Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Plant Signal Behav ; 16(11): 1964163, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34384043

ABSTRACT

Silverleaf nightshade (Solanum elaeagnifolium) is a highly successful invasive weed that has caused agricultural losses both in its home and invaded ranges. Surveying 50 sub-populations over 36,000 km2 in its native range in South Texas, we investigated the interactions among soil type, population size, plant height, herbivory, and plant defenses in its home range with the expectation that populations growing in the plant's preferred sandier soils would host larger colonies of healthier and better defended plants. At each sampling location, on randomly selected plants, we measured height, insect herbivore damage, and presence, and density of internode spines. Soil type was determined using the NRCS Web Soil Survey and primarily grouped into sand, clay, or urban. Our results show a tradeoff between growth and defense with larger colonies and taller plants in clay soils, but smaller colonies of shorter, spinier plants in sandy soils. We also observed decreased herbivory in urban soils, further confirming the plant's ability to survive and even be strengthened by highly disturbed conditions. This study is a starting point for a better understanding of silverleaf nightshade's ecology in its home range and complicates the assumption that it thrives best in sandy soils.


Subject(s)
Adaptation, Physiological , Introduced Species , Plant Defense Against Herbivory/physiology , Soil/chemistry , Solanum/anatomy & histology , Solanum/growth & development , Solanum/parasitology , Herbivory , Plant Weeds/anatomy & histology , Plant Weeds/growth & development , Plant Weeds/parasitology , Texas
3.
Plant Physiol ; 185(4): 1339-1352, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33793943

ABSTRACT

The Striga, particularly S. he rmonthica, problem has become a major threat to food security, exacerbating hunger and poverty in many African countries. A number of Striga control strategies have been proposed and tested during the past decade, however, further research efforts are still needed to provide sustainable and effective solutions to the Striga problem. In this paper, we provide an update on the recent progress and the approaches used in Striga management, and highlight emerging opportunities for developing new technologies to control this enigmatic parasite.


Subject(s)
Host-Parasite Interactions/physiology , Plant Weeds/parasitology , Striga/physiology , Striga/parasitology , Weed Control/methods
4.
Plant Physiol ; 185(4): 1353-1373, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33793958

ABSTRACT

Chemical signals known as strigolactones (SLs) were discovered more than 50 years ago as host-derived germination stimulants of parasitic plants in the Orobanchaceae. Strigolactone-responsive germination is an essential adaptation of obligate parasites in this family, which depend upon a host for survival. Several species of obligate parasites, including witchweeds (Striga, Alectra spp.) and broomrapes (Orobanche, Phelipanche spp.), are highly destructive agricultural weeds that pose a significant threat to global food security. Understanding how parasites sense SLs and other host-derived stimulants will catalyze the development of innovative chemical and biological control methods. This review synthesizes the recent discoveries of strigolactone receptors in parasitic Orobanchaceae, their signaling mechanism, and key steps in their evolution.


Subject(s)
Germination/drug effects , Host-Parasite Interactions/drug effects , Plant Growth Regulators/pharmacology , Plant Roots/drug effects , Plant Weeds/drug effects , Plant Weeds/parasitology , Striga/growth & development , Striga/parasitology , Heterocyclic Compounds, 3-Ring/pharmacology , Lactones/pharmacology , Plant Roots/growth & development , Plant Weeds/growth & development
5.
Plant Physiol ; 185(4): 1457-1467, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33661304

ABSTRACT

Invasive holoparasitic plants of the genus Cuscuta (dodder) threaten African ecosystems due to their rapid spread and attack on various host plant species. Most Cuscuta species cannot photosynthesize and hence rely on host plants for nourishment. After attachment through a peg-like organ called a haustorium, the parasites deprive hosts of water and nutrients, which negatively affects host growth and development. Despite their rapid spread in Africa, dodders have attracted limited research attention, although data on their taxonomy, host range, and epidemiology are critical for their management. Here, we combine taxonomy and phylogenetics to reveal the presence of field dodder (Cuscuta campestris) and C. kilimanjari (both either naturalized or endemic to East Africa), in addition to the introduction of the giant dodder (C. reflexa), a south Asian species, in continental Africa. These parasites have a wide host range, parasitizing species across 13 angiosperm orders. We evaluated the possibility of C. reflexa to expand this host range to tea (Camelia sinensis), coffee (Coffea arabica), and mango (Mangifera indica), crops of economic importance to Africa, for which haustorial formation and vascular-bundle connections in all three crops revealed successful parasitism. However, only mango mounted a successful postattachment resistance response. Furthermore, species distribution models predicted high habitat suitability for Cuscuta spp. across major tea- and coffee-growing regions of Eastern Africa, suggesting an imminent risk to these crops. Our findings provide relevant insights into a poorly understood threat to biodiversity and economic wellbeing in Eastern Africa, and provide critical information to guide development of management strategies to avert Cuscuta spp. spread.


Subject(s)
Cuscuta/genetics , Cuscuta/physiology , Cuscuta/parasitology , Host Specificity , Host-Parasite Interactions/genetics , Host-Parasite Interactions/physiology , Plant Weeds/parasitology , Africa, Eastern , Cuscuta/classification , Ecosystem , Farms , Gene Expression Regulation, Plant , Genes, Plant , Phylogeny , Plant Weeds/genetics
6.
Plant Physiol ; 185(4): 1325-1338, 2021 04 23.
Article in English | MEDLINE | ID: mdl-35237829

ABSTRACT

Although photosynthesis is essential to sustain life on Earth, not all plants use sunlight to synthesize nutrients from carbon dioxide and water. Holoparasitic plants, which are important in agricultural and natural ecosystems, are dependent on other plants for nutrients. Phytohormones are crucial in holoparasitic plant-host interactions, from seed germination to senescence, not only because they act as growth and developmental regulators, but also because of their central role in the regulation of host photosynthesis and source-sink relations between the host and the holoparasitic plant. Here, we compile and discuss current knowledge on the impact and ecophysiology of holoparasitic plants (such as the broomrapes Orobanche sp. and Phelipanche sp.) that infest economically important dicotyledonous crops in Mediterranean agroecosystems (legumes [Fabaceae], sunflowers [Helianthus sp.], or tomato [Solanum lycopersicum] plants). We also highlight the role of holoparasitic plant-host interactions (such as those between Cytinus hypocistis and various shrubs of the genus Cistus) in shaping natural Mediterranean ecosystems. The roles of phytohormones in controlling plant-host interactions, abiotic factors in parasitism, and the biological significance of natural seed banks and how dormancy and germination are regulated, will all be discussed. Holoparasitic plants are unique organisms; improving our understanding of their interaction with hosts as study models will help us to better manage parasitic plants, both in agricultural and natural ecosystems.


Subject(s)
Biodiversity , Ecosystem , Host-Parasite Interactions/physiology , Orobanche/growth & development , Orobanche/parasitology , Plant Roots/parasitology , Plant Weeds/growth & development , Plant Weeds/parasitology , Plant Roots/growth & development
7.
Sci Rep ; 10(1): 22103, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33328509

ABSTRACT

To improve grain yield under direct seeded and aerobic conditions, weed competitive ability of a rice genotype is a key desirable trait. Hence, understanding and dissecting weed competitive associated traits at both morphological and molecular level is important in developing weed competitive varieties. In the present investigation, the QTLs associated with weed competitive traits were identified in BC1F2:3 population derived from weed competitive accession of O. glaberrima (IRGC105187) and O. sativa cultivar IR64. The mapping population consisting of 144 segregating lines were phenotyped for 33 weed competitive associated traits under direct seeded condition. Genetic analysis of weed competitive traits carried out in BC1F2:3 population showed significant variation for the weed competitive traits and predominance of additive gene action. The population was genotyped with 81 genome wide SSR markers and a linkage map covering 1423 cM was constructed. Composite interval mapping analysis identified 72 QTLs linked to 33 weed competitive traits which were spread on the 11 chromosomes. Among 72 QTLs, 59 were found to be major QTLs (> 10% PVE). Of the 59 major QTLs, 38 had favourable allele contributed from the O. glaberrima parent. We also observed nine QTL hotspots for weed competitive traits (qWCA2a, qWCA2b, qWCA2c, qWCA3, qWCA5, qWCA7, qWCA8, qWCA9, and qWCA10) wherein several QTLs co-localised. Our study demonstrates O. glaberrima species as potential source for improvement for weed competitive traits in rice and identified QTLs hotspots associated with weed competitive traits.


Subject(s)
Edible Grain/genetics , Oryza/genetics , Plant Weeds/genetics , Quantitative Trait Loci/genetics , Alleles , Chromosome Mapping , Edible Grain/parasitology , Microsatellite Repeats/genetics , Oryza/growth & development , Oryza/parasitology , Phenotype , Plant Weeds/growth & development , Plant Weeds/parasitology , Seeds/genetics , Seeds/growth & development , Seeds/parasitology , Weed Control/methods
8.
PLoS One ; 12(8): e0182796, 2017.
Article in English | MEDLINE | ID: mdl-28796821

ABSTRACT

Information on whole community responses is needed to predict direction and magnitude of changes in plant and animal abundance under global changes. This study quantifies the effect of past ozone exposure on a weed community structure and arthropod colonization. We used the soil seed bank resulting from a long-term ozone exposure to reestablish the plant community under a new low-pollution environment. Two separate experiments using the same original soil seed bank were conducted. Plant and arthropod richness and species abundance was assessed during two years. We predicted that exposure to episodic high concentrations of ozone during a series of growing cycles would result in plant assemblies with lower diversity (lower species richness and higher dominance), due to an increase in dominance of the stress tolerant species and the elimination of the ozone-sensitive species. As a consequence, arthropod-plant interactions would also be changed. Species richness of the recruited plant communities from different exposure histories was similar (≈ 15). However, the relative abundance of the dominant species varied according to history of exposure, with two annual species dominating ozone enriched plots (90 ppb: Spergula arvensis, and 120 ppb: Calandrinia ciliata). Being consistent both years, the proportion of carnivore species was significantly higher in plots with history of higher ozone concentration (≈3.4 and ≈7.7 fold higher in 90 ppb and 120 ppb plots, respectively). Our study provides evidence that, past history of pollution might be as relevant as management practices in structuring agroecosystems, since we show that an increase in tropospheric ozone may influence biotic communities even years after the exposure.


Subject(s)
Air Pollutants/toxicity , Ozone/toxicity , Plant Weeds/drug effects , Animals , Argentina , Arthropods/physiology , Atmosphere , Biodiversity , Food Chain , Plant Dispersal , Plant Weeds/growth & development , Plant Weeds/parasitology , Population Dynamics
9.
PLoS One ; 12(3): e0173066, 2017.
Article in English | MEDLINE | ID: mdl-28257454

ABSTRACT

Cover plants can be introduced in cropping systems to provide agroecosystem services, including weed control via competition for resources. There is currently no consensus on how to identify the best cover plant species, while trait-based approaches are promising for screening plant species due to their agroecosystem service provision potential. This study was carried out to characterize soil exploitation strategies of cover plant species in banana agroecosystems using a trait-based approach, and in turn identify cover plant species with a high weed control potential via competition for soil resources in banana cropping systems. A field experiment was conducted on 17 cover plant species, two weed species and two banana cultivars grown individually. Four functional traits were measured. Two of them (i.e., the size of the zone explored by roots and the root impact density) were used to characterize root system soil exploration patterns. Two other traits (i.e., specific root length and root diameter) were used to characterize resource acquisition within the soil zone explored by the roots. All studied traits exhibited marked variations among species. The findings suggested a trade-off between the abilities of species to develop a limited number of large diameter roots exploring a large soil zone versus many thin roots exploring a smaller soil zone. Three soil-resource exploitation strategies were identified among species: (i) with large diameter roots that explore a large soil zone; (ii) with small diameter roots and a high specific length that explore a smaller soil zone; and (iii) with a high total root-impact density and an intermediate specific root length that explore the uppermost soil layers. Interestingly, in our panel of species, no correlations with regard to belowground and aboveground strategies were noted: species with an acquisitive belowground strategy could display an acquisitive or a conservative aboveground strategy. The findings of this study illustrated that a trait-based approach could be used to identify plant species with potential for competing with weeds, while minimising competition with banana. Six of the 17 studied cover crop species were identified as having this potential. The next step will be to assess them for their weed control performances in banana cropping systems with low reliance on herbicides.


Subject(s)
Fabaceae/physiology , Musa/physiology , Plant Roots/physiology , Poaceae/physiology , Plant Weeds/growth & development , Plant Weeds/parasitology , Quantitative Trait, Heritable , Soil/chemistry , Weed Control/methods
10.
Bull Math Biol ; 78(8): 1678-702, 2016 08.
Article in English | MEDLINE | ID: mdl-27491929

ABSTRACT

We propose a mathematical model for biocontrol of the invasive weed Fallopia japonica using one of its co-evolved natural enemies, the Japanese sap-sucking psyllid Aphalara itadori. This insect sucks the sap from the stems of the plant thereby weakening it. Its diet is highly specific to F. japonica. We consider a single isolated knotweed stand, the plant's size being described by time-dependent variables for total stem and rhizome biomass. It is the larvae of A. itadori that damage the plant most, so the insect population is described in terms of variables for the numbers of larvae and adults, using a stage-structured modelling approach. The dynamics of the model depends mainly on a parameter h, which measures how long it takes for an insect to handle (digest) one unit of F. japonica stem biomass. If h is too large, then the model does not have a positive equilibrium and the plant biomass and insect numbers both grow together without bound, though at a lower rate than if the insects were absent. If h is sufficiently small, then the model possesses a positive equilibrium which appears to be locally stable. The results based on our model imply that satisfactory long-term control of the knotweed F. japonica using the insect A. itadori is only possible if the insect is able to consume and digest knotweed biomass sufficiently quickly; if it cannot, then the insect can only slow down the growth which is still unbounded.


Subject(s)
Biological Control Agents , Fallopia japonica , Plant Weeds , Animals , Biomass , Fallopia japonica/growth & development , Fallopia japonica/parasitology , Hemiptera/physiology , Mathematical Concepts , Models, Biological , Plant Weeds/growth & development , Plant Weeds/parasitology
11.
Article in English | MEDLINE | ID: mdl-26927135

ABSTRACT

Pomacea canaliculata (Ampullariidae) has extensively invaded most Asian constructed wetlands and its massive herbivory of macrophytes has become a major cause of ecosystem dysfunctioning of these restored habitats. We conducted non-choice laboratory feeding experiments of P. canaliculata using five common macrophyte species in constructed wetlands including Ipomoea aquatica, Commelina communis, Nymphoides coreana, Acorus calamus and Phragmites australis. Effects of macrophytes on snail feeding, growth and fecundity responses were evaluated. Results indicated that P. canaliculata reared on Ipomoea had the highest feeding and growth rates with highest reproductive output, but all individuals fed with Phragmites showed lowest feeding rates and little growth with poorest reproductive output. Plant N and P contents were important for enhancing palatability, supporting growth and offspring quantity of P. canaliculata, whilst toughness, cellulose and phenolics had critically deterrent effects on various life-history traits. Although snail offspring quality was generally consistent regardless of maternal feeding conditions, the reduced growth and offspring quantity of the poorly-fed snails in constructed wetlands dominated by the less-palatable macrophytes could limit the invasive success of P. canaliculata. Effective bottom-up control of P. canaliculata in constructed wetlands should involve selective planting strategy using macrophytes with low nutrient and high toughness, cellulose and phenolic contents.


Subject(s)
Feeding Behavior/physiology , Herbivory/physiology , Introduced Species , Plant Weeds/parasitology , Snails/physiology , Acorus , Animals , Commelina , Ecology , Ipomoea , Taiwan , Wetlands
12.
Virus Res ; 186: 135-43, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24486486

ABSTRACT

Zucchini yellow mosaic virus (ZYMV, genus Potyvirus) causes important crop losses in cucurbits worldwide. In France, ZYMV epidemics are sporadic but occasionally very severe. This contrasts with Watermelon mosaic virus (WMV, genus Potyvirus) which causes regular and early epidemics. Factors influencing ZYMV epidemiology are still poorly understood. In order to gain new insights on the ecology and epidemiology of this virus, a 5-year multilocation trial was conducted in which ZYMV spread and populations were studied in each of the 20 plot/year combinations and compared with WMV. Search for ZYMV alternative hosts was conducted by testing weeds growing naturally around one plot and also by checking ZYMV natural infections in selected ornamental species. Although similar ZYMV populations were observed occasionally in the same plot in two successive years suggesting the occurrence of overwintering hosts nearby, only two Lamium amplexicaule plants were found to be infected by ZYMV of 3459 weed samples that were tested. The scarcity of ZYMV reservoirs contrasts with the frequent detection of WMV in the same samples. Since ZYMV and WMV have many aphid vectors in common and are transmitted with similar efficiencies, the differences observed in ZYMV and WMV reservoir abundances could be a major explanatory factor for the differences observed in the typology of ZYMV and WMV epidemics in France. Other potential ZYMV alternative hosts have been identified in ornamental species including begonia. Although possible in a few cases, exchanges of populations between different plots located from 500 m to 4 km apart seem uncommon. Therefore, the potential dissemination range of ZYMV by its aphid vectors seems to be rather limited in a fragmented landscape.


Subject(s)
Citrullus/virology , Cucurbita/virology , Phylogeny , Plant Diseases/virology , Potyvirus/genetics , RNA, Viral/genetics , Animals , Aphids/physiology , Behavior, Animal , Citrullus/parasitology , Cucurbita/parasitology , Feeding Behavior , France , Haplotypes , Host Specificity , Host-Parasite Interactions , Insect Vectors/physiology , Molecular Epidemiology , Phylogeography , Plant Diseases/parasitology , Plant Weeds/parasitology , Plant Weeds/virology , Potyvirus/classification , Potyvirus/isolation & purification
13.
Virus Res ; 186: 120-9, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24370865

ABSTRACT

Tomato chlorosis virus (ToCV) and Tomato infectious chlorosis virus (TICV) are two whitefly transmitted viruses which are classified in the genus Crinivirus of the family Closteroviridae. Both induce similar yellowing symptoms in tomato and are responsible for severe economic losses. ToCV is transmitted by Bemisia tabaci Gennadious, Trialeurodes vaporariorum Westwood and Trialeurodes abutilonea Haldeman, whereas TICV is transmitted only by T. vaporariorum. An extensive study was conducted during 2009-2012 in order to identify the virus species involved in tomato yellowing disease in Greece. Samples from tomato, other crops and weeds belonging to 44 species from 26 families were collected and analyzed using molecular methods. In addition, adult whiteflies were collected and analyzed using morphological characters and DNA markers. Results showed that TICV prevailed in tomato crops (62.5%), while ToCV incidence was lower (20.5%) and confined in southern Greece. ToCV was also detected in lettuce plants showing mild yellowing symptoms for the first time in Greece. Approximately 13% of the tested weeds were found to be infected, with TICV being the predominant virus with an incidence of 10.8%, whereas ToCV was detected only in 2.2% of the analyzed samples. These results indicate that the host range of TICV and ToCV in Greece is far more extensive than previously believed. T. vaporariorum was the most widespread whitefly species in Greece (80%), followed by B. tabaci (biotypes B and Q) (20%). Sequence analysis of the CP and CPm genes from Greek tomato and weed isolates of ToCV and TICV showed that even though both viruses have very wide host ranges their populations show very low molecular divergence.


Subject(s)
Crinivirus/genetics , DNA, Viral/genetics , Hemiptera/genetics , Insect Vectors/genetics , Phylogeny , Plant Diseases/virology , Solanum lycopersicum/virology , Animals , Behavior, Animal , Biological Evolution , Crinivirus/classification , Crinivirus/isolation & purification , Feeding Behavior , Genetic Variation , Greece , Hemiptera/classification , Hemiptera/virology , Host Specificity , Host-Parasite Interactions , Insect Vectors/classification , Insect Vectors/virology , Lactuca/parasitology , Lactuca/virology , Solanum lycopersicum/parasitology , Phylogeography , Plant Diseases/parasitology , Plant Weeds/parasitology , Plant Weeds/virology
14.
Sci Rep ; 3: 2253, 2013.
Article in English | MEDLINE | ID: mdl-23872717

ABSTRACT

Weeds are important in the ecology of field crops, and when crops are harvested, weeds often become the main hosts for plant viruses and their insect vectors. Few studies, however, have examined the relationships between plant viruses, vectors, and weeds. Here, we investigated how infection of the weed Datura stramonium L. by tomato yellow leaf curl virus (TYLCV) affects the host preference and performance of the TYLCV vector, Bemisia tabaci (Gennadius) Q. The results of a choice experiment indicated that B. tabaci Q preferentially settled and oviposited on TYLCV-infected plants rather than on healthy plants. In addition, B. tabaci Q performed better on TYLCV-infected plants than on healthy plants. These results demonstrate that TYLCV is indirectly mutualistic to B. tabaci Q. The mutually beneficial interaction between TYLCV and B. tabaci Q may help explain the concurrent outbreaks of TYLCV and B. tabaci Q in China.


Subject(s)
Insect Vectors/physiology , Insect Vectors/virology , Plant Viruses/physiology , Plant Weeds/parasitology , Plant Weeds/virology , Animals , Begomovirus/physiology , Female , Hemiptera/virology , Solanum lycopersicum/virology , Male , Phenotype , Plant Diseases/virology , Viral Load
15.
Arq. Inst. Biol ; 80(1): 83-89, jan.-mar.2013. tab
Article in Portuguese | LILACS, VETINDEX | ID: biblio-1462208

ABSTRACT

O objetivo do presente trabalho foi avaliar a eficácia de glyphosate e 2,4-D, isolados e em mistura, no controle de Commelina villosa. Foram estudadas duas metodologias de avaliação de absorção de herbicidas em oito intervalos de tempo para a lavagem (simulando chuva após a aplicação) e corte (simulando abortamento, como estratégia de defesa) das folhas: 2, 4, 6, 8, 12, 24 e 48 horas após a aplicação dos herbicidas, além de um tratamento sem lavagem ou corte das folhas, em delineamento experimental inteiramente casualizado com quatro repetições, dispostos em um esquema fatorial 3 x 7 + 1 (três herbicidas x sete períodos – horas após a aplicação). Os herbicidas e doses testados foram: glyphosate (1.440 g ha-1), 2,4-D (720 g ha-1) e a mistura glyphosate + 2,4-D (1.080 + 720 g ha-1). A simulação de chuva interferiu de forma negativa no controle das plantas com o herbicida glyphosate. O controle com o herbicida 2,4-D foi influenciado apenas no período de 2 horas. Os períodos de simulação de chuva não influenciaram no controle das plantas com a mistura de glyphosate + 2,4-D. Para o estudo com corte das folhas tratadas, todos os tratamentos independente do período para corte das folhas foram influenciados de forma negativa no controle, sendo que as plantas apresentaram rebrotas quando tratadas com o herbicida 2,4-D isolado.


Efficacy of glyphosate and 2,4-d in the control of Commelina Villosa. The aim of this study was to evaluate the efficacy of glyphosate and 2,4-D alone and in combination, in the control of Commelina villosa. We studied two methodologies for evaluating herbicide absorption in eight time intervals for washing (simulating rainfall after application) and cutting of leaves (simulating abortion as a defense strategy): 2, 4, 6, 8, 12, 24 and 48 hours after herbicide application, and a treatment without washing or cutting the leaves in a completely randomized design with four replications in a 3 x 7 + 1 factorial design (three herbicides x seven periods – hours after application). Herbicides and doses tested were: glyphosate (1,440 g ha-1), 2,4-D (720 g ha-1) and a mixture of glyphosate + 2,4-D (1,080 + 720 g ha-1). The simulation of rain interfered negatively in the plant control with glyphosate. The control with the herbicide 2,4-D was affected only for the period of 2 hours. Periods of rain simulation did not influence the control of plants with a mixture of glyphosate + 2,4-D. For the study with the cutting of treated leaves, all treatments regardless of the period of cutting the leaves were influenced negatively in terms of plant control, the plants showing regrowth when treated with 2,4-D alone.


Subject(s)
Commelina/classification , Herbicides/analysis , Plant Weeds/parasitology
16.
Oecologia ; 164(1): 117-28, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20443027

ABSTRACT

In some plant populations, the availability of seeds strongly regulates recruitment. However, a scarcity of germination microsites, granivory or density-dependent mortality can reduce the number of plants that germinate or survive to flower. The relative strengths of these controls are unknown for most plant populations and for exotic invaders in particular. We conducted a seed addition experiment with a granivore exclusion treatment in a field setting to explore how these factors interact to regulate populations of the widespread invader Centaurea solstitialis (yellow starthistle) at three study sites across the plant's range in California. We coupled the experimental approach with observational studies within established C. solstitialis populations to estimate seed rain, recruitment and mortality at natural densities. Seed limitation occurred in both experimental and observational plots in all populations. Although vertebrate granivores were active at each site, they had no effect on C. solstitialis recruitment. Density increased mortality, but the effect was variable and weak relative to its effect on fecundity. The seed limitation that was evident at the seedling stage persisted to flowering. Seed-limited populations such as these ought to be highly sensitive to losses to seed predators, and many biological control agents, including those established for C. solstitialis, are seed predators. However, flowering plant density was decoupled from seed production by a strong compensatory response in the surviving plants; seed production was nearly constant in plots across all seed addition levels. Thus, flowering plant density is reduced by the established biocontrol agents, but seed production compensates to replace the population every generation, and no long-term decline is predicted.


Subject(s)
Centaurea/growth & development , Introduced Species , Pest Control, Biological , Plant Weeds/growth & development , Seedlings/growth & development , Seeds/growth & development , Animals , California , Centaurea/parasitology , Feeding Behavior , Flowers/growth & development , Geography , Germination , Insecta , Plant Weeds/parasitology , Population Density , Seeds/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...