Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.472
Filter
1.
Sci Rep ; 14(1): 12948, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839925

ABSTRACT

Viral diseases are becoming an important problem in Amorphophallus production due to the propagation of seed corms and their trade across regions. In this study, combined-High-Throughput Sequencing, RT-PCR, electron microscopy, and mechanical inoculation were used to analyze virus-like infected Amorphophallus samples in Yunnan province to investigate the distribution, molecular characterization, and diversity and evolution of Amorphophallus-infecting viruses including three isolates of dasheen mosaic virus and three orthotospoviruses: mulberry vein banding associated virus (MVBaV), tomato zonate spot virus (TZSV) and impatiens necrotic spot virus (INSV). The results showed that DsMV is the dominant virus infecting Amorphophallus, mixed infections with DsMV and MVBaV to Amorphophallus were quite common in Yunnan province, China. This is the first report on infection of Amorphophallus with MVBaV, TZSV, and impatiens necrotic spot virus (INSV) in China. This work will help to develop an effective integrated management strategy to control the spread of Amorphophallus viral diseases.


Subject(s)
Phylogeny , Plant Diseases , China , Plant Diseases/virology , Plant Viruses/isolation & purification , Plant Viruses/genetics , High-Throughput Nucleotide Sequencing , RNA, Viral/genetics
2.
PLoS Biol ; 22(5): e3002626, 2024 May.
Article in English | MEDLINE | ID: mdl-38728373

ABSTRACT

All plant viruses were thought to encode in its genome a movement protein that acts as a "passport," allowing active movement within the host. A new study in PLOS Biology characterizes the first plant virus that can colonize its host without encoding this protein.


Subject(s)
Plant Diseases , Plant Viruses , Plant Viruses/physiology , Plant Viruses/genetics , Plant Viruses/pathogenicity , Plant Diseases/virology , Plants/virology , Plant Viral Movement Proteins/metabolism , Plant Viral Movement Proteins/genetics , Genome, Viral , Host-Pathogen Interactions
3.
Arch Microbiol ; 206(5): 240, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698140

ABSTRACT

Hop stunt viroid (HSVd), a small, single stranded, circular, non-coding infectious RNA known to cause infection in various economically important crop plants. In the present investigation, a study was conducted in the southern part of Karnataka districts of India to detect the possible association of HSVd infection in mulberry plants. A total of 41 mulberry plants showing typical viroid-like symptoms along with asymptomatic samples were collected and screened using conventional Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) using a specific set of HSVd-Fw/ HSVd-Re primers. Out of 41 samples, the study confirmed the presence of HSVd in six samples of mulberry collected from Ramanagara (1 sample), Chikkaballapur (3 samples) and Doddaballapura (2 samples) regions with an expected HSVd amplicon size of ∼ 290-300 nucleotides. The mechanical transmission of HSVd was also confirmed on cucumber (cv. Suyo) seedlings through bioassay, which was reconfirmed by RT-PCR. The amplicons were cloned, sequenced, and the representative nucleotide sequences were deposited in the NCBI GenBank. Subsequently, molecular phylogenetic analysis showed that HSVd mulberry isolates from this study were most closely related to grapevine isolates, indicating a common origin. On the other hand, it was shown to belong to a different group from mulberry isolates so far reported from Iran, Italy, Lebanon, and China. The secondary structure analysis of HSVd mulberry Indian isolates exhibited substitutions in the terminal left, pathogenicity, and variable regions compared to those of the Indian grapevine isolates. As far as this study is concerned, HSVd was detected exclusively in some mulberry plants with viral-like symptoms, but the pathogenesis and symptom expression needs to be further investigated to establish the relationship between HSVd and the disease symptoms in the mulberry plants.


Subject(s)
Morus , Phylogeny , Plant Diseases , Plant Viruses , Viroids , Morus/virology , Viroids/genetics , Viroids/isolation & purification , Viroids/classification , India , Plant Diseases/virology , RNA, Viral/genetics , Nucleic Acid Conformation
4.
Proc Natl Acad Sci U S A ; 121(21): e2401748121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739789

ABSTRACT

Potyviridae, the largest family of plant RNA viruses, includes many important pathogens that significantly reduce the yields of many crops worldwide. In this study, we report that the 6-kilodalton peptide 1 (6K1), one of the least characterized potyviral proteins, is an endoplasmic reticulum-localized protein. AI-assisted structure modeling and biochemical assays suggest that 6K1 forms pentamers with a central hydrophobic tunnel, can increase the cell membrane permeability of Escherichia coli and Nicotiana benthamiana, and can conduct potassium in Saccharomyces cerevisiae. An infectivity assay showed that viral proliferation is inhibited by mutations that affect 6K1 multimerization. Moreover, the 6K1 or its homologous 7K proteins from other viruses of the Potyviridae family also have the ability to increase cell membrane permeability and transmembrane potassium conductance. Taken together, these data reveal that 6K1 and its homologous 7K proteins function as viroporins in viral infected cells.


Subject(s)
Nicotiana , Nicotiana/virology , Nicotiana/metabolism , Potyviridae/genetics , Potyviridae/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Cell Membrane Permeability , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Viroporin Proteins/metabolism , Viroporin Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Plant Viruses/genetics , Plant Viruses/physiology , Plant Diseases/virology , Potassium/metabolism
5.
Virus Res ; 345: 199389, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714217

ABSTRACT

Saffron (Crocus sativus L.), a historically significant crop valued for its nutraceutical properties, has been poorly explored from a phytosanitary perspective. This study conducted a thorough examination of viruses affecting saffron samples from Spanish cultivars, using high-throughput sequencing alongside a systematic survey of transcriptomic datasets from Crocus sativus at the Sequence Read Archive. Our analysis unveiled a broad diversity and abundance, identifying 17 viruses across the 52 analyzed libraries, some of which were highly prevalent. This includes known saffron-infecting viruses and previously unreported ones. In addition, we discovered 7 novel viruses from the Alphaflexiviridae, Betaflexiviridae, Potyviridae, Solemoviridae, and Geminiviridae families, with some present in libraries from various locations. These findings indicate that the saffron-associated virome is more complex than previously reported, emphasizing the potential of phytosanitary analysis to enhance saffron productivity.


Subject(s)
Crocus , Plant Diseases , Crocus/genetics , Plant Diseases/virology , Plant Viruses/genetics , Plant Viruses/classification , Plant Viruses/isolation & purification , High-Throughput Nucleotide Sequencing , Virome/genetics , Gene Expression Profiling , Transcriptome , Phylogeny , Genome, Viral , Potyviridae/genetics , Potyviridae/isolation & purification , Flexiviridae/genetics , Flexiviridae/classification , Flexiviridae/isolation & purification
6.
J Virol Methods ; 327: 114950, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735398

ABSTRACT

The major citrus species include several economically important fruits, such as orange, mandarin, lemon, limes, grapefruit and pomelos. Since the 1980 s, total production and consumption of citrus has grown strongly with the current annual worldwide production at over 105 million tonnes. New Zealand's citrus exports, for instance, had an estimated worth of NZ$ 11.6 million (approx. US$ 7 million) in 2020. Citrus plants are prone to viral diseases, which can lead to substantial economic losses. In New Zealand, the citrus Import Health Standard (IHS) has identified 22 viruses and viroids that are subject to regulation and requires citrus nursery stock to be free of these pathogens. As such, there is a need for reliable, sensitive, and rapid detection methods to screen for these viruses and viroids during post entry quarantine. In this study, we developed TaqMan RT-qPCR assays for the detection of nine of these regulated viruses and viroids, namely citrus leaf rugose virus (CiLRV), citrus leprosis virus C (CiLV-C), citrus leprosis virus C2 (CiLV-C2), citrus leprosis virus N (CiLV-N), citrus psorosis virus (CPsV), citrus yellow mosaic virus (CYMV), citrus bent leaf viroid (CBLVd), citrus viroid V (CVd-V), and citrus viroid VI (CVd-VI). These assays have been validated and found to be highly sensitive, specific, and reliable. The implementation of these assays will facilitate the safe importation of citrus nursery stock, thus safeguarding the country's horticultural and economic interests.


Subject(s)
Citrus , Plant Diseases , Plant Viruses , Real-Time Polymerase Chain Reaction , Viroids , Citrus/virology , New Zealand , Plant Diseases/virology , Viroids/genetics , Viroids/isolation & purification , Plant Viruses/genetics , Plant Viruses/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity
7.
Viruses ; 16(5)2024 05 18.
Article in English | MEDLINE | ID: mdl-38793687

ABSTRACT

Tomato fruit blotch virus (ToFBV) (Blunervirus solani, family Kitaviridae) was firstly identified in Italy in 2018 in tomato plants that showed the uneven, blotchy ripening and dimpling of fruits. Subsequent High-Throughput Sequencing (HTS) analysis allowed ToFBV to be identified in samples collected in Australia, Brazil, and several European countries, and its presence in tomato crops was dated back to 2012. In 2023, the virus was found to be associated with two outbreaks in Italy and Belgium, and it was included in the EPPO Alert list as a potential new threat for tomato fruit production. Many epidemiologic features of ToFBV need to be still clarified, including transmission. Aculops lycopersici Massee (Acariformes: Eriophyoidea), the tomato russet mite (TRM), is a likely candidate vector, since high population densities were found in most of the ToFBV-infected tomato cultivations worldwide. Real-time RT-PCR tests for ToFBV detection and TRM identification were developed, also as a duplex assay. The optimized tests were then transferred to an RT-ddPCR assay and validated according to the EPPO Standard PM 7/98 (5). Such sensitive, reliable, and validated tests provide an important diagnostic tool in view of the probable threat posed by this virus-vector system to solanaceous crops worldwide and can contribute to epidemiological studies by simplifying the efficiency of research. To our knowledge, these are the first molecular methods developed for the simultaneous detection and identification of ToFBV and TRM.


Subject(s)
Mites , Plant Diseases , Solanum lycopersicum , Solanum lycopersicum/virology , Plant Diseases/virology , Animals , Mites/virology , Plant Viruses/isolation & purification , Plant Viruses/genetics , Fruit/virology , Crops, Agricultural/virology , High-Throughput Nucleotide Sequencing/methods , Real-Time Polymerase Chain Reaction/methods
9.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38695734

ABSTRACT

Members of the family Fimoviridae are plant viruses with a multipartite negative-sense enveloped RNA genome (-ssRNA), composed of 4-10 segments comprising 12.3-18.5 kb in total, within quasi-spherical virions. Fimoviruses are transmitted to plants by eriophyid mites and induce characteristic cytopathologies in their host plants, including double membrane-bound bodies in the cytoplasm of virus-infected cells. Most fimoviruses infect dicotyledonous plants, and many cause serious disease epidemics. This is a summary of the ICTV Report on the family Fimoviridae, which is available at ictv.global/report/fimoviridae.


Subject(s)
Genome, Viral , Plant Diseases , Plant Viruses , Plant Diseases/virology , Animals , Plant Viruses/genetics , Plant Viruses/classification , Plant Viruses/physiology , RNA, Viral/genetics , Virion/ultrastructure , Plants/virology , Negative-Sense RNA Viruses/genetics , Negative-Sense RNA Viruses/classification , Mites/virology , Phylogeny
10.
Biotechnol J ; 19(5): e2400204, 2024 May.
Article in English | MEDLINE | ID: mdl-38797722

ABSTRACT

Plant virus-based sgRNA delivery strategy has been widely applied for efficient genome editing across various plant species, leveraging its significant advantages in the rapid expression and expansion of sgRNA through virus replication and movement. However, the efficacy of the virus-induced gene editing (VIGE) tool in tomato has yet to be explored. In this paper, we established a TRV-mediated CRISPR/Cas9 genome editing system in the somatic cells of tomato, reporting the validation of VIGE and evaluating the mutagenesis efficiency in both tomato leaves and fruits using high-throughput sequencing. The results demonstrated an approximate 65% efficiency of VIGE in tomato leaves for the selected target genes, with VIGE efficiency reaching up to 50% in tomato fruits. This research not only introduces an efficient tool for reverse genetics but also reveals substantial potential of VIGE in surpassing traditional tissue culture techniques for creating heritable mutations in tomato.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Plant Viruses , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/virology , Gene Editing/methods , CRISPR-Cas Systems/genetics , Plant Viruses/genetics , Plant Leaves/genetics , Plant Leaves/virology , Genome, Plant/genetics , Fruit/genetics , Fruit/virology , Plants, Genetically Modified/genetics
11.
Commun Biol ; 7(1): 462, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627534

ABSTRACT

Plant viruses evolves diverse strategies to overcome the limitations of their genomic capacity and express multiple proteins, despite the constraints imposed by the host translation system. Broad bean wilt virus 2 (BBWV2) is a widespread viral pathogen, causing severe damage to economically important crops. It is hypothesized that BBWV2 RNA2 possesses two alternative in-frame translation initiation codons, resulting in the production of two largely overlapping proteins, VP53 and VP37. In this study, we aim to investigate the expression and function of VP53, an N-terminally 128-amino-acid-extended form of the viral movement protein VP37, during BBWV2 infection. By engineering various recombinant and mutant constructs of BBWV2 RNA2, here we demonstrate that VP53 is indeed expressed during BBWV2 infection. We also provide evidence of the translation of the two overlapping proteins through ribosomal leaky scanning. Furthermore, our study highlights the indispensability of VP53 for successful systemic infection of BBWV2, as its removal results in the loss of virus infectivity. These insights into the translation mechanism and functional role of VP53 during BBWV2 infection significantly contribute to our understanding of the infection mechanisms employed by fabaviruses.


Subject(s)
Fabavirus , Plant Viruses , Fabavirus/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Plant Viruses/genetics
12.
PLoS Pathog ; 20(4): e1012142, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574111

ABSTRACT

RNA viruses and viroids exist and evolve as quasispecies due to error-prone replication. Quasispecies consist of a few dominant master sequences alongside numerous variants that contribute to genetic diversity. Upon environmental changes, certain variants within quasispecies have the potential to become the dominant sequences, leading to the emergence of novel infectious strains. However, the emergence of new infectious variants remains unpredictable. Using mutant pools prepared by saturation mutagenesis of selected stem and loop regions, our study of potato spindle tuber viroid (PSTVd) demonstrates that mutants forming local three-dimensional (3D) structures similar to the wild type (WT) are more likely to accumulate in PSTVd quasispecies. The selection mechanisms underlying this biased accumulation are likely associated with cell-to-cell movement and long-distance trafficking. Moreover, certain trafficking-defective PSTVd mutants can be spread by functional sister genomes in the quasispecies. Our study reveals that the RNA 3D structure of stems and loops constrains the evolution of viroid quasispecies. Mutants with a structure similar to WT have a higher likelihood of being maintained within the quasispecies and can potentially give rise to novel infectious variants. These findings emphasize the potential of targeting RNA 3D structure as a more robust approach to defend against viroid infections.


Subject(s)
Plant Viruses , Solanum tuberosum , Viroids , Viroids/genetics , Solanum tuberosum/genetics , RNA, Viral/genetics , RNA, Viral/chemistry , Quasispecies , Mutagenesis , Plant Diseases , Plant Viruses/genetics
13.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673821

ABSTRACT

Isothermal nucleic acid amplification-based lateral flow testing (INAA-LFT) has emerged as a robust technique for on-site pathogen detection, providing a visible indication of pathogen nucleic acid amplification that rivals or even surpasses the sensitivity of real-time quantitative PCR. The isothermal nature of INAA-LFT ensures consistent conditions for nucleic acid amplification, establishing it as a crucial technology for rapid on-site pathogen detection. However, despite its considerable promise, the widespread application of isothermal INAA amplification-based lateral flow testing faces several challenges. This review provides an overview of the INAA-LFT procedure, highlighting its advancements in detecting plant viruses. Moreover, the review underscores the imperative of addressing the existing limitations and emphasizes ongoing research efforts dedicated to enhancing the applicability and performance of this technology in the realm of rapid on-site testing.


Subject(s)
Nucleic Acid Amplification Techniques , Plant Diseases , Plant Viruses , Nucleic Acid Amplification Techniques/methods , Plant Viruses/genetics , Plant Viruses/isolation & purification , Plant Diseases/virology , Molecular Diagnostic Techniques/methods , Plants/virology , Plants/genetics
14.
Methods Mol Biol ; 2788: 157-169, 2024.
Article in English | MEDLINE | ID: mdl-38656513

ABSTRACT

This chapter presents a comprehensive approach to predict novel miRNAs encoded by plant viruses and identify their target plant genes, through integration of various ab initio computational approaches. The predictive process begins with the analysis of plant viral sequences using the VMir Analyzer software. VMir Viewer software is then used to extract primary hairpins from these sequences. To distinguish real miRNA precursors from pseudo miRNA precursors, MiPred web-based software is employed. Verified real pre-miRNA sequences with a minimum free energy of < -20 Kcal/mol, are further analyzed using the RNAshapes software. Validation of predictions involves comparing them with available Expressed Sequence Tags (ESTs) from the relevant plant using BlastN. Short sequences with lengths ranging from 19 to 25 nucleotides and exhibiting <5 mismatches are prioritized for miRNA prediction. The precise locations of these short sequences within pre-miRNA structures generated using RNAshapes are meticulously identified, with a focus on those situated on the 5' and 3' arms of the structures, indicating potential miRNAs. Sequences within the arms of pre-miRNA structures are used to predict target sites within the ESTs of the specific plant, facilitated by psRNA Target software, revealing genes with potential regulatory roles in the plant. To confirm the outcome of target prediction, results are individually submitted to the RNAhybrid web-based software. For practical demonstration, this approach is applied to analyze African cassava mosaic virus (ACMV) and East African cassava mosaic virus-Uganda (EACMV-UG) viruses, as well as the ESTs of Jatropha and cassava.


Subject(s)
Computational Biology , MicroRNAs , Plant Viruses , RNA, Viral , Software , MicroRNAs/genetics , Plant Viruses/genetics , Computational Biology/methods , RNA, Viral/genetics , Genes, Plant , Nucleic Acid Conformation , Plants/virology , Plants/genetics , Expressed Sequence Tags
15.
PLoS Biol ; 22(4): e3002600, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38662792

ABSTRACT

The signature feature of all plant viruses is the encoding of movement proteins (MPs) that supports the movement of the viral genome into adjacent cells and through the vascular system. The recent discovery of umbravirus-like viruses (ULVs), some of which only encode replication-associated proteins, suggested that they, as with umbraviruses that lack encoded capsid proteins (CPs) and silencing suppressors, would require association with a helper virus to complete an infection cycle. We examined the infection properties of 2 ULVs: citrus yellow vein associated virus 1 (CY1), which only encodes replication proteins, and closely related CY2 from hemp, which encodes an additional protein (ORF5CY2) that was assumed to be an MP. We report that both CY1 and CY2 can independently infect the model plant Nicotiana benthamiana in a phloem-limited fashion when delivered by agroinfiltration. Unlike encoded MPs, ORF5CY2 was dispensable for infection of CY2, but was associated with faster symptom development. Examination of ORF5CY2 revealed features more similar to luteoviruses/poleroviruses/sobemovirus CPs than to 30K class MPs, which all share a similar single jelly-roll domain. In addition, only CY2-infected plants contained virus-like particles (VLPs) associated with CY2 RNA and ORF5CY2. CY1 RNA and a defective (D)-RNA that arises during infection interacted with host protein phloem protein 2 (PP2) in vitro and in vivo, and formed a high molecular weight complex with sap proteins in vitro that was partially resistant to RNase treatment. When CY1 was used as a virus-induced gene silencing (VIGS) vector to target PP2 transcripts, CY1 accumulation was reduced in systemic leaves, supporting the usage of PP2 for systemic movement. ULVs are therefore the first plant viruses encoding replication and CPs but no MPs, and whose systemic movement relies on a host MP. This explains the lack of discernable helper viruses in many ULV-infected plants and evokes comparisons with the initial viruses transferred into plants that must have similarly required host proteins for movement.


Subject(s)
Nicotiana , Plant Diseases , Plant Viral Movement Proteins , Nicotiana/virology , Nicotiana/genetics , Nicotiana/metabolism , Plant Diseases/virology , Plant Viral Movement Proteins/metabolism , Plant Viral Movement Proteins/genetics , RNA Viruses/genetics , RNA Viruses/physiology , RNA Viruses/metabolism , Plant Viruses/physiology , Plant Viruses/genetics , Plant Viruses/metabolism , Plant Viruses/pathogenicity , Capsid Proteins/metabolism , Capsid Proteins/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Genome, Viral , Phloem/virology , Phloem/metabolism
16.
Virol J ; 21(1): 86, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622686

ABSTRACT

BACKGROUND: Viruses have notable effects on agroecosystems, wherein they can adversely affect plant health and cause problems (e.g., increased biosecurity risks and economic losses). However, our knowledge of their diversity and interactions with specific host plants in ecosystems remains limited. To enhance our understanding of the roles that viruses play in agroecosystems, comprehensive analyses of the viromes of a wide range of plants are essential. High-throughput sequencing (HTS) techniques are useful for conducting impartial and unbiased investigations of plant viromes, ultimately forming a basis for generating further biological and ecological insights. This study was conducted to thoroughly characterize the viral community dynamics in individual plants. RESULTS: An HTS-based virome analysis in conjunction with proximity sampling and a tripartite network analysis were performed to investigate the viral diversity in chunkung (Cnidium officinale) plants. We identified 61 distinct chunkung plant-associated viruses (27 DNA and 34 RNA viruses) from 21 known genera and 6 unclassified genera in 14 known viral families. Notably, 12 persistent viruses (7 DNA and 5 RNA viruses) were exclusive to dwarfed chunkung plants. The detection of viruses from the families Partitiviridae, Picobirnaviridae, and Spinareoviridae only in the dwarfed plants suggested that they may contribute to the observed dwarfism. The co-infection of chunkung by multiple viruses is indicative of a dynamic and interactive viral ecosystem with significant sequence variability and evidence of recombination. CONCLUSIONS: We revealed the viral community involved in chunkung. Our findings suggest that chunkung serves as a significant reservoir for a variety of plant viruses. Moreover, the co-infection rate of individual plants was unexpectedly high. Future research will need to elucidate the mechanisms enabling several dozen viruses to co-exist in chunkung. Nevertheless, the important insights into the chunkung virome generated in this study may be relevant to developing effective plant viral disease management and control strategies.


Subject(s)
Coinfection , Dwarfism , Plant Viruses , RNA Viruses , Humans , Virome , Ecosystem , Cnidium/genetics , RNA, Viral/genetics , High-Throughput Nucleotide Sequencing/methods , Plant Viruses/genetics , DNA , Phylogeny
17.
Viruses ; 16(4)2024 03 27.
Article in English | MEDLINE | ID: mdl-38675860

ABSTRACT

In 1929, it was reported that yellowing symptoms caused by a tobacco mosaic virus (TMV) yellow mosaic isolate were suppressed in tobacco plants that were systemically infected with a TMV light green isolate. Similar to vaccination, the phenomenon of cross-protection involves a whole plant being infected with an attenuated virus and involves the same or a closely related virus species. Therefore, attenuated viruses function as biological control agents. In Japan, many studies have been performed on cross-protection. For example, the tomato mosaic virus (ToMV)-L11A strain is an attenuated isolate developed by researchers and shows high control efficiency against wild-type ToMV in commercial tomato crops. Recently, an attenuated isolate of zucchini yellow mosaic virus (ZYMV)-2002 was developed and registered as a biological pesticide to control cucumber mosaic disease. In addition, attenuated isolates of pepper mild mottle virus (PMMoV), cucumber mosaic virus (CMV), tobacco mild green mosaic virus (TMGMV), melon yellow spot virus (MYSV), and watermelon mosaic virus (WMV) have been developed in Japan. These attenuated viruses, sometimes called plant vaccines, can be used not only as single vaccines but also as multiple vaccines. In this review, we provide an overview of studies on attenuated plant viruses developed in Japan. We also discuss the application of the attenuated strains, including the production of vaccinated seedlings.


Subject(s)
Plant Diseases , Plant Viruses , Plant Diseases/virology , Plant Diseases/prevention & control , Japan , Plant Viruses/genetics , Plant Viruses/physiology , Plant Viruses/isolation & purification , Plant Viruses/classification , Biological Control Agents , Tobacco Mosaic Virus/genetics , Cross Protection , Vaccines, Attenuated , Solanum lycopersicum/virology , Viral Vaccines/immunology
18.
Viruses ; 16(4)2024 03 27.
Article in English | MEDLINE | ID: mdl-38675859

ABSTRACT

In Australia, Soldier flies (Inopus spp.) are economically significant pests of sugarcane that currently lack a viable management strategy. Despite various research efforts, the mechanisms underlying the damage caused by soldier fly larvae remain poorly understood. Our study aims to explore whether this damage is associated with the transmission of plant viruses during larval feeding. We also explore the larval transcriptome to identify any entomopathogenic viruses with the potential to be used as biocontrol agents in future pest management programs. Seven novel virus sequences are identified and characterised using de novo assembly of RNA-Seq data obtained from salivary glands of larvae. The novel virus sequences belong to different virus families and are tentatively named SF-associated anphevirus (SFaAV), SF-associated orthomyxo-like virus (SFaOV), SF-associated narna-like virus (SFaNV), SF-associated partiti-like virus (SFaPV), SF-associated toti-like virus (SFaTV-1 and SFaTV-2) and SF-associated densovirus (SFaDV). These newly identified viruses are more likely insect-associated viruses, as phylogenetic analyses show that they cluster with other insect-specific viruses. Small RNA analysis indicates prominent peaks at both 21 nt and 26-29 nt, suggesting the activation of host siRNA and piwiRNA pathways. Our study helps to improve understanding of the virome of soldier flies and could identify insect viruses for deployment in novel pest management strategies.


Subject(s)
Diptera , Gene Expression Profiling , Larva , Phylogeny , Saccharum , Animals , Larva/virology , Diptera/virology , Australia , Saccharum/virology , Transcriptome , Insect Viruses/genetics , Insect Viruses/classification , Plant Viruses/genetics , Plant Viruses/classification , Genome, Viral
19.
Viruses ; 16(4)2024 04 09.
Article in English | MEDLINE | ID: mdl-38675919

ABSTRACT

Citrus is the natural host of at least eight viroid species, providing a natural platform for studying interactions among viroids. The latter manifests as antagonistic or synergistic phenomena. The antagonistic effect among citrus viroids intuitively leads to reduced symptoms caused by citrus viroids, while the synergistic effect leads to an increase in symptom severity. The interaction phenomenon is complex and interesting, and a deep understanding of the underlying mechanisms induced during this viroid interaction is of great significance for the prevention and control of viroid diseases. This paper summarizes the research progress of citrus viroids in recent years, focusing on the interaction phenomenon and analyzing their interaction mechanisms. It points out the core role of the host RNA silencing mechanism and viroid-derived siRNA (vd-siRNA), and provides suggestions for future research directions.


Subject(s)
Citrus , Plant Diseases , Viroids , Viroids/genetics , Viroids/physiology , Citrus/virology , Plant Diseases/virology , RNA Interference , RNA, Small Interfering/genetics , Plant Viruses/physiology , Plant Viruses/genetics
20.
Viruses ; 16(4)2024 04 13.
Article in English | MEDLINE | ID: mdl-38675944

ABSTRACT

Viruses pose major global challenges to crop production as infections reduce the yield and quality of harvested products, hinder germplasm exchange, increase financial inputs, and threaten food security. Small island or archipelago habitat conditions such as those in the Caribbean are particularly susceptible as the region is characterized by high rainfall and uniform, warm temperatures throughout the year. Moreover, Caribbean islands are continuously exposed to disease risks because of their location at the intersection of transcontinental trade between North and South America and their role as central hubs for regional and global agricultural commodity trade. This review provides a summary of virus disease epidemics that originated in the Caribbean and those that were introduced and spread throughout the islands. Epidemic-associated factors that impact disease development are also discussed. Understanding virus disease epidemiology, adoption of new diagnostic technologies, implementation of biosafety protocols, and widespread acceptance of biotechnology solutions to counter the effects of cultivar susceptibility remain important challenges to the region. Effective integrated disease management requires a comprehensive approach that should include upgraded phytosanitary measures and continuous surveillance with rapid and appropriate responses.


Subject(s)
Crops, Agricultural , Fruit , Plant Diseases , Vegetables , Plant Diseases/virology , Plant Diseases/prevention & control , Crops, Agricultural/virology , Vegetables/virology , Caribbean Region/epidemiology , Fruit/virology , Plant Viruses
SELECTION OF CITATIONS
SEARCH DETAIL
...