Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.111
Filter
2.
BMC Plant Biol ; 24(1): 409, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760736

ABSTRACT

BACKGROUND: Bletilla striata (Thunb.) Reichb. f. (B. striata) is a perennial herbaceous plant in the Orchidaceae family known for its diverse pharmacological activities, such as promoting wound healing, hemostasis, anti-inflammatory effects, antioxidant properties, and immune regulation. Nevertheless, the microbe-plant-metabolite regulation patterns for B. striata remain largely undetermined, especially in the field of rhizosphere microbes. To elucidate the interrelationships between soil physics and chemistry and rhizosphere microbes and metabolites, a comprehensive approach combining metagenome analysis and targeted metabolomics was employed to investigate the rhizosphere soil and tubers from four provinces and eight production areas in China. RESULTS: Our study reveals that the core rhizosphere microbiome of B. striata is predominantly comprised of Paraburkholderia, Methylibium, Bradyrhizobium, Chitinophaga, and Mycobacterium. These microbial species are recognized as potentially beneficial for plants health. Comprehensive analysis revealed a significant association between the accumulation of metabolites, such as militarine and polysaccharides in B. striata and the composition of rhizosphere microbes at the genus level. Furthermore, we found that the soil environment indirectly influenced the metabolite profile of B. striata by affecting the composition of rhizosphere microbes. Notably, our research identifies soil organic carbon as a primary driving factor influencing metabolite accumulation in B. striata. CONCLUSION: Our fndings contribute to an enhanced understanding of the comprehensive regulatory mechanism involving microbe-plant-metabolite interactions. This research provides a theoretical basis for the cultivation of high-quality traditional Chinese medicine B. striata.


Subject(s)
Microbiota , Orchidaceae , Rhizosphere , Soil Microbiology , Orchidaceae/microbiology , Orchidaceae/metabolism , China , Plant Tubers/microbiology , Plant Tubers/metabolism
3.
Physiol Plant ; 176(3): e14322, 2024.
Article in English | MEDLINE | ID: mdl-38818614

ABSTRACT

Understanding the potato tuber development and effects of drought at key stages of sensitivity on yield is crucial, particularly when considering the increasing incidence of drought due to climate change. So far, few studies addressed the time course of tuber growth in soil, mainly due to difficulties in accessing underground plant organs in a non-destructive manner. This study aims to understand the tuber growth and quality and the complex long-term effects of realistic water stress on potato tuber yield. MRI was used to monitor the growth kinetics and spatialization of individual tubers in situ and the evolution of internal defects throughout the development period. The intermittent drought applied to plants reduced tuber yield by reducing tuber growth and increasing the number of aborted tubers. The reduction in the size of tubers depended on the vertical position of the tubers in the soil, indicating water exchanges between tubers and the mother plant during leaf dehydration events. The final size of tubers was linked with the growth rate at specific developmental periods. For plants experiencing stress, this corresponded to the days following rewatering, suggesting tuber growth plasticity. All internal defects occurred in large tubers and within a short time span immediately following a period of rapid growth of perimedullary tissues, probably due to high nutrient requirements. To conclude, the non-destructive 3D imaging by MRI allowed us to quantify and better understand the kinetics and spatialization of tuber growth and the appearance of internal defects under different soil water conditions.


Subject(s)
Magnetic Resonance Imaging , Plant Tubers , Solanum tuberosum , Water , Solanum tuberosum/growth & development , Solanum tuberosum/physiology , Plant Tubers/growth & development , Plant Tubers/physiology , Magnetic Resonance Imaging/methods , Water/metabolism , Dehydration , Droughts , Kinetics , Stress, Physiological , Plant Leaves/physiology , Plant Leaves/growth & development
4.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791120

ABSTRACT

The post-harvest phase of potato tuber dormancy and sprouting are essential in determining the economic value. The intricate transition from dormancy to active growth is influenced by multiple factors, including environmental factors, carbohydrate metabolism, and hormonal regulation. Well-established environmental factors such as temperature, humidity, and light play pivotal roles in these processes. However, recent research has expanded our understanding to encompass other novel influences such as magnetic fields, cold plasma treatment, and UV-C irradiation. Hormones like abscisic acid (ABA), gibberellic acid (GA), cytokinins (CK), auxin, and ethylene (ETH) act as crucial messengers, while brassinosteroids (BRs) have emerged as key modulators of potato tuber sprouting. In addition, jasmonates (JAs), strigolactones (SLs), and salicylic acid (SA) also regulate potato dormancy and sprouting. This review article delves into the intricate study of potato dormancy and sprouting, emphasizing the impact of environmental conditions, carbohydrate metabolism, and hormonal regulation. It explores how various environmental factors affect dormancy and sprouting processes. Additionally, it highlights the role of carbohydrates in potato tuber sprouting and the intricate hormonal interplay, particularly the role of BRs. This review underscores the complexity of these interactions and their importance in optimizing potato dormancy and sprouting for agricultural practices.


Subject(s)
Plant Dormancy , Plant Growth Regulators , Plant Tubers , Solanum tuberosum , Solanum tuberosum/growth & development , Solanum tuberosum/metabolism , Solanum tuberosum/physiology , Solanum tuberosum/genetics , Plant Tubers/growth & development , Plant Tubers/metabolism , Plant Growth Regulators/metabolism , Carbohydrate Metabolism
5.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791140

ABSTRACT

The tiger nut (Cyperus esculentus L.) is a usable tuber and edible oil plant. The size of the tubers is a key trait that determines the yield and the mechanical harvesting of tiger nut tubers. However, little is known about the anatomical and molecular mechanisms of tuber expansion in tiger nut plants. This study conducted anatomical and comprehensive transcriptomics analyses of tiger nut tubers at the following days after sowing: 40 d (S1); 50 d (S2); 60 d (S3); 70 d (S4); 90 d (S5); and 110 d (S6). The results showed that, at the initiation stage of a tiger nut tuber (S1), the primary thickening meristem (PTM) surrounded the periphery of the stele and was initially responsible for the proliferation of parenchyma cells of the cortex (before S1) and then the stele (S2-S3). The increase in cell size of the parenchyma cells occurred mainly from S1 to S3 in the cortex and from S3 to S4 in the stele. A total of 12,472 differentially expressed genes (DEGs) were expressed to a greater extent in the S1-S3 phase than in S4-S6 phase. DEGs related to tuber expansion were involved in cell wall modification, vesicle transport, cell membrane components, cell division, the regulation of plant hormone levels, signal transduction, and metabolism. DEGs involved in the biosynthesis and the signaling of indole-3-acetic acid (IAA) and jasmonic acid (JA) were expressed highly in S1-S3. The endogenous changes in IAA and JAs during tuber development showed that the highest concentrations were found at S1 and S1-S3, respectively. In addition, several DEGs were related to brassinosteroid (BR) signaling and the G-protein, MAPK, and ubiquitin-proteasome pathways, suggesting that these signaling pathways have roles in the tuber expansion of tiger nut. Finally, we come to the conclusion that the cortex development preceding stele development in tiger nut tubers. The auxin signaling pathway promotes the division of cortical cells, while the jasmonic acid pathway, brassinosteroid signaling, G-protein pathway, MAPK pathway, and ubiquitin protein pathway regulate cell division and the expansion of the tuber cortex and stele. This finding will facilitate searches for genes that influence tuber expansion and the regulatory networks in developing tubers.


Subject(s)
Cyperus , Gene Expression Regulation, Plant , Plant Tubers , RNA-Seq , Cyperus/genetics , Cyperus/metabolism , Plant Tubers/genetics , Plant Tubers/metabolism , Plant Tubers/growth & development , Transcriptome , Gene Expression Profiling , Plant Growth Regulators/metabolism , Indoleacetic Acids/metabolism , Signal Transduction , Plant Proteins/genetics , Plant Proteins/metabolism
6.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791426

ABSTRACT

This review describes a 50-year-long research study on the characteristics of Helianthus tuberosus L. tuber dormancy, its natural release and programmed cell death (PCD), as well as on the ability to change the PCD so as to return the tuber to a life program. The experimentation on the tuber over the years is due to its particular properties of being naturally deficient in polyamines (PAs) during dormancy and of immediately reacting to transplants by growing and synthesizing PAs. This review summarizes the research conducted in a unicum body. As in nature, the tuber tissue has to furnish its storage substances to grow vegetative buds, whereby its destiny is PCD. The review's main objective concerns data on PCD, the link with free and conjugated PAs and their capacity to switch the destiny of the tuber from a program of death to one of new life. PCD reversibility is an important biological challenge that is verified here but not reported in other experimental models. Important aspects of PA features are their capacity to change the cell functions from storage to meristematic ones and their involvement in amitosis and differentiation. Other roles reported here have also been confirmed in other plants. PAs exert multiple diverse roles, suggesting that they are not simply growth substances, as also further described in other plants.


Subject(s)
Apoptosis , Helianthus , Plant Tubers , Polyamines , Helianthus/metabolism , Helianthus/growth & development , Polyamines/metabolism , Plant Tubers/metabolism , Plant Tubers/growth & development
7.
Food Chem ; 452: 139528, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38733682

ABSTRACT

Precooling is the rapid removal of field heat in harvested crops to preserve their quality and increase their shelf life. The following study was conducted to understand the importance of precooling and to optimize the precooling condition to extend the storage life of potatoes. Therefore, the study was divided into two components. In the first part, the Kufri Jyoti potatoes were subjected to field heat for 0-64 h, then were precooled for 48 h before sending to cold storage for 60 days. The results demonstrated that when the time delay was doubled, starch content (SC) decreased by 15.86%, reducing sugar content (RSC) increased by 32.71%, ascorbic acid content (AAC) decreased by 5.94% and total plate count (TPC) increased by 20.06%. Microstructural changes in potatoes due to the exposure to field heat were visible in SEM images. These results suggested a decrease in the quality of potatoes with an increase in time delay between harvest and cooling. In the second part of the study, the potatoes were precooled for 48 h at different temperatures (T) (6 °C, 8 °C, and 10 °C) and relative humidity (RH) (87%, 91%, and 95%), and their effect was studied on the same quality parameters after storage. Regression models were developed for each response, and models with non-significant lack of fit were selected for optimization. The analysis of the observations has shown that precooling aided in better quality retention of potatoes during cold storage.


Subject(s)
Food Preservation , Food Storage , Plant Tubers , Solanum tuberosum , Starch , Solanum tuberosum/chemistry , Food Preservation/methods , Food Preservation/instrumentation , Plant Tubers/chemistry , Starch/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Hot Temperature , Cold Temperature
8.
J Ethnopharmacol ; 331: 118301, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38735419

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Many ethnopharmacological properties (anti-tumor, etc.) have been credited to Plectranthus esculentus tuber but the scientific basis has not been established. AIM OF THE STUDY: To evaluate the effect of methanol extract of P. esculentus tuber (MEPET) (phase 1) and its fractions (phase 2) on benign prostatic hyperplasia (BPH) in rats. MATERIALS AND METHODS: The study was conducted in two phases. Phase 1, thirty-five male albino rats (6 weeks old) were divided into seven groups of five rats each: normal control (NC) received olive oil (subcutaneously) and water (orally); disease control (DC) received testosterone propionate (TP) (3 mg/kg) and water; test groups (1,2,3 and 4) received TP + MEPET at 100, 200, 400, 600 mg/kg respectively; positive control, received TP + finasteride (5 mg/70 kg). After 28 days, their relative prostate weights (RPW) and prostate specific antigen (PSA) were determined. Phase 2, thirty rats were divided into 6 groups of 5 rats each: NC received olive oil (subcutaneously daily) and dimethyl sulfoxide (DMSO) (orally); DC received TP (3 mg/kg), and DMSO; test group 1 received TP and aqueous fraction of MEPET (400 mg/kg); test group 2 received TP and methanol fraction of MEPET (400 mg/kg); test group 3 received TP, and ethyl acetate fraction of MEPET (400 mg/kg); positive control received TP and finasteride (5 mg/70 kg). After 28 days, their erythrocyte sedimentation rates, RPW, prostate levels of PSA, DHT, inflammatory, apoptotic markers and prostate histology were determined. RESULTS: Ethyl acetate fraction of MEPET modulated most of the parameters of BPH in the rats in a manner akin to finasteride as corroborated by prostate histology. CONCLUSIONS: EFPET could be useful in the treatment of BPH.


Subject(s)
Methanol , Plant Extracts , Plectranthus , Prostatic Hyperplasia , Rats, Wistar , Animals , Male , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/pathology , Prostatic Hyperplasia/chemically induced , Plant Extracts/pharmacology , Methanol/chemistry , Plectranthus/chemistry , Rats , Prostate/drug effects , Prostate/pathology , Prostate-Specific Antigen/blood , Plant Tubers , Organ Size/drug effects , Solvents/chemistry , Testosterone Propionate
9.
Chin J Nat Med ; 22(5): 441-454, 2024 May.
Article in English | MEDLINE | ID: mdl-38796217

ABSTRACT

Five novel (9,10-dihydro) phenanthrene and bibenzyl trimers, as well as two previously identified biphenanthrenes and bibenzyls, were isolated from the tubers of Bletilla striata. Their structures were elucidated through comprehensive analyses of NMR and HRESIMS spectroscopic data. The absolute configurations of these compounds were determined by calculating rotational energy barriers and comparison of experimental and calculated ECD curves. Compounds 5b and 6 exhibited inhibitory effects on LPS-induced NO production in BV-2 cells, with IC50 values of 12.59 ± 0.40 and 15.59 ± 0.83 µmol·L-1, respectively. A mechanistic study suggested that these compounds may attenuate neuroinflammation by reducing the activation of the AKT/IκB/NF-κB signaling pathway. Additionally, compounds 3a, 6, and 7 demonstrated significant PTP1B inhibitory activities, with IC50 values of 1.52 ± 0.34, 1.39 ± 0.11, and 1.78 ± 0.01 µmol·L-1, respectively. Further investigation revealed that compound 3a might inhibit LPS-induced PTP1B overexpression and NF-κB activation, thereby mitigating the neuroinflammatory response in BV-2 cells.


Subject(s)
NF-kappa B , Orchidaceae , Phenanthrenes , Plant Tubers , Signal Transduction , Phenanthrenes/pharmacology , Phenanthrenes/chemistry , NF-kappa B/metabolism , Orchidaceae/chemistry , Signal Transduction/drug effects , Plant Tubers/chemistry , Animals , Mice , Molecular Structure , Bibenzyls/pharmacology , Bibenzyls/chemistry , Cell Line , Lipopolysaccharides/pharmacology , Nitric Oxide/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Humans
10.
BMC Plant Biol ; 24(1): 274, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605295

ABSTRACT

Temperature is one of the important environmental factors affecting plant growth, yield and quality. Moreover, appropriately low temperature is also beneficial for tuber coloration. The red potato variety Jianchuanhong, whose tuber color is susceptible to temperature, and the purple potato variety Huaxinyangyu, whose tuber color is stable, were used as experimental materials and subjected to 20 °C (control check), 15 °C and 10 °C treatments during the whole growth period. The effects of temperature treatment on the phenotype, the expression levels of structural genes related to anthocyanins and the correlations of each indicator were analyzed. The results showed that treatment at 10 °C significantly inhibited the potato plant height, and the chlorophyll content and photosynthetic parameters in the leaves were reduced, and the enzyme activities of SOD and POD were significantly increased, all indicating that the leaves were damaged. Treatment at 10 °C also affected the tuberization of Huaxinyangyu and reduced the tuberization and coloring of Jianchuanhong, while treatment at 15 °C significantly increased the stem diameter, root-to-shoot ratio, yield and content of secondary metabolites, especially anthocyanins. Similarly, the expression of structural genes were enhanced in two pigmented potatoes under low-temperature treatment conditions. In short, proper low temperature can not only increase yield but also enhance secondary metabolites production. Previous studies have not focused on the effects of appropriate low-temperature treatment during the whole growth period of potato on the changes in metabolites during tuber growth and development, these results can provide a theoretical basis and technical guidance for the selection of pigmented potatoes with better nutritional quality planting environment and the formulation of cultivation measures.


Subject(s)
Solanum tuberosum , Temperature , Solanum tuberosum/metabolism , Anthocyanins/metabolism , Cold Temperature , Photosynthesis , Plant Tubers/genetics
11.
PLoS One ; 19(4): e0297334, 2024.
Article in English | MEDLINE | ID: mdl-38574179

ABSTRACT

Potato tubers are rich sources of various nutrients and unique sources of starch. Many genes play major roles in different pathways, including carbohydrate metabolism during the potato tuber's life cycle. Despite substantial scientific evidence about the physiological and morphological development of potato tubers, the molecular genetic aspects of mechanisms underlying tuber formation have not yet been fully understood. In this study, for the first time, RNA-seq analysis was performed to shed light on the expression of genes involved in starch biosynthesis during potato tuber development. To this end, samples were collected at the hook-like stolon (Stage I), swollen tips stolon (Stage II), and tuber initiation (Stage III) stages of tuber formation. Overall, 23 GB of raw data were generated and assembled. There were more than 20000 differentially expressed genes (DEGs); the expression of 73 genes involved in starch metabolism was further studied. Moreover, qRT-PCR analysis revealed that the expression profile of the starch biosynthesis DEGs was consistent with that of the RNA-seq data, which further supported the role of the DEGs in starch biosynthesis. This study provides substantial resources on potato tuber development and several starch synthesis isoforms associated with starch biosynthesis.


Subject(s)
Solanum tuberosum , Solanum tuberosum/metabolism , Gene Expression Profiling , Plant Tubers/metabolism , Carbohydrate Metabolism/genetics , Starch/metabolism , Gene Expression Regulation, Plant
12.
Food Chem ; 450: 139301, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38613966

ABSTRACT

By-products from the potato processing industry, like potato trimmings, are sustainable sources of proteins. Here, a size-exclusion high performance liquid chromatography (SE-HPLC) method was applied to simultaneously determine the extractability and aggregation state of proteins from three batches of potato trimmings of different cultivars. Obtained SE-HPLC profiles allowed distinguishing between the patatin and protease inhibitor fractions of potato proteins. Moreover, only 75% of the crude proteins could be extracted in phosphate buffer containing sodium dodecyl sulfate and a reducing agent, indicating the presence of physical extraction barriers. Ball milling for 5 min significantly increased protein extractability, but prolonged treatment resulted in aggregation of native patatin and a reduced protein extractability. Microwave-dried trimmings had a lower protein extractability than freeze-dried trimmings. In future research, the SE-HPLC method can be used to examine changes in potato protein (fractions) as a result of processing.


Subject(s)
Plant Proteins , Solanum tuberosum , Solanum tuberosum/chemistry , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Chromatography, High Pressure Liquid , Plant Tubers/chemistry , Food Handling , Plant Extracts/chemistry , Plant Extracts/isolation & purification
13.
Phytomedicine ; 129: 155652, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663118

ABSTRACT

BACKGROUND: Autoimmune hepatitis (AIH) is a prevalent liver disease that can potentially lead to hepatic fibrosis and cirrhosis. The prolonged administration of immunosuppressive medications carries significant risks for patients. Purple sweet potato polysaccharide (PSPP), a macromolecule stored in root tubers, exhibits anti-inflammatory, antioxidant, immune-enhancing, and intestinal flora-regulating properties. Nevertheless, investigation into the role and potential mechanisms of PSPP in AIH remains notably scarce. PURPOSE: Our aim was to explore the possible protective impacts of PSPP against concanavalin A (Con A)-induced liver injury in mice. METHODS: Polysaccharide was isolated from purple sweet potato tubers using water extraction and alcohol precipitation, followed by purification through DEAE-52 cellulose column chromatography and Sephadex G-100 column chromatography. A highly purified component was obtained, and its monosaccharide composition was characterized by high performance liquid chromatography (HPLC). Mouse and cellular models induced by Con A were set up to investigate the impacts of PSPP on hepatic histopathology, apoptosis, as well as inflammation- and oxidative stress-related proteins in response to PSPP treatment. RESULTS: The administration of PSPP significantly reduced hepatic pathological damage, suppressed elevation of ALT and AST levels, and attenuated hepatic apoptosis in Con A-exposed mice. PSPP was found to mitigate Con A-induced inflammation by suppressing the TLR4-P2X7R/NLRP3 signaling pathway in mice. Furthermore, PSPP alleviated Con A-induced oxidative stress by activating the PI3K/AKT/mTOR signaling pathway in mice. Additionally, PSPP demonstrated the ability to reduce inflammation and oxidative stress in RAW264.7 cells induced by Con A in vitro. CONCLUSION: PSPP has the potential to ameliorate hepatic inflammation via the TLR4-P2X7R/NLRP3 pathway and inhibit hepatic oxidative stress through the PI3K/AKT/mTOR pathway during the progression of Con A-induced hepatic injury. The results of this study have unveiled the potential hepatoprotective properties of purple sweet potato and its medicinal value for humans. Moreover, this study serves as a valuable reference, highlighting the potential of PSPP-1 as a drug candidate for the treatment of immune liver injury.


Subject(s)
Concanavalin A , Ipomoea batatas , Oxidative Stress , Polysaccharides , Animals , Oxidative Stress/drug effects , Ipomoea batatas/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Mice , Male , Chemical and Drug Induced Liver Injury/drug therapy , Liver/drug effects , RAW 264.7 Cells , Hepatitis, Autoimmune/drug therapy , Toll-Like Receptor 4/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Apoptosis/drug effects , Inflammation/drug therapy , Signal Transduction/drug effects , Anti-Inflammatory Agents/pharmacology , TOR Serine-Threonine Kinases/metabolism , Antioxidants/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Plant Tubers/chemistry , Proto-Oncogene Proteins c-akt/metabolism
14.
J Microbiol Biotechnol ; 34(4): 949-957, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38480002

ABSTRACT

There has been a growing interest in skin beauty and antimelanogenic products. Melanogenesis is the process of melanin synthesis whereby melanocytes are activated by UV light or hormone stimulation to produce melanin. Melanogenesis is mediated by several enzymes, such as tyrosinase (TYR), microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (TRP-1), and TRP-2. In this study, we investigated the effect of Tuber himalayense extract on melanin synthesis in α-melanocyte-stimulating hormone (α-MSH)-treated B16F10 melanoma cells. We confirmed that T. himalayense extract was not toxic to α-MSH-treated B16F10 melanoma cells and exhibited a significant inhibitory effect on melanin synthesis at concentrations of 25, 50, and 100 µg/ml. Additionally, the T. himalayense extract inhibited melanin, TRP-1, TRP-2, tyrosinase, and MITF, which are enzymes involved in melanin synthesis, in a concentration-dependent manner. Furthermore, T. himalayense extract inhibited the mitogen-activated protein kinase (MAPK) pathways, such as extracellular signal-regulated kinase-1/2 (ERK), c-Jun N-terminal kinase (JNK), and p38. Therefore, we hypothesized that various components of T. himalayense extract affect multiple factors involved in melanogenesis in B16F10 cells. Our results indicate that T. himalayense extract could potentially be used as a new material for preparing whitening cosmetics.


Subject(s)
Melanins , Microphthalmia-Associated Transcription Factor , Monophenol Monooxygenase , Plant Extracts , Melanins/biosynthesis , Melanins/metabolism , Animals , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Cell Line, Tumor , Republic of Korea , Microphthalmia-Associated Transcription Factor/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Intramolecular Oxidoreductases/metabolism , alpha-MSH/pharmacology , alpha-MSH/metabolism , Melanoma, Experimental/metabolism , Oxidoreductases/metabolism , Plant Tubers/chemistry , Membrane Glycoproteins/metabolism , Melanocytes/drug effects , Melanocytes/metabolism , Cell Survival/drug effects
16.
Plant Physiol ; 195(2): 1347-1364, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38488068

ABSTRACT

Potato (Solanum tuberosum L.) is cultivated worldwide for its underground tubers, which provide an important part of human nutrition and serve as a model system for belowground storage organ formation. Similar to flowering, stolon-expressed FLOWERING LOCUS T-like (FT-like) protein SELF-PRUNING 6A (StSP6A) plays an instrumental role in tuberization by binding to the bZIP transcription factors StABI5-like 1 (StABL1) and StFD-like 1 (StFDL1), causing transcriptional reprogramming at the stolon subapical apices. However, the molecular mechanism regulating the widely conserved FT-bZIP interactions remains largely unexplored. Here, we identified a TCP transcription factor StAST1 (StABL1 and StSP6A-associated TCP protein 1) binding to both StSP6A and StABL1. StAST1 is specifically expressed in the vascular tissue of leaves and developing stolons. Silencing of StAST1 leads to accelerated tuberization and a shortened life cycle. Molecular dissection reveals that the interaction of StAST1 with StSP6A and StABL1 attenuates the formation of the alternative tuberigen activation complex (aTAC). We also observed StAST1 directly activates the expression of potato GA 20-oxidase gene (StGA20ox1) to regulate GA responses. These results demonstrate StAST1 functions as a tuberization repressor by regulating plant hormone levels; our findings also suggest a mechanism by which the widely conserved FT-FD genetic module is fine-tuned.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Plant Tubers , Solanum tuberosum , Transcription Factors , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Solanum tuberosum/physiology , Solanum tuberosum/growth & development , Plant Tubers/genetics , Plant Tubers/growth & development , Plant Tubers/metabolism , Plant Tubers/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
17.
Phytochemistry ; 220: 114033, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38373572

ABSTRACT

Ten previously undescribed cucurbitane-type triterpenoids, namely hemslyencins A-F (1-6) and hemslyencosides A-D (7-10), together with twenty previously reported compounds (11-30), were isolated from the tubers of Hemsleya chinensis. Their structures were elucidated by unambiguous spectroscopic data (UV, IR, HR-ESI-MS, 1D and 2D NMR data). Hemslyencins A and B (1 and 2) possessing unique 9, 11-seco-ring system with a six-membered lactone moiety, were the first examples among of the cucurbitane-type triterpenoids, and hemslyencins C and D (3 and 4) and hemslyencoside D (10) are the infrequent pentacyclic cucurbitane triterpenes featuring a 6/6/6/5/6 fused system. The cytotoxic activities of all isolated compounds were evaluated against MCF-7, HCT-116, HeLa, and HepG2 cancer cells, and their structure-activity relationships (SARs) was discussed as well. Compounds 17, 25, and 26 showed significant cytotoxic effects with IC50 values ranging from 1.31 to 9.89 µM, among which compound 25 induced both apoptosis and cell cycle arrest at G2/M phase in a dose dependent manner against MCF-7 cells.


Subject(s)
Antineoplastic Agents , Triterpenes , Humans , Triterpenes/pharmacology , Triterpenes/chemistry , Glycosides/chemistry , Plant Tubers/chemistry , HeLa Cells , Molecular Structure
18.
Plant Cell ; 36(5): 1985-1999, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38374801

ABSTRACT

Potato (Solanum tuberosum) is the third most important food crop in the world. Potato tubers must be stored at cold temperatures to minimize sprouting and losses due to disease. However, cold temperatures strongly induce the expression of the potato vacuolar invertase gene (VInv) and cause reducing sugar accumulation. This process, referred to as "cold-induced sweetening," is a major postharvest problem for the potato industry. We discovered that the cold-induced expression of VInv is controlled by a 200 bp enhancer, VInvIn2En, located in its second intron. We identified several DNA motifs in VInvIn2En that bind transcription factors involved in the plant cold stress response. Mutation of these DNA motifs abolished VInvIn2En function as a transcriptional enhancer. We developed VInvIn2En deletion lines in both diploid and tetraploid potato using clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated gene editing. VInv transcription in cold-stored tubers was significantly reduced in the deletion lines. Interestingly, the VInvIn2En sequence is highly conserved among distantly related Solanum species, including tomato (Solanum lycopersicum) and other non-tuber-bearing species. We conclude that the VInv gene and the VInvIn2En enhancer have adopted distinct roles in the cold stress response in tubers of tuber-bearing Solanum species.


Subject(s)
Cold Temperature , Gene Expression Regulation, Plant , Introns , Solanum tuberosum , beta-Fructofuranosidase , Solanum tuberosum/genetics , Solanum tuberosum/enzymology , Introns/genetics , beta-Fructofuranosidase/genetics , beta-Fructofuranosidase/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Enhancer Elements, Genetic/genetics , Vacuoles/metabolism , Gene Editing , Plants, Genetically Modified , Plant Tubers/genetics , Plant Tubers/enzymology , CRISPR-Cas Systems
19.
Article in Chinese | MEDLINE | ID: mdl-38311951

ABSTRACT

Unicorn lotus is a plant tuber in the araceae family, which has therapeutic effects such as dispelling cold and dampness, dispelling wind and phlegm, and treating stroke. However, acute poisoning of fresh Unicorn lotus has been rarely reported domestically and internationally. This article reports a case of poisoning caused by chewing unicorn lotus. The patient experienced numbness in the lips, swelling and rupture of the oral cavity, continuous salivation, difficulty swallowing and obvious burning sensation in the throat, accompanied by shortness of breath and mild hypoxemia. After receiving comprehensive treatments such as oxygen therapy, electrocardiographic monitoring, cleaning of necrotic oral mucosa, anti infection, inhibition of oral salivary secretion, and nutritional support, the patient finally recovered and was discharged.


Subject(s)
Araceae , Humans , Araceae/poisoning , Plant Tubers/poisoning
20.
Funct Plant Biol ; 512024 02.
Article in English | MEDLINE | ID: mdl-38316513

ABSTRACT

Pinellia ternata is an important natural medicinal herb in China. However, it is susceptible to withering when exposed to high temperatures during growth, which limits its tuber production. Mitochondria usually function in stress response. The P . ternata mitochondrial (mt) genome has yet to be explored. Therefore, we integrated PacBio and Illumina sequencing reads to assemble and annotate the mt genome of P . ternata . The circular mt genome of P . ternata is 876 608bp in length and contains 38 protein-coding genes (PCGs), 20 tRNA genes and three rRNA genes. Codon usage, sequence repeats, RNA editing and gene migration from chloroplast (cp) to mt were also examined. Phylogenetic analysis based on the mt genomes of P . ternata and 36 other taxa revealed the taxonomic and evolutionary status of P . ternata . Furthermore, we investigated the mt genome size and GC content by comparing P . ternata with the other 35 species. An evaluation of non-synonymous substitutions and synonymous substitutions indicated that most PCGs in the mt genome underwent negative selection. Our results provide comprehensive information on the P . ternata mt genome, which may facilitate future research on the high-temperature response of P . ternata and provide new molecular insights on the Araceae family.


Subject(s)
Genome, Mitochondrial , Pinellia , Plants, Medicinal , Pinellia/genetics , Genome, Mitochondrial/genetics , Phylogeny , Plants, Medicinal/genetics , Plant Tubers
SELECTION OF CITATIONS
SEARCH DETAIL
...