, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32603921

ABSTRACT

Jambu [Acmella oleracea (L.) R.K. Jansen] is an edible plant with a wide range of constituents of biological interest. In this study, the chemical composition of leaves, flowers and stems of jambu cultivated in hydroponic and conventional systems was investigated. In both crop systems, the leaves showed the highest total phenolic content, total flavonoid content and in vitro antioxidant capacity. The extracts were characterized by determining 45 compounds, including phenolic acids, glycosylated flavonoids, alkamides and fatty acids, by LC-MS analysis. Of these compounds, 31 are described for the first time in this species, five of which are reported for the first time in the literature. The PCA and cluster analysis results distinguished different anatomical parts (PC1 and PC2) and cultivation systems (PC3) into well-defined groups.


Subject(s)
Asteraceae/chemistry , Asteraceae/growth & development , Hydroponics , Phytochemicals/analysis , Plant Structures/chemistry , Asteraceae/anatomy & histology , Chromatography, Liquid , Cluster Analysis , Mass Spectrometry , Plant Leaves/chemistry , Principal Component Analysis
18.
Viruses ; 12(5)2020 05 15.
Article in English | MEDLINE | ID: mdl-32429324

ABSTRACT

Chikungunya and yellow fever virus cause vector-borne viral diseases in humans. There is currently no specific antiviral drug for either of these diseases. Banana plants are used in traditional medicine for treating viral diseases such as measles and chickenpox. Therefore, we tested selected banana cultivars for their antiviral but also cytotoxic properties. Different parts such as leaf, pseudostem and corm, collected separately and extracted with four different solvents (hexane, acetone, ethanol, and water), were tested for in vitro antiviral activity against Chikungunya virus (CHIKV), enterovirus 71 (EV71), and yellow fever virus (YFV). Extracts prepared with acetone and ethanol from leaf parts of several cultivars exhibited strong (EC50 around 10 µg/mL) anti-CHIKV activity. Interestingly, none of the banana plant extracts (concentration 1-100 µg/mL) were active against EV71. Activity against YFV was restricted to two cultivars: Namwa Khom-Pseudostem-Ethanol (5.9 ± 5.4), Namwa Khom-Corm-Ethanol (0.79 ± 0.1) and Fougamou-Corm-Acetone (2.5 ± 1.5). In most cases, the cytotoxic activity of the extracts was generally 5- to 10-fold lower than the antiviral activity, suggesting a reasonable therapeutic window.


Subject(s)
Antiviral Agents/pharmacology , Musa/chemistry , Plant Extracts/pharmacology , Animals , Antiviral Agents/chemistry , Cell Line , Cell Survival/drug effects , Chlorocebus aethiops , Humans , Musa/classification , Phenol/analysis , Phenol/pharmacology , Plant Extracts/chemistry , Plant Structures/chemistry , Vero Cells , Viruses/classification , Viruses/drug effects
19.
Drug Resist Updat ; 51: 100695, 2020 07.
Article in English | MEDLINE | ID: mdl-32442892

ABSTRACT

Accelerated emergence of drug- resistant pathogenic microbes, their unbeatable virulence and a gradual loss of efficacy of currently used antimicrobial agents over the last decade, have expanded the scope of herbal medicine to combat this emerging challenge to have a wide spectrum of activity to develop effective medicines with lesser untoward side effects. Plant-based natural products should be of utmost interest to today's pharmaceutical industries since they are a primary source of new chemical entities directed at new drug targets. Apocynaceae or 'Dogbane' family has attained a global reputation as a source of some life-saving plant-derived products and novel compounds. Members of this family have also been extensively investigated against several nosocomial pathogenic microbes through in vitro and in vivo experimental settings. Several plant-derived components obtained from members of this family have also exhibited remarkable microbial growth inhibitory properties. Popular and widely accepted international databases such as PubMed, Science Direct, ResearchGate, Scopus, Google Scholar, JSTOR and more were searched using the various search strings such as Apocynaceae, antimicrobials, multidrug resistance, resistance modifying agents and pathogenic microorganisms were used in various combinations to retrieve several citations related to the topic. The current review encompasses recent developments in experimental studies and phytochemical analyses which correlates with antimicrobial efficacy of selected Apocynaceous plants along with synergistic mechanism and structural details. The present review recognizes and leverages the importance of Apocynaceae plants, which could be of significant interest in the development of more effective and less toxic antimicrobial drugs which may surmount multidrug resistance. Three different paradigm models harnessing clinical antimicrobial resistance (AMR) including the plant family Apocynaceae, Gram-positive and Gram-negative bacterial species have been broadly discussed in this review. In a nutshell, the present review represents a comprehensive account on the antimicrobials and resistance modifying agents obtained from the members of the plant family Apocynaceae and derived phytochemicals. It also gives an insight into the underlying mode of action of these phytochemicals against an array of pathogenic bacteria, their mechanism of antibiosis, plant parts from which the phytochemicals were isolated or the extracts was prepared with a critical discussion on the botanically-derived antibiotics as a template for antimicrobial drug development.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Apocynaceae , Drug Resistance, Microbial/drug effects , Phytochemicals/chemistry , Phytochemicals/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Humans , Microbiological Techniques , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Structures/chemistry
20.
Biomed Chromatogr ; 34(8): e4865, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32330321

ABSTRACT

The aerial parts of Dracocephalum moldavica L. are extensively used in traditional ethnic medicines in China as a remedy for cardiovascular and cerebrovascular damage. However, the chemical composition and the accumulation of main secondary metabolites of D. moldavica in different natural environments remain unclear. This study aimed to conduct a qualitative and quantitative analysis of the main secondary metabolites to explore the quality variation of D. moldavica in markets. The evaluation of space-time accumulation of main secondary metabolites in D. moldavica was carried out during different growth periods and in different geographical locations. A total of 35 ingredients were detected and 24 identified, including 21 flavonoids, two phenolic acids and one coumarin by UPLC-QTOF-MS method. Furthermore, a simple and convenient HPLC method was successfully developed for the simultaneous determination of lutelin-7-O-glucuronide and tilianin and rosmarinic acid in D. moldavica. The results of space-time accumulation analysis showed the distinct variation of secondary metabolites of D. moldavica with the growth period and geographical location. Finally, the current study provided a meaningful and useful approach for comprehensively evaluating the quality of D. moldavica.


Subject(s)
Chromatography, High Pressure Liquid/methods , Lamiaceae/chemistry , Lamiaceae/metabolism , Mass Spectrometry/methods , Phytochemicals/analysis , Coumarins/analysis , Coumarins/chemistry , Coumarins/metabolism , Hydroxybenzoates/analysis , Hydroxybenzoates/chemistry , Hydroxybenzoates/metabolism , Limit of Detection , Linear Models , Phytochemicals/chemistry , Phytochemicals/metabolism , Plant Extracts/chemistry , Plant Structures/chemistry , Plant Structures/metabolism , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...