Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 197
Filter
1.
Physiol Plant ; 176(3): e14324, 2024.
Article in English | MEDLINE | ID: mdl-38705866

ABSTRACT

Broomrape (Orobanche cumana) negatively affects sunflower, causing severe yield losses, and thus, there is a need to control O. cumana infestation. Brassinosteroids (BRs) play key roles in plant growth and provide resilience to weed infection. This study aims to evaluate the mechanisms by which BRs ameliorate O. cumana infection in sunflower (Helianthus annuus). Seeds were pretreated with BRs (1, 10, and 100 nM) and O. cumana inoculation for 4 weeks under soil conditions. O. cumana infection significantly reduced plant growth traits, photosynthesis, endogenous BRs and regulated the plant defence (POX, GST), BRs signalling (BAK1, BSK1 to BSK4) and synthesis (BRI1, BR6OX2) genes. O. cumana also elevated the levels of malondialdehyde (MDA), hydroxyl radical (OH-), hydrogen peroxide (H2O2) and superoxide (O2 •-) in leaves/roots by 77/112, 63/103, 56/97 and 54/89%, as well as caused ultrastructural cellular damages in both leaves and roots. In response, plants activated a few enzymes, superoxide dismutase (SOD), peroxidase (POD) and reduced glutathione but were unable to stimulate the activity of ascorbate peroxidase (APX) and catalase (CAT) enzymes. The addition of BRs (especially at 10 nM) notably recovered the ultrastructural cellular damages, lowered the production of oxidative stress, activated the key enzymatic antioxidants and induced the phenolic and lignin contents. The downregulation in the particular genes by BRs is attributed to the increased resilience of sunflower via a susceptible reaction. In a nutshell, BRs notably enhanced the sunflower resistance to O. cumana infection by escalating the plant immunity responses, inducing systemic acquired resistance, reducing oxidative or cellular damages, and modulating the expression of BR synthesis or signalling genes.


Subject(s)
Brassinosteroids , Helianthus , Orobanche , Seeds , Helianthus/drug effects , Helianthus/immunology , Helianthus/physiology , Brassinosteroids/pharmacology , Brassinosteroids/metabolism , Orobanche/physiology , Orobanche/drug effects , Seeds/drug effects , Seeds/immunology , Plant Weeds/drug effects , Plant Weeds/physiology , Plant Diseases/parasitology , Plant Diseases/immunology , Plant Immunity/drug effects , Gene Expression Regulation, Plant/drug effects , Photosynthesis/drug effects , Plant Roots/immunology , Plant Roots/drug effects , Hydrogen Peroxide/metabolism , Plant Leaves/drug effects , Plant Leaves/immunology , Plant Proteins/metabolism , Plant Proteins/genetics , Malondialdehyde/metabolism
2.
Funct Plant Biol ; 512024 May.
Article in English | MEDLINE | ID: mdl-38769679

ABSTRACT

The two stresses of weed competition and salt salinity lead to crop yield losses and decline in the productivity of agricultural land. These constraints threaten the future of food production because weeds are more salt stress tolerant than most crops. Climate change will lead to an increase of soil salinity worldwide, and possibly exacerbate the competition between weeds and crops. This aspect has been scarcely investigated in the context of weed-crop competition. Therefore, we conducted a field experiment on green beans (Phaseolus vulgaris ) to investigate the combined impact of weed competition and salt stress on key morpho-physiological traits, and crop yield. We demonstrated that soil salinity shifted weed composition toward salt tolerant weed species (Portulaca oleracea and Cynodon dactylon ), while it reduced the presence of lower tolerance species. Weed competition activated adaptation responses in green bean such as reduced leaf mass per area and biomass allocation to the stem, unchanged stomatal density and instantaneous water use efficiency, which diverge from those that are typically observed as a consequence of salt stress. The morpho-physiological modifications caused by weeds is attributed to the alterations of light intensity and/or quality, further confirming the pivotal role of the light in crop response to weeds. We concluded that higher yield loss caused by combined salt stress and weed competition is due to impaired morpho-physiological responses, which highlights the negative interaction between salt stress and weed competition. This phenomenon will likely be more frequent in the future, and potentially reduce the efficacy of current weed control methods.


Subject(s)
Adaptation, Physiological , Phaseolus , Plant Weeds , Salt Stress , Phaseolus/physiology , Phaseolus/drug effects , Plant Weeds/drug effects , Plant Weeds/physiology , Plant Leaves/physiology , Plant Leaves/drug effects , Crops, Agricultural/growth & development , Salinity , Soil/chemistry , Biomass
3.
Sci Rep ; 14(1): 7679, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561368

ABSTRACT

Allelopathy is a process whereby a plant directly or indirectly promotes or inhibits growth of surrounding plants. Perennial sugarcane root extracts from various years significantly inhibited Bidens pilosa, Digitaria sanguinalis, sugarcane stem seedlings, and sugarcane tissue-cultured seedlings (P < 0.05), with maximum respective allelopathies of - 0.60, - 0.62, - 0.20, and - 0.29. Allelopathy increased with increasing concentrations for the same-year root extract, and inhibitory effects of the neutral, acidic, and alkaline components of perennial sugarcane root extract from different years were significantly stronger than those of the control for sugarcane stem seedlings (P < 0.05). The results suggest that allelopathic effects of perennial sugarcane root extract vary yearly, acids, esters and phenols could be a main reason for the allelopathic autotoxicity of sugarcane ratoons and depend on the type and content of allelochemicals present, and that allelopathy is influenced by other environmental factors within the rhizosphere such as the presence of old perennial sugarcane roots. This may be a crucial factor contributing to the decline of perennial sugarcane root health.


Subject(s)
Saccharum , Seedlings , Plant Roots/chemistry , Plant Weeds/physiology , Allelopathy , Plant Extracts/chemistry
4.
Pest Manag Sci ; 80(7): 3436-3444, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38407460

ABSTRACT

BACKGROUND: Ambrosia grayi is a perennial weed native to northern Mexico, which can also be found in the Great Plains of the US. Outside the Americas, A. grayi has only been documented in Israel, where it is currently categorized as a casual species at advanced eradication stages. Here, we studied the plant biology and chemical weed management options of A. grayi. RESULTS: Only large achenes of A. grayi (~5% of all achenes) contain seeds; moreover, the viability of seeds extracted from large achenes was ~25%. Examination of plant anatomy revealed that underground vegetative segments show an anatomical structure of stems (rhizomes) with anomalous secondary growth. The optimal (night/day) temperature for the emergence of A. grayi rhizomes was 20/30 °C, and the emergence rate increased under elevated temperatures. Emergence may occur at different soil moisture content (25-60%); rhizomes were able to emerge even after 1 month of drought conditions (20%, 25% and 30%). Herbicide combinations, such as fluroxypyr + glufosinate, fluroxypyr + glyphosate, and glyphosate + saflufenacil + surfactant, were tested under quarantine conditions and showed high efficacy for the control of A. grayi. However, the efficiency of these treatments was highly correlated with plant growth stage. CONCLUSION: In Israel, the spread of A. grayi occurs mainly via rhizomes that can emerge under a wide range of temperatures and soil moisture conditions. Data regarding herbicide efficacy will aid in improving the eradication efforts taken by Israel's Plant Protection and Inspection Services. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Ambrosia , Herbicides , Weed Control , Israel , Herbicides/pharmacology , Ambrosia/growth & development , Ambrosia/physiology , Plant Weeds/growth & development , Plant Weeds/drug effects , Plant Weeds/physiology , Introduced Species , Seeds/growth & development
5.
Biol Rev Camb Philos Soc ; 99(3): 753-777, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38174626

ABSTRACT

Weed communities influence the dynamics of ecosystems, particularly in disturbed environments where anthropogenic activities often result in higher pollution. Understanding the dynamics existing between native weed communities and invasive species in disturbed environments is crucial for effective management and normal ecosystem functioning. Recognising the potential resistance of native weed communities to invasion in disturbed environments can help identify suitable native plants for restoration operations. This review aims to investigate the adaptations exhibited by native and non-native weeds that may affect invasions within disturbed environments. Factors such as ecological characteristics, altered soil conditions, and adaptations of native weed communities that potentially confer a competitive advantage relative to non-native or invasive weeds in disturbed environments are analysed. Moreover, the roles of biotic interactions such as competition, mutualistic relationships, and allelopathy in shaping the invasion resistance of native weed communities are described. Emphasis is given to the consideration of the resistance of native weeds as a key factor in invasion dynamics that provides insights for conservation and restoration efforts in disturbed environments. Additionally, this review underscores the need for further research to unravel the underlying mechanisms and to devise targeted management strategies. These strategies aim to promote the resistance of native weed communities and mitigate the negative effects of invasive weed species in disturbed environments. By delving deeper into these insights, we can gain an understanding of the ecological dynamics within disturbed ecosystems and develop valuable insights for the management of invasive species, and to restore long-term ecosystem sustainability.


Subject(s)
Introduced Species , Plant Weeds , Plant Weeds/physiology , Ecosystem , Weed Control/methods , Conservation of Natural Resources
6.
Pest Manag Sci ; 80(1): 10-18, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36641632

ABSTRACT

Root parasitic weeds of the genera Orobanche and Phelipanche (commonly named broomrapes) are responsible for enormous yield losses of several crops all around the world. Traditional weed management methods, including among others the use of herbicides, soil fumigation and solarization, and mechanical, agronomic or physical methods, may have limits of use or can provide a modicum of control. Difficulties in controlling parasitic weeds are due to both the enormous number of seeds produced by each plant that can remain viable for many years, even in the absence of a host, and to the unique physiological and biological properties of the parasite. Although long considered a suitable and promising approach, biological control, in particular the use of microbial organisms or compounds stimulating or inhibiting seed germination, has had no commercial success and no products have reached the market. This article provides a quick overview of the bioherbicide approaches attempted until now, briefly discussing the causes of the failures and the possibility to improve biocontrol agents' effectiveness. Indeed, despite the failures, the 'bioherbicide' approach deserves renewed interest in light of the enormous scientific and technological progress made in past years, which offers new chances of success. © 2023 The Author. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Orobanche , Parasites , Animals , Orobanche/physiology , Plant Roots/chemistry , Plant Weeds/physiology , Seeds , Germination
7.
Science ; 378(6624): 1079-1085, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36480621

ABSTRACT

North America has experienced a massive increase in cropland use since 1800, accompanied more recently by the intensification of agricultural practices. Through genome analysis of present-day and historical samples spanning environments over the past two centuries, we studied the effect of these changes in farming on the extent and tempo of evolution across the native range of the common waterhemp (Amaranthus tuberculatus), a now pervasive agricultural weed. Modern agriculture has imposed strengths of selection rarely observed in the wild, with notable shifts in allele frequency trajectories since agricultural intensification in the 1960s. An evolutionary response to this extreme selection was facilitated by a concurrent human-mediated range shift. By reshaping genome-wide diversity across the landscape, agriculture has driven the success of this weed in the 21st century.


Subject(s)
Adaptation, Physiological , Amaranthus , Anthropogenic Effects , Farms , Plant Weeds , Humans , North America , Plant Weeds/genetics , Plant Weeds/physiology , Amaranthus/genetics , Amaranthus/physiology , Adaptation, Physiological/genetics , Selection, Genetic , Genetic Variation
8.
PLoS One ; 17(2): e0263798, 2022.
Article in English | MEDLINE | ID: mdl-35139125

ABSTRACT

Redroot pigweed (Amaranthus retroflexus L.) and slender amaranth (Amaranthus viridis L.) are becoming problematic weeds in summer crops, including cotton in Australia. A series of laboratory and field experiments were performed to examine the germination ecology, and seed persistence of two populations of A. retroflexus and A. viridis collected from the Goondiwindi and Gatton regions of Australia. Both populations of A. retroflexus and A. viridis behaved similarly to different environmental conditions. Initial dormancy was observed in fresh seeds of both species; however, germination reached maximum after an after-ripening period of two months at room temperature. Light was not a mandatory prerequisite for germination of both species as they could germinate under complete darkness. Although both species showed very low germination at the alternating day/night temperature of 15/5 C, these species germinated more than 40% between ranges of 25/15 C to 35/25 C. Maximum germination of A. retroflexus (93%) and A. viridis (86%) was observed at 35/25 C and 30/20, respectively. Germination of A. retroflexus and A. viridis was completely inhibited at osmotic potentials of -1.0 and -0.6 MPa, respectively. No germination was observed in both species at the sodium chloride concentration of 200 mM. A. retroflexus seedling emergence (87%) was maximum from the seeds buried at 1 cm while the maximum germination of A. viridis (72%) was observed at the soil surface. No seedling emergence was observed from a burial depth of 8 cm for both species. In both species, seed persistence increased with increasing burial depth. At 24 months after seed placement, seed depletion ranged from 75% (10 cm depth) to 94% (soil surface) for A. retroflexus, and ranged from 79% to 94% for A. viridis, respectively. Information gained from this study will contribute to an integrated control programs for A. retroflexus and A. viridis.


Subject(s)
Amaranthus/growth & development , Gossypium/growth & development , Plant Weeds/growth & development , Amaranthus/classification , Amaranthus/physiology , Australia , Crops, Agricultural/growth & development , Ecology , Germination/physiology , Humans , Plant Weeds/physiology , Seasons , Seedlings/growth & development , Seeds/growth & development , Weed Control
9.
BMC Plant Biol ; 21(1): 500, 2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34717554

ABSTRACT

BACKGROUND: Strawberries are a common crop whose yield success depends on the availability of pollinators. Invasive alien plants, such as Impatiens glandulifera and I. parviflora, are also attractive for bees and hoverflies, respectively, and occur in close proximity to strawberry cultivation areas. The aim of the study was to test whether alien plants may decrease pollination of strawberry cultivation. However, even if the pollinators are abundant, efficiency of their pollination may decrease as a result of revisits of flowers that were already probed. It is addressed by pollinators by scent marking. Moreover, such revisits can be determined by nectar replenishment, which may occur rapidly in nectar-rich flowers. We studied revisits to I. glandulifera by bumblebees and defined the factors that influence the probability of revisits (air temperature; pollinator species; family caste and size; flower area; sun radiation; and time of day). RESULTS: We found that the two alien species decreased the number of pollinators visiting strawberries. Apoidea, Bombini and Syrphidae significantly decreased on Fragaria × ananassa when alien Impatiens were present. We also revealed the influence of increasing air temperature on bumblebee foraging, which was particularly significant for female workers. At very high temperatures (> 37°C), bumblebee males revisited probed flowers less often than female workers. CONCLUSIONS: Our results demonstrate that in experimental conditions attractive alien species decrease pollination of strawberries, which may negatively affect production of this crop. Although the results have not been verified in real-life strawberry fields yet, we recommend that alien plant species that share the same pollinators and occur in close proximity of strawberries are controlled. Moreover, we found that revisits of probed flowers may weaken feeding efficiency of bumblebees. If revisits are not induced by nectar replenishment, then global warming may pose a serious threat to the survival of colonies, which may have consequences also for the plants that attract them, e.g., for strawberries.


Subject(s)
Bees/physiology , Crops, Agricultural/growth & development , Flowers/growth & development , Fragaria/growth & development , Impatiens/growth & development , Plant Weeds/physiology , Pollination/physiology , Animals
10.
PLoS One ; 16(8): e0256623, 2021.
Article in English | MEDLINE | ID: mdl-34437599

ABSTRACT

Imports of seeds for sowing are a major pathway for the introduction of contaminant seeds, and many agricultural weeds globally naturalised originally have entered through this pathway. Effective management of this pathway is a significant means of reducing future plant introductions and helps minimise agricultural losses. Using a national border inspection database, we examined the frequency, origin and identity of contaminant seeds within seed for sowing shipments entering New Zealand between 2014-2018. Our analysis looked at 41,610 seed lots across 1,420 crop seed species from over 90 countries. Overall, contamination was rare, occurring in 1.9% of all seed lots. Among the different crop types, the arable category had the lowest percentage of seed lots contaminated (0.5%) and the forage category had the highest (12.6%). Crop seeds Capsicum, Phaseolus and Solanum had the lowest contamination rates (0.0%). Forage crops Medicago (27.3%) and Trifolium (19.8%) had the highest contamination rates. Out of 191 genera recorded as contaminants, Chenopodium was the most common. Regulated quarantine weeds were the rarest contaminant type, only occurring in 0.06% of seed lots. Sorghum halepense was the most common quarantine species and was only found in vegetable seed lots. Vegetable crop seed lots accounted for approximately half of all quarantine species detections, Raphanus sativus being the most contaminated vegetable crop. Larger seed lots were significantly more contaminated and more likely to contain a quarantine species than smaller seed lots. These findings support International Seed Testing Association rules on maximum seed lot weights. Low contamination rates suggest industry practices are effective in minimising contaminant seeds. Considering New Zealand inspects every imported seed lot, utilises a working sample size 5 times larger than International Seed Testing Association rules require, trades crop seed with approximately half of the world's countries and imports thousands of crop seed species, our study provides a unique overview of contaminant seeds that move throughout the seed for sowing system.


Subject(s)
Commerce , Plant Weeds/physiology , Seeds/physiology , Crops, Agricultural/physiology , New Zealand , Species Specificity
11.
Nat Plants ; 7(6): 725-729, 2021 06.
Article in English | MEDLINE | ID: mdl-34099902

ABSTRACT

Recent carbon dioxide (CO2) concentrations promoted higher parthenin concentrations in an invasive Parthenium hysterophorus biotype. Mean concentrations of parthenin, an allelopathic and defensive sesquiterpene lactone, were 49% higher at recent (~400 ppm) than at mid-twentieth-century (~300 ppm) CO2 concentrations, but did not vary in a non-invasive biotype, suggesting that recent increases in atmospheric CO2 may have already altered the chemistry of this destructive weed, potentially contributing to its invasive success.


Subject(s)
Asteraceae/metabolism , Carbon Dioxide , Plant Weeds/metabolism , Sesquiterpenes/metabolism , Allelopathy , Asteraceae/physiology , Ecotype , Introduced Species , Plant Shoots/metabolism , Plant Weeds/physiology , Toxins, Biological/metabolism
12.
Plant Cell Environ ; 44(12): 3479-3491, 2021 12.
Article in English | MEDLINE | ID: mdl-33993534

ABSTRACT

Species interactions and mechanisms affect plant coexistence and community assembly. Despite increasing knowledge of kin recognition and allelopathy in regulating inter-specific and intra-specific interactions among plants, little is known about whether kin recognition mediates allelopathic interference. We used allelopathic rice cultivars with the ability for kin recognition grown in kin versus non-kin mixtures to determine their impacts on paddy weeds in field trials and a series of controlled experiments. We experimentally tested potential mechanisms of the interaction via altered root behaviour, allelochemical production and resource partitioning in the dominant weed competitor, as well as soil microbial communities. We consistently found that the establishment and growth of paddy weeds were more inhibited by kin mixtures compared to non-kin mixtures. The effect was driven by kin recognition that induced changes in root placement, altered weed carbon and nitrogen partitioning, but was associated with similar soil microbial communities. Importantly, genetic relatedness enhanced the production of intrusive roots towards weeds and reduced the production of rice allelochemicals. These findings suggest that relatedness allows allelopathic plants to discriminate their neighbouring collaborators (kin) or competitors and adjust their growth, competitiveness and chemical defense accordingly.


Subject(s)
Allelopathy , Oryza/physiology , Pheromones/metabolism , Plant Weeds/physiology
14.
Bull Math Biol ; 83(2): 13, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33415490

ABSTRACT

We explore the dynamics of invasive weeds by partial differential equation (PDE) modelling and applying dynamical system and phase portrait techniques. We begin by applying the method of characteristics to a preexisting PDE model of the spreading of T. fluminensis, an invasive weed which has been responsible for native forest depletion. We explore the system both at particular points in space and over all of space, in one dimension, as a function of time. Our model suggests that an increase in the rate of spread of the weed through space will increase the efficacy of control measures taken at the weed's spatial boundary. We then propose new competition models based on the previous model and explore the existence of travelling wave solutions. These models represent both the cases with (i) a competing native plant species which spreads through the forest and (ii) a non-mobile, established native plant species. In the former case, the model suggests that an increased mass-action coefficient between the competing species is sufficient and necessary for the transition of the forest into a state of coexistence. In the latter case, the result is not as strong: a sufficiently large rate of competition between the species excludes the possibility of native plant extinction and hence suggests that forest depletion will not occur, but does not imply coexistence. We perform some numerical simulations to support our analytic results. In all cases, we give a discussion on the physical and biological interpretations of our results. We conclude with some suggestions for future work and with a discussion of the advantages and disadvantages of the methods.


Subject(s)
Introduced Species , Models, Biological , Plant Weeds , Plant Weeds/physiology , Population Dynamics , Tradescantia/physiology
15.
Theor Appl Genet ; 134(3): 941-958, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33388884

ABSTRACT

KEY MESSAGE: Genome-wide association revealed that resistance to Striga hermonthica is influenced by multiple genomic regions with moderate effects. It is possible to increase genetic gains from selection for Striga resistance using genomic prediction. Striga hermonthica (Del.) Benth., commonly known as the purple witchweed or giant witchweed, is a serious problem for maize-dependent smallholder farmers in sub-Saharan Africa. Breeding for Striga resistance in maize is complicated due to limited genetic variation, complexity of resistance and challenges with phenotyping. This study was conducted to (i) evaluate a set of diverse tropical maize lines for their responses to Striga under artificial infestation in three environments in Kenya; (ii) detect quantitative trait loci associated with Striga resistance through genome-wide association study (GWAS); and (iii) evaluate the effectiveness of genomic prediction (GP) of Striga-related traits. An association mapping panel of 380 inbred lines was evaluated in three environments under artificial Striga infestation in replicated trials and genotyped with 278,810 single-nucleotide polymorphism (SNP) markers. Genotypic and genotype x environment variations were significant for measured traits associated with Striga resistance. Heritability estimates were moderate (0.42) to high (0.92) for measured traits. GWAS revealed 57 SNPs significantly associated with Striga resistance indicator traits and grain yield (GY) under artificial Striga infestation with low to moderate effect. A set of 32 candidate genes physically near the significant SNPs with roles in plant defense against biotic stresses were identified. GP with different cross-validations revealed that prediction of performance of lines in new environments is better than prediction of performance of new lines for all traits. Predictions across environments revealed high accuracy for all the traits, while inclusion of GWAS-detected SNPs led to slight increase in the accuracy. The item-based collaborative filtering approach that incorporates related traits evaluated in different environments to predict GY and Striga-related traits outperformed GP for Striga resistance indicator traits. The results demonstrated the polygenic nature of resistance to S. hermonthica, and that implementation of GP in Striga resistance breeding could potentially aid in increasing genetic gain for this important trait.


Subject(s)
Disease Resistance/genetics , Plant Breeding , Plant Diseases/genetics , Plant Weeds/physiology , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Striga/physiology , Zea mays/genetics , Alleles , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Disease Resistance/immunology , Genetic Linkage , Genetic Markers , Genome-Wide Association Study , Plant Diseases/parasitology , Zea mays/immunology , Zea mays/parasitology
16.
Photosynth Res ; 149(1-2): 121-134, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32297101

ABSTRACT

Biological invasion is a hot topic in ecological research. Most studies on the physiological mechanisms of plants focus on leaves, but few studies focus on stems. To study the tolerance of invasive plant (Sphagneticola trilobata L.) to low temperature, relevant physiological indicators (including anthocyanin and chlorophyll) in different organs (leaves and stems) were analyzed, using a native species (Sphagneticola calendulacea L.) as the control. The results showed that, upon exposure to low temperature for 15 days, the stems of two Sphagneticola species were markedly reddened, their anthocyanin content increased, chlorophyll and chlorophyll fluorescence parameters decreased, and the accumulation of reactive oxygen species in the stem increased. The percentage increases of antioxidants and total antioxidant capacities in stems were significantly higher in S. trilobata than in S. calendulacea. This showed that S. trilobata had higher cold tolerance in stems while leaves were opposite. To further verify the higher cold tolerance of the stem of S. trilobata, a defoliation experiment was designed. We found that the defoliated stem of S. trilobata reduced anthocyanin accumulation and increased chlorophyll content, while alleviating membrane lipid damage and electrical conductivity, and the defoliated stem still showed an increase in stem diameter and biomass under low temperature. The discovery of the physiological and adaptive mechanisms of the stem of S. trilobata to low temperature will provide a theoretical basis for explaining how S. trilobata maintains its annual growth in South China. This is of great significance for predicting the future spread of cloned and propagated invasive plants.


Subject(s)
Adaptation, Physiological , Asteraceae/physiology , Cold Temperature/adverse effects , Photosynthesis/physiology , Plant Leaves/physiology , Plant Stems/physiology , Plant Weeds/physiology , China , Introduced Species
17.
Sci Rep ; 10(1): 19315, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33168869

ABSTRACT

Carabids are generalist predators that contribute to the agricultural ecosystem service of seedbank regulation via weed seed predation. To facilitate adoption of this ecosystem services by farmers, knowledge of weed seed predation and the resilience of seedbank regulation with co-varying availability of alternative prey is crucial. Using assessments of the seedbank and predation on seed cards in 57 cereal fields across Europe, we demonstrate a regulatory effect on the soil seedbank, at a continental scale, by groups formed of omnivore, seed-eating (granivore + omnivore) and all species of carabids just prior to the crop-harvest. Regulation was associated with a positive relationship between the activity-density of carabids and seed predation, as measured on seed cards. We found that per capita seed consumption on the cards co-varied negatively with the biomass of alternative prey, i.e. Aphididae, Collembola and total alternative prey biomass. Our results underline the importance of weed seedbank regulation by carabids, across geographically significant scales, and indicate that the effectiveness of this biocontrol may depend on the availability of alternative prey that disrupt the weed seed predation.


Subject(s)
Agriculture/methods , Coleoptera/physiology , Ecosystem , Plant Weeds/physiology , Seeds/physiology , Animals , Biomass , Ecology , Edible Grain , Europe , Hordeum , Linear Models , Predatory Behavior , Triticum
18.
Plant Physiol Biochem ; 157: 70-78, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33091798

ABSTRACT

Aegilops tauschii Coss, a notorious wheat field weed, poses a serious threat to wheat in China. Tillers are an important agronomic tool for yield. In this study, a total of 12 Ae. tauschii populations were collected from China to investigate the effect of plant density on tiller occurrence and its phytohormonal regulation. We assayed the growth parameters of Ae. tauschii and the levels of endogenous hormones at different plant densities. The results showed that plant density had a significant effect on the quantity and quality of Ae. tauschii seeds produced per plant. In particular, the tiller and spike numbers per plant were negatively affected by plant density (P < 0.0001). The contents of 13 endogenous hormones in the tiller nodes changed in response to plant density. Among them, indole-3-acetic acid (IAA) and gibberellin (GA) positively responded to plant density. However, the reverse result was found for cytokinin (CTK). Interestingly, phylogenetic tree analysis of auxin (AeYUCCA), CK (AeIPT) and GA (AeCPS) biosynthesis related genes found that phylogenies in the Gramineae for the three different genes were various, hinting at horizontal gene transfer. Moreover, the dynamics of the expression of AeYUCCA, AeIPT and AeCPS were roughly consistent with their phytohormone contents during tillering stage. When externally sprayed on plants of Ae. tauschii, 2,4-D isooctyl ester and GA3 markedly reduced its tillering while 6-BA had no significant effect.


Subject(s)
Aegilops/physiology , Plant Growth Regulators/physiology , Plant Weeds/physiology , Seeds/physiology , China
19.
Proc Natl Acad Sci U S A ; 117(41): 25618-25627, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32989136

ABSTRACT

Global trade has considerably accelerated biological invasions. The annual tropical teosintes, the closest wild relatives of maize, were recently reported as new agricultural weeds in two European countries, Spain and France. Their prompt settlement under climatic conditions differing drastically from that of their native range indicates rapid genetic evolution. We performed a phenotypic comparison of French and Mexican teosintes under European conditions and showed that only the former could complete their life cycle during maize cropping season. To test the hypothesis that crop-to-wild introgression triggered such rapid adaptation, we used single nucleotide polymorphisms to characterize patterns of genetic variation in French, Spanish, and Mexican teosintes as well as in maize germplasm. We showed that both Spanish and French teosintes originated from Zea mays ssp. mexicana race "Chalco," a weedy teosinte from the Mexican highlands. However, introduced teosintes differed markedly from their Mexican source by elevated levels of genetic introgression from the high latitude Dent maize grown in Europe. We identified a clear signature of divergent selection in a region of chromosome 8 introgressed from maize and encompassing ZCN8, a major flowering time gene associated with adaptation to high latitudes. Moreover, herbicide assays and sequencing revealed that French teosintes have acquired herbicide resistance via the introgression of a mutant herbicide-target gene (ACC1) present in herbicide-resistant maize cultivars. Altogether, our results demonstrate that adaptive crop-to-wild introgression has triggered both rapid adaptation to a new climatic niche and acquisition of herbicide resistance, thereby fostering the establishment of an emerging noxious weed.


Subject(s)
Adaptation, Biological/genetics , Genetic Introgression/genetics , Plant Weeds/genetics , Zea mays/genetics , Adaptation, Biological/physiology , Europe , Evolution, Molecular , Genetic Introgression/physiology , Herbicide Resistance/genetics , Herbicide Resistance/physiology , Herbicides/pharmacology , Plant Weeds/drug effects , Plant Weeds/physiology , Zea mays/drug effects , Zea mays/physiology
20.
PLoS One ; 15(8): e0237715, 2020.
Article in English | MEDLINE | ID: mdl-32822374

ABSTRACT

Transcriptomic responses of plants to weed presence gives insight on the physiological and molecular mechanisms involved in the stress response. This study evaluated transcriptomic and morphological responses of two teosinte (Zea mays ssp parviglumis) (an ancestor of domesticated maize) lines (Ames 21812 and Ames 21789) to weed presence and absence during two growing seasons. Responses were compared after 6 weeks of growth in Aurora, South Dakota, USA. Plant heights between treatments were similar in Ames 21812, whereas branch number decreased when weeds were present. Ames 21789 was 45% shorter in weedy vs weed-free plots, but branch numbers were similar between treatments. Season-long biomass was reduced in response to weed stress in both lines. Common down-regulated subnetworks in weed-stressed plants were related to light, photosynthesis, and carbon cycles. Several unique response networks (e.g. aging, response to chitin) and gene sets were present in each line. Comparing transcriptomic responses of maize (determined in an adjacent study) and teosinte lines indicated three common gene ontologies up-regulated when weed-stressed: jasmonic acid response/signaling, UDP-glucosyl and glucuronyltransferases, and quercetin glucosyltransferase (3-O and 7-O). Overall, morphologic and transcriptomic differences suggest a greater varietal (rather than a conserved) response to weed stress, and implies multiple responses are possible. These findings offer insights into opportunities to define and manipulate gene expression of several different pathways of modern maize varieties to improve performance under weedy conditions.


Subject(s)
Plant Weeds , Transcriptome , Zea mays/growth & development , Gene Expression Regulation, Plant , Gene Ontology , Light , Photosynthesis , Plant Weeds/physiology , Stress, Physiological , Zea mays/genetics , Zea mays/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...