Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 884
Filter
2.
Chin J Nat Med ; 22(5): 441-454, 2024 May.
Article in English | MEDLINE | ID: mdl-38796217

ABSTRACT

Five novel (9,10-dihydro) phenanthrene and bibenzyl trimers, as well as two previously identified biphenanthrenes and bibenzyls, were isolated from the tubers of Bletilla striata. Their structures were elucidated through comprehensive analyses of NMR and HRESIMS spectroscopic data. The absolute configurations of these compounds were determined by calculating rotational energy barriers and comparison of experimental and calculated ECD curves. Compounds 5b and 6 exhibited inhibitory effects on LPS-induced NO production in BV-2 cells, with IC50 values of 12.59 ± 0.40 and 15.59 ± 0.83 µmol·L-1, respectively. A mechanistic study suggested that these compounds may attenuate neuroinflammation by reducing the activation of the AKT/IκB/NF-κB signaling pathway. Additionally, compounds 3a, 6, and 7 demonstrated significant PTP1B inhibitory activities, with IC50 values of 1.52 ± 0.34, 1.39 ± 0.11, and 1.78 ± 0.01 µmol·L-1, respectively. Further investigation revealed that compound 3a might inhibit LPS-induced PTP1B overexpression and NF-κB activation, thereby mitigating the neuroinflammatory response in BV-2 cells.


Subject(s)
NF-kappa B , Orchidaceae , Phenanthrenes , Plant Tubers , Signal Transduction , Phenanthrenes/pharmacology , Phenanthrenes/chemistry , NF-kappa B/metabolism , Orchidaceae/chemistry , Signal Transduction/drug effects , Plant Tubers/chemistry , Animals , Mice , Molecular Structure , Bibenzyls/pharmacology , Bibenzyls/chemistry , Cell Line , Lipopolysaccharides/pharmacology , Nitric Oxide/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Humans
3.
Food Chem ; 452: 139528, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38733682

ABSTRACT

Precooling is the rapid removal of field heat in harvested crops to preserve their quality and increase their shelf life. The following study was conducted to understand the importance of precooling and to optimize the precooling condition to extend the storage life of potatoes. Therefore, the study was divided into two components. In the first part, the Kufri Jyoti potatoes were subjected to field heat for 0-64 h, then were precooled for 48 h before sending to cold storage for 60 days. The results demonstrated that when the time delay was doubled, starch content (SC) decreased by 15.86%, reducing sugar content (RSC) increased by 32.71%, ascorbic acid content (AAC) decreased by 5.94% and total plate count (TPC) increased by 20.06%. Microstructural changes in potatoes due to the exposure to field heat were visible in SEM images. These results suggested a decrease in the quality of potatoes with an increase in time delay between harvest and cooling. In the second part of the study, the potatoes were precooled for 48 h at different temperatures (T) (6 °C, 8 °C, and 10 °C) and relative humidity (RH) (87%, 91%, and 95%), and their effect was studied on the same quality parameters after storage. Regression models were developed for each response, and models with non-significant lack of fit were selected for optimization. The analysis of the observations has shown that precooling aided in better quality retention of potatoes during cold storage.


Subject(s)
Food Preservation , Food Storage , Plant Tubers , Solanum tuberosum , Starch , Solanum tuberosum/chemistry , Food Preservation/methods , Food Preservation/instrumentation , Plant Tubers/chemistry , Starch/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Hot Temperature , Cold Temperature
4.
Food Chem ; 450: 139301, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38613966

ABSTRACT

By-products from the potato processing industry, like potato trimmings, are sustainable sources of proteins. Here, a size-exclusion high performance liquid chromatography (SE-HPLC) method was applied to simultaneously determine the extractability and aggregation state of proteins from three batches of potato trimmings of different cultivars. Obtained SE-HPLC profiles allowed distinguishing between the patatin and protease inhibitor fractions of potato proteins. Moreover, only 75% of the crude proteins could be extracted in phosphate buffer containing sodium dodecyl sulfate and a reducing agent, indicating the presence of physical extraction barriers. Ball milling for 5 min significantly increased protein extractability, but prolonged treatment resulted in aggregation of native patatin and a reduced protein extractability. Microwave-dried trimmings had a lower protein extractability than freeze-dried trimmings. In future research, the SE-HPLC method can be used to examine changes in potato protein (fractions) as a result of processing.


Subject(s)
Plant Proteins , Solanum tuberosum , Solanum tuberosum/chemistry , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Chromatography, High Pressure Liquid , Plant Tubers/chemistry , Food Handling , Plant Extracts/chemistry , Plant Extracts/isolation & purification
5.
Phytomedicine ; 129: 155652, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663118

ABSTRACT

BACKGROUND: Autoimmune hepatitis (AIH) is a prevalent liver disease that can potentially lead to hepatic fibrosis and cirrhosis. The prolonged administration of immunosuppressive medications carries significant risks for patients. Purple sweet potato polysaccharide (PSPP), a macromolecule stored in root tubers, exhibits anti-inflammatory, antioxidant, immune-enhancing, and intestinal flora-regulating properties. Nevertheless, investigation into the role and potential mechanisms of PSPP in AIH remains notably scarce. PURPOSE: Our aim was to explore the possible protective impacts of PSPP against concanavalin A (Con A)-induced liver injury in mice. METHODS: Polysaccharide was isolated from purple sweet potato tubers using water extraction and alcohol precipitation, followed by purification through DEAE-52 cellulose column chromatography and Sephadex G-100 column chromatography. A highly purified component was obtained, and its monosaccharide composition was characterized by high performance liquid chromatography (HPLC). Mouse and cellular models induced by Con A were set up to investigate the impacts of PSPP on hepatic histopathology, apoptosis, as well as inflammation- and oxidative stress-related proteins in response to PSPP treatment. RESULTS: The administration of PSPP significantly reduced hepatic pathological damage, suppressed elevation of ALT and AST levels, and attenuated hepatic apoptosis in Con A-exposed mice. PSPP was found to mitigate Con A-induced inflammation by suppressing the TLR4-P2X7R/NLRP3 signaling pathway in mice. Furthermore, PSPP alleviated Con A-induced oxidative stress by activating the PI3K/AKT/mTOR signaling pathway in mice. Additionally, PSPP demonstrated the ability to reduce inflammation and oxidative stress in RAW264.7 cells induced by Con A in vitro. CONCLUSION: PSPP has the potential to ameliorate hepatic inflammation via the TLR4-P2X7R/NLRP3 pathway and inhibit hepatic oxidative stress through the PI3K/AKT/mTOR pathway during the progression of Con A-induced hepatic injury. The results of this study have unveiled the potential hepatoprotective properties of purple sweet potato and its medicinal value for humans. Moreover, this study serves as a valuable reference, highlighting the potential of PSPP-1 as a drug candidate for the treatment of immune liver injury.


Subject(s)
Concanavalin A , Ipomoea batatas , Oxidative Stress , Polysaccharides , Animals , Oxidative Stress/drug effects , Ipomoea batatas/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Mice , Male , Chemical and Drug Induced Liver Injury/drug therapy , Liver/drug effects , RAW 264.7 Cells , Hepatitis, Autoimmune/drug therapy , Toll-Like Receptor 4/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Apoptosis/drug effects , Inflammation/drug therapy , Signal Transduction/drug effects , Anti-Inflammatory Agents/pharmacology , TOR Serine-Threonine Kinases/metabolism , Antioxidants/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Plant Tubers/chemistry , Proto-Oncogene Proteins c-akt/metabolism
6.
J Microbiol Biotechnol ; 34(4): 949-957, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38480002

ABSTRACT

There has been a growing interest in skin beauty and antimelanogenic products. Melanogenesis is the process of melanin synthesis whereby melanocytes are activated by UV light or hormone stimulation to produce melanin. Melanogenesis is mediated by several enzymes, such as tyrosinase (TYR), microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (TRP-1), and TRP-2. In this study, we investigated the effect of Tuber himalayense extract on melanin synthesis in α-melanocyte-stimulating hormone (α-MSH)-treated B16F10 melanoma cells. We confirmed that T. himalayense extract was not toxic to α-MSH-treated B16F10 melanoma cells and exhibited a significant inhibitory effect on melanin synthesis at concentrations of 25, 50, and 100 µg/ml. Additionally, the T. himalayense extract inhibited melanin, TRP-1, TRP-2, tyrosinase, and MITF, which are enzymes involved in melanin synthesis, in a concentration-dependent manner. Furthermore, T. himalayense extract inhibited the mitogen-activated protein kinase (MAPK) pathways, such as extracellular signal-regulated kinase-1/2 (ERK), c-Jun N-terminal kinase (JNK), and p38. Therefore, we hypothesized that various components of T. himalayense extract affect multiple factors involved in melanogenesis in B16F10 cells. Our results indicate that T. himalayense extract could potentially be used as a new material for preparing whitening cosmetics.


Subject(s)
Melanins , Microphthalmia-Associated Transcription Factor , Monophenol Monooxygenase , Plant Extracts , Melanins/biosynthesis , Melanins/metabolism , Animals , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Cell Line, Tumor , Republic of Korea , Microphthalmia-Associated Transcription Factor/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Intramolecular Oxidoreductases/metabolism , alpha-MSH/pharmacology , alpha-MSH/metabolism , Melanoma, Experimental/metabolism , Oxidoreductases/metabolism , Plant Tubers/chemistry , Membrane Glycoproteins/metabolism , Melanocytes/drug effects , Melanocytes/metabolism , Cell Survival/drug effects
7.
Phytochemistry ; 220: 114033, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38373572

ABSTRACT

Ten previously undescribed cucurbitane-type triterpenoids, namely hemslyencins A-F (1-6) and hemslyencosides A-D (7-10), together with twenty previously reported compounds (11-30), were isolated from the tubers of Hemsleya chinensis. Their structures were elucidated by unambiguous spectroscopic data (UV, IR, HR-ESI-MS, 1D and 2D NMR data). Hemslyencins A and B (1 and 2) possessing unique 9, 11-seco-ring system with a six-membered lactone moiety, were the first examples among of the cucurbitane-type triterpenoids, and hemslyencins C and D (3 and 4) and hemslyencoside D (10) are the infrequent pentacyclic cucurbitane triterpenes featuring a 6/6/6/5/6 fused system. The cytotoxic activities of all isolated compounds were evaluated against MCF-7, HCT-116, HeLa, and HepG2 cancer cells, and their structure-activity relationships (SARs) was discussed as well. Compounds 17, 25, and 26 showed significant cytotoxic effects with IC50 values ranging from 1.31 to 9.89 µM, among which compound 25 induced both apoptosis and cell cycle arrest at G2/M phase in a dose dependent manner against MCF-7 cells.


Subject(s)
Antineoplastic Agents , Triterpenes , Humans , Triterpenes/pharmacology , Triterpenes/chemistry , Glycosides/chemistry , Plant Tubers/chemistry , HeLa Cells , Molecular Structure
8.
J Sci Food Agric ; 104(8): 4586-4595, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38381087

ABSTRACT

BACKGROUND: Cassava retting ability and the textural qualities of cooked fufu are important quality traits. Cassava retting is a complex process in which soaking causes tissue breakdown, starch release, and softening. The rate at which various traits linked to it evolve varies greatly during fufu processing. According to the literature, there is no standard approach for determining retting ability. The retting indices and textural properties of fufu were measured using both manual and instrumental approaches. RESULTS: Different protocols were developed to classify 64 and 11 cassava genotypes into various groups based on retting ability and textural qualities, respectively. The retting protocols revealed considerable genetic dissimilarities in genotype classification: foaming ability and water clarity should be measured at 24 h, while penetrometer, hardness, turbidity, pH, and total titratable acidity data are best collected after 36 h. The stepwise regression model revealed that pH, foaming ability, and dry matter content are the best multivariates (with the highest R2) for predicting cassava retting. These predictors were used to develop an index for assessing the retting ability of cassava genotypes. The retting index developed showed a significant relationship with dry matter content and fufu yield. The study also showed significant correlations between instrumental cohesiveness and sensory smoothness (r = -0.75), moldability (r = -0.62), and stretchability (r = 0.78). Instrumental cohesiveness can correctly estimate fufu smoothness (R2 = 0.56, P = 0.008) and stretchability (R2 = 0.60, P = 0.005). CONCLUSION: pH, foaming ability, and dry matter content are the best traits for predicting cassava retting ability, while instrumental cohesiveness can effectively estimate fufu smoothness and stretchability. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Manihot , Plant Breeding , Manihot/chemistry , Manihot/genetics , Manihot/metabolism , Genotype , Cooking , Plant Tubers/chemistry , Plant Tubers/metabolism , Starch/metabolism , Starch/chemistry , Flour/analysis , Food Handling/methods
9.
Food Chem ; 443: 138556, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38290299

ABSTRACT

Potato is one of the most important crops worldwide, to feed a fast-growing population. In addition to providing energy, fiber, vitamins, and minerals, potato storage proteins are considered as one of the most valuable sources of non-animal proteins due to their high essential amino acid (EAA) index. However, low tuber protein content and limited knowledge about potato storage proteins restrict their widespread utilization in the food industry. Here, we report a proof-of-concept study, using deep learning-based protein design tools, to characterize the biological and chemical characteristics of patatins, the major potato storage proteins. This knowledge was then employed to design multiple cysteines on the patatin surface to build polymers linked by disulfide bonds, which significantly improved viscidity and nutrient of potato flour dough. Our study shows that deep learning-based protein design strategies are efficient to characterize and to create novel proteins for future food sources.


Subject(s)
Deep Learning , Solanum tuberosum , Solanum tuberosum/chemistry , Plant Proteins/metabolism , Plant Tubers/chemistry , Carbohydrates/analysis
10.
J Sci Food Agric ; 104(7): 3842-3852, 2024 May.
Article in English | MEDLINE | ID: mdl-38233738

ABSTRACT

BACKGROUND: Potato is the most important non-grain crop worldwide, whose quality characteristics are always affected by temporal and spatial variability. Knowledge of the performance consistency of quality characteristics over long periods could prove very important to identify which quality traits are less variable over time, and therefore provide greater guarantees of stability. In this research, variations in physicochemical and nutritional traits of tubers over five consecutive growing seasons of two potato genotypes (Arizona and Vogue) were monitored in two locations. RESULTS: Although qualitative performances of genotypes fluctuated across the seasons in both locations, two physicochemical traits (pH and dry matter content) and starch content showed less variability throughout the five seasons compared to total soluble solids and most of the nutritional traits (namely reducing sugars, citric acid, vitamin C, total phenolics and antioxidant capacity), which were considerably influenced by weather conditions. CONCLUSION: The results suggest that pH, dry matter content and starch content traits could be used advantageously in studies of temporal stability in potatoes. This approach could prove useful in providing scientific support for the setup of potato protected geographical identifications. © 2024 Society of Chemical Industry.


Subject(s)
Solanum tuberosum , Solanum tuberosum/chemistry , Starch/analysis , Phenotype , Weather , Seasons , Plant Tubers/chemistry
11.
Plant Physiol Biochem ; 206: 108279, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38128226

ABSTRACT

Polygonum multiflorum Thunb. is a traditional Chinese medicine with extensive distribution and robust adaptability, but comprehensive research on its acid and alkali resistance is presently lacking. This study aimed to analyze the effects of 5 months of continuous pH stress on the physiological and photosynthetic parameters of P. multiflorum, and the content of effective components. Results revealed that pH stress significantly influenced the normal growth, physiological functions, and photosynthetic indicators of P. multiflorum. At soil pH 4.5, the tubers of P. multiflorum exhibited the highest levels of 2,3,5,4'-tetrahydroxy stilbene-2-O-ß-d-glucoside (THSG) and total anthraquinones at 5.41% and 0.38%, respectively. However, increased soil pH significantly reduced the content of THSG and total anthraquinones. Reference-free transcriptome analysis was further conducted on P. multiflorum treated at pH 4.5 and 9.5, generating a total of 47,305 unigenes with an N50 of 2118 bp, of which 31,058 (65.65%) were annotated. Additionally, 2472 differentially expressed genes (DEGs) were identified. Among them, 17 DEGs associated with the biosynthesis of THSG and anthraquinones were screened. A comprehensive analysis of differential gene expression and effective component content demonstrated a significant positive correlation between the content of effective components and the 14 DEGs' expression but a negative correlation with soil pH. This study highlighted the influence of varying soil pH values on the effective component content of P. multiflorum. Specific acidic conditions proved beneficial for the synthesis and accumulation of THSG and total anthraquinones in P. multiflorum, thereby enhancing the quality of the medicinal material.


Subject(s)
Fallopia multiflora , Stilbenes , Fallopia multiflora/genetics , Fallopia multiflora/chemistry , Anthraquinones/analysis , Plant Tubers/chemistry , Soil , Hydrogen-Ion Concentration
12.
J Agric Food Chem ; 71(42): 15855-15862, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37831971

ABSTRACT

In this paper, a high-performance ion exclusion chromatographic (ICE) method was developed and applied for monitoring maleic hydrazide (MH) translocation in complex potato plant tissue and tuber matrices. After middle leaf uptake, most MH was trapped and dissipated in the middle leaf, and the rest was transported to other parts mainly through the phloem. Soil absorption significantly reduced the uptake efficiency of the root system, in which MH was partitioned to dissipate in root protoplasts or transfer through the xylem and persisted in the plant. Tuber uptake enabled MH to remain in the flesh and maintain stable levels under storage conditions, but during germination, MH was translocated from the flesh to the growing buds, where it dissipated through the short-day photoperiodic regime. The results demonstrated successful application of the ICE method and provided necessary insights for real-time monitoring of MH translocation behavior to effectively improve potato edible safety.


Subject(s)
Maleic Hydrazide , Solanum tuberosum , Maleic Hydrazide/analysis , Plant Tubers/chemistry , Plants , Chromatography, Gel
13.
Chem Biodivers ; 20(9): e202300693, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37614210

ABSTRACT

Chemical investigation on the water-soluble constituents of Stemona tuberosa Lour. resulted in the isolation of a previously undescribed furfural derivative namely (S)-5-((R)-hydroxy(5-(hydroxymethyl)furan-2-yl)methyl)-5-methylfuran-2(5H)-one and twenty-five known compounds from the water decoction of the dried root tubers. Their structures were determined by analysis of the extensive spectroscopic data, including 1D/2D NMR, HR-ESI-MS, and ORD, as well as the ECD simulation and comparison. Most of them were phenolic and among them, four compounds were isolated from Stemona plants for the first time. This study uncovers diverse constituents from water decoction of S. tuberosa dedicated for its quality control and allows for the exploitation of chemical markers with potential significance for discrimination of Stemona plants.


Subject(s)
Alkaloids , Stemonaceae , Alkaloids/chemistry , Stemonaceae/chemistry , Furaldehyde/analysis , Plant Tubers/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure
14.
Fitoterapia ; 166: 105441, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36736744

ABSTRACT

Six new cucurbitane-type triterpenes, hemchinins A-F (1-6), together with thirteen known ones (7-19) were isolated from ethyl acetate extraction of Hemsleya chinensis tubers. Compounds 1-2 were a group of cucurbitane triterpenes possessing an infrequent pentacyclic framework. Their structures were established by comprehensive UV, IR, HRMS, 1D/2D NMR, and ECD analyses. Bioassay results showed that most isolated compounds exhibited anti-inflammatory actions, in which compounds 13 and 15 exhibited stronger activities at 6.25 µM, with NO inhibition rates of 49.00 ± 0.05% and 48.40 ± 0.10%, respectively.


Subject(s)
Cucurbitaceae , Triterpenes , Molecular Structure , Triterpenes/pharmacology , Triterpenes/chemistry , Glycosides/chemistry , Plant Tubers/chemistry , Cucurbitaceae/chemistry
15.
Bioorg Chem ; 133: 106407, 2023 04.
Article in English | MEDLINE | ID: mdl-36758275

ABSTRACT

(±)-Yanhusuomide A (1), a novel enantiomeric pair of ornithine-fused benzylisoquinoline, were characterized from the dried tubers of Corydalis yanhusuo, along with a biogenetically related intermediate oblongine (2). Yanhusuomide A features an unprecedented skeleton based on a benzylisoquinoline coupled with an ornithine derivative to form a rare 5,6-dihydro-4H-pyrido[3,4,5-de]quinazoline motif. Plausible biosynthetic pathway of 1 was proposed, and (±)-yanhusuomide A (1) presented potential inhibitory bioactivity against acetylcholinesterase (AChE) with IC50 = 14.07 ± 2.38 µM. The simulation of molecular docking displayed that 1 generated strong interaction with Asp-74 and Trp-86 residues of AChE through attractive charge of the quaternary nitrogen.


Subject(s)
Benzylisoquinolines , Corydalis , Acetylcholinesterase , Benzylisoquinolines/chemistry , Corydalis/chemistry , Molecular Docking Simulation , Plant Tubers/chemistry
16.
Int J Biol Macromol ; 225: 13-26, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36481330

ABSTRACT

In tropical and subtropical areas, tuber and root crops are staple foods and a key source of energy. Sweet potato (SP) is currently regarded as one of the world's top ten foods because of its diverse sizes, shapes, color, and health benefits. The resistant starch (RS) content of SP is substantial. It is predicted to become the cheapest item in the food industry due to its extensive variety, food stability, emulsifier and fat substitution capabilities, and as filler. As a result, interest in SP-sourced RS has recently increased. Due to their unique nutritional and functional qualities, novelty has become a popular research focus in recent years. This review will summarize the current understanding of SP starch components and their impact on the technological and physicochemical properties of produced starch for commercial viability. The importance of sweet potato RS in addressing future RS demand sustainability is emphasized. SPs are a viable alternative to tubers as a sustainable raw material for RS production. It has an advantage over tubers because of its intrinsic nutritional value and climatic endurance. Thermal, chemical, and enzymatic treatments are effective RS manufacturing procedures. The adaptability of sweet potato RS allows for a wide range of food applications.


Subject(s)
Ipomoea batatas , Solanum tuberosum , Resistant Starch/analysis , Ipomoea batatas/chemistry , Starch/chemistry , Plant Tubers/chemistry
17.
Int J Mol Sci ; 23(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36499701

ABSTRACT

Brassinolide (BR) is the "sixth class" plant hormone, which plays an important role in various physiological and biochemical processes of plants. The wide variety of functions of Pinellia ternata means that there is huge demand for it and thus it is in short supply. This paper mainly assessed the changes of yield and quality in P. ternata at different stages after BR treatments by principal component analysis, in order to improve the yield and quality of P. ternata and at the same time determine the best harvest time. The results showed that the tuber yield of P. ternata was significantly increased by BR treatments at different stages (except for the 15th day). After the 15th, 45th, 60th, 75th, 90th, and 105th day of treatments, the tuber yield of P. ternata reached peak values at 0.10 (0.65 g), 0.50 (1.97 g), 0.50 (1.98 g), 1.00 (2.37 g), 1.00 (2.84 g), and 2.00 mg/L (3.76 g) BR treatment, respectively. The optimal harvest time was the 75th day after 0.10, 0.50, and 1.00 mg/L BR treatments, which not only significantly improved the yield of P. ternata, but also retained high level of total alkaloids in the tubers (20.89, 5.37, and 13.44%) and bulbils (9.74, 20.42, and 13.62%), high total flavone content in the tubers (17.66, 16.26, and 12.74%) and bulbils (52.63, 12.79, and 38.69%), and high ß-sitosterol content in the tubers (25.26, 16.65, and 0.62%) of P. ternata, compared with the control, respectively.


Subject(s)
Alkaloids , Pinellia , Pinellia/chemistry , Principal Component Analysis , Plant Tubers/chemistry , Plant Growth Regulators/analysis , Alkaloids/analysis
18.
Metabolomics ; 18(11): 88, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36334159

ABSTRACT

INTRODUCTION: Earliness of tuberisation and the quality of potato tubers are important traits in potato breeding. The qualitative traits rely on the metabolite profile of tubers, which are storage organs and net importers of assimilates. Thus, the quality of tubers largely depends on the metabolites transported from leaves to developing tubers. OBJECTIVES: To test the influence of canopy on the quality of tubers by metabolite profiling of tubers of an early- and a late-maturing potato line and their grafts. METHODS: Potatoes were grown under greenhouse conditions, grafted and the tubers harvested at the end of the scions' vegetation period. Metabolite profiling of freshly harvested tubers was performed using gas chromatography coupled with mass spectrometry. Statistical analyses were applied to determine the significant differences between the different tubers. RESULTS: 99 metabolites were identified and an additional 181 peaks detected in chromatograms, out of which 186 were polar and 94 non-polar compounds. The concentrations of 113 metabolites were significantly different in the tubers from the early-maturing CE3130 and the late-maturing CE3027 line. Hetero-grafting resulted in considerable changes in the metabolite content of tubers. Especially, the effect of CE3027 on the metabolite composition of tubers formed on CE3130 rootstocks was readily apparent. Nevertheless, many compounds were present at similar levels in the tubers of hetero-grafted plants as was found in the tubers of their scion counterparts. CONCLUSION: Hetero-grafting resulted in many compounds at similar concentrations in rootstock tubers as in scion tubers suggesting that these are transported from the source leaves to tubers.


Subject(s)
Solanum tuberosum , Solanum tuberosum/chemistry , Gas Chromatography-Mass Spectrometry , Metabolomics , Plant Tubers/chemistry , Mass Spectrometry
19.
Molecules ; 27(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36235158

ABSTRACT

The control of the duration of the dormancy phase is a significant challenge in the potato industry and for seed producers. However, the proteome landscape involved in the regulation of the length of the dormancy period over potato cultivars remains largely unexplored. In this study, we performed for the first time a comparative proteome profiling of potato cultivars with differential duration of tuber dormancy. More specifically, the proteome profiling of Agata, Kennebec and Agria commercial potato varieties with short, medium and medium-long dormancy, respectively, was assessed at the endodormancy stage using high-resolution two-dimensional electrophoresis (2-DE) coupled to reversed-phase liquid chromatography-tandem mass spectrometry (LC-TripleTOF MS/MS). A total of 11 proteins/isoforms with statistically significant differential abundance among cultivars were detected on 2-DE gels and confidently identified by LC-TripleTOF MS/MS. Identified proteins have known functions related to tuber development, sprouting and the oxylipins biosynthesis pathway. Fructokinase, a mitochondrial ADP/ATP carrier, catalase isozyme 2 and heat shock 70 kDa were the proteins with the strongest response to dormancy variations. To the best of our knowledge, this study reports the first candidate proteins underlying variable dormancy length in potato cultivars.


Subject(s)
Solanum tuberosum , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Catalase/metabolism , Fructokinases/analysis , Fructokinases/metabolism , Isoenzymes/metabolism , Oxylipins/metabolism , Plant Proteins/metabolism , Plant Tubers/chemistry , Proteome/metabolism , Proteomics/methods , Solanum tuberosum/chemistry , Tandem Mass Spectrometry
20.
J Agric Food Chem ; 70(27): 8300-8308, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35775364

ABSTRACT

Although domesticated potatoes contain a large variety of steroidal glycoalkaloids (SGAs) and saponins, in the past, many research projects mainly focused on the two major SGAs, α-solanine and α-chaconine. This study investigates the quantitative changes, induced by post-harvest LED light exposure, of six SGAs and four saponins in 12 potato cultivars at three different time points (1, 7, and 16 days), by using ultra-performance liquid chromatography tandem mass spectrometry. Altogether, SGA contents of 3.0-17.1 mg/100 g fresh weight (FW) could be observed in the analyzed tubers with potato varieties highly exceeding the newly discussed safety limit of 10 mg/100 g. The overall contents of 0.1-5.4 mg/100 g FW of the so far barely studied saponins, like protoneodioscin or barogenin-solatrioside, highly differed between the assayed potato cultivars. Furthermore, cultivar-specific regulations of SGAs and saponins could be observed due to light exposure.


Subject(s)
Saponins , Solanine , Solanum tuberosum , Plant Tubers/chemistry , Saponins/analysis , Solanum tuberosum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...