Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Signal Behav ; 16(11): 1978201, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34538209

ABSTRACT

Controlling the distribution of stomata is crucial for the adaptation of plants to new, or changing environments. While many plant species produce stomata predominantly on the abaxial leaf surface (hypostomy), some produce stomata on both surfaces (amphistomy), and the remaining few produce them only on the adaxial surface (hyperstomy). Various selective pressures have driven the evolution of these three modes of stomatal distribution. Despite recent advances in our understanding of stomatal development and dorsiventral leaf polarity, the genetic basis for the evolution of different stomatal distributions is still unclear. Here, we propose the genus Callitriche as a new model system to investigate patterns in the evolution of stomatal distribution. Callitriche comprises species with diverse lifestyles, including terrestrial, amphibious, and obligately aquatic plants. We found that species in this genus cover all three modes of dorsiventral stomatal distribution, making it a desirable model for comparative and evolutionary analyses on distribution modes. We further characterized the genetic basis of the different distribution modes, focusing on the stomatal key transcription factor SPEECHLESS. Future research using the promising model system Callitriche would open a new direction for evolutionary developmental biology studies on stomata.


Subject(s)
Biological Evolution , Plant Stomata/anatomy & histology , Plant Stomata/growth & development , Plant Stomata/genetics , Plantaginaceae/anatomy & histology , Plantaginaceae/growth & development , Plantaginaceae/genetics , Gene Expression Regulation, Plant , Genes, Plant
2.
Plant Cell ; 33(10): 3272-3292, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34312675

ABSTRACT

Heterophylly is the development of different leaf forms in a single plant depending on the environmental conditions. It is often observed in amphibious aquatic plants that can grow under both aerial and submerged conditions. Although heterophylly is well recognized in aquatic plants, the associated developmental mechanisms and the molecular basis remain unclear. To clarify these underlying developmental and molecular mechanisms, we analyzed heterophyllous leaf formation in an aquatic plant, Callitriche palustris. Morphological analyses revealed extensive cell elongation and the rearrangement of cortical microtubules in the elongated submerged leaves of C. palustris. Our observations also suggested that gibberellin, ethylene, and abscisic acid all regulate the formation of submerged leaves. However, the perturbation of one or more of the hormones was insufficient to induce the formation of submerged leaves under aerial conditions. Finally, we analyzed gene expression changes during aerial and submerged leaf development and narrowed down the candidate genes controlling heterophylly via transcriptomic comparisons, including a comparison with a closely related terrestrial species. We discovered that the molecular mechanism regulating heterophylly in C. palustris is associated with hormonal changes and diverse transcription factor gene expression profiles, suggesting differences from the corresponding mechanisms in previously investigated amphibious plants.


Subject(s)
Abscisic Acid/metabolism , Ethylenes/metabolism , Gibberellins/metabolism , Plant Growth Regulators/metabolism , Plant Leaves/growth & development , Plantaginaceae/growth & development , Gene Expression , Plantaginaceae/genetics , Plantaginaceae/metabolism
3.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Article in English | MEDLINE | ID: mdl-33782136

ABSTRACT

Stomata, the gas exchange structures of plants, are formed by the division and differentiation of stem cells, or meristemoids. Although diverse patterns of meristemoid behavior have been observed among different lineages of land plants, the ecological significance and diversification processes of these different patterns are not well understood. Here we describe an intrageneric diversity in the patterns of meristemoid division within the ecologically diverse genus Callitriche (Plantaginaceae). Meristemoids underwent a series of divisions before differentiating into stomata in the terrestrial species of Callitriche, but these divisions did not occur in amphibious species, which can grow in both air and water, in which meristemoids differentiated directly into stomata. These findings imply the adaptive significance of diversity in meristemoid division. Molecular genetic analyses showed that the different expression times of the stomatal key transcription factors SPEECHLESS and MUTE, which maintain and terminate the meristemoid division, respectively, underlie the different division patterns of meristemoids. Unlike terrestrial species, amphibious species prematurely expressed MUTE immediately after expressing SPEECHLESS, which corresponded to their early termination of stomatal division. By linking morphological, ecological, and genetic elements of stomatal development, this study provides significant insight that should aid ecological evolutionary developmental biology investigations of stomata.


Subject(s)
Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Plant Stomata/genetics , Plantaginaceae/genetics , Polymorphism, Genetic , Meristem/genetics , Meristem/growth & development , Plant Stomata/growth & development , Plantaginaceae/growth & development
4.
J Ethnobiol Ethnomed ; 14(1): 79, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30577802

ABSTRACT

BACKGROUND: Fleagrass, Adenosma buchneroides, is an aromatic perennial herb that occupies an important position in the life of the Akha people. They regard it as a tribal symbol and a gift of love. Fleagrass also has many medicinal uses, and there is considerable potential for its development as an insect repellent. Traditionally, Akha people plant it in swidden fields, but there are few swidden fields in China now. Therefore, the first question this study aims to answer is as follows: how is fleagrass planted and utilized now? At present, fleagrass is only reported to be used by Akha people in Mengla. We also try to understand the following questions: Is fleagrass used in nearby area? If so, how is fleagrass used in nearby area? Furthermore, why is fleagrass used in that way? METHODS: From August 2016 to July 2018, field surveys were conducted six times. The ethnobotanical and ethnopharmacological uses of A. buchneroides in 13 Akha villages were investigated by means of semi-structured interviews. We assessed the responses of a total of 64 interviewees (32 men and 32 women; mean age, 58.6) from the Xishuangbanna Dai Autonomous Prefecture, southwest China, and from Phongsaly Province, Laos. To explain the bases for the ethnobotanical uses of fleagrass, we used Google Scholar, Web of Science, and China National Knowledge Infrastructure to review the bioactivities of the chemical constituents of A. buchneroides. RESULTS: With the vanishing of swidden agriculture and the development of modern products, fleagrass cultivation is disappearing in China. However, most Akha people in Xishuangbanna still remember and yearn for its traditional uses, and Akha people in a nearby area (northern Laos) continue to plant and utilize it. We documented ten uses of A. buchneroides within five discrete categories. The whole plant of fleagrass has a distinct strong aroma, of which Akha villagers are particularly fond. Akha villagers mostly use this aromatic property as a decoration, perfume, and insect repellent. A. buchneroides is also used as a condiment and for medicinal and ritual purposes, including its use as a cure for insect bites, headaches, influenza, and diarrhoea, and as a part of pray ritual for a bumper harvest. From our literature review, we identified many major chemical compounds contained in the essential oil of A. buchneroides, including thymol, carvacrol, 3-carene, and p-cymene, which have insecticidal or insect-repellent, antimicrobial, and anti-inflammatory properties. CONCLUSION: Fleagrass is an aromatic plant that is widely used by Aka people. Its chemical composition also has a variety of biological activities. With the vanishing of swidden agriculture and the development of modern products, fleagrass utilization in China is disappearing and its cultural importance is reduced. However, its economic and medicinal value is assignable.


Subject(s)
Ethnobotany , Insect Repellents , Plantaginaceae/growth & development , Adult , Aged , Ceremonial Behavior , China , Female , Humans , Laos , Male , Medicine, Traditional , Middle Aged , Plantaginaceae/chemistry
5.
Plant Biol (Stuttg) ; 20(4): 691-697, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29577528

ABSTRACT

The performance of seedlings is crucial for the survival and persistence of plant populations. Although drought frequently occurs in floodplains and can cause seedling mortality, studies on the effects of drought on seedlings of floodplain grasslands are scarce. We tested the hypotheses that drought reduces aboveground biomass, total biomass, plant height, number of leaves, leaf area and specific leaf area (SLA), and increases root biomass and root-mass fraction (RMF) and that seedlings from species of wet floodplain grasslands are more affected by drought than species of dry grasslands. In a greenhouse study, we exposed seedlings of three confamilial pairs of species (Pimpinella saxifraga, Selinum carvifolia, Veronica teucrium, Veronica maritima, Sanguisorba minor, Sanguisorba officinalis) to increasing drought treatments. Within each plant family, one species is characteristic of wet and one of dry floodplain grasslands, confamilial in order to avoid phylogenetic bias of the results. In accordance with our hypotheses, drought conditions reduced aboveground biomass, total biomass, plant height, number of leaves and leaf area. Contrary to our hypotheses, drought conditions increased SLA and decreased root biomass and RMF of seedlings. Beyond the effects of the families, the results were species-specific (V. maritima being the most sensitive species) and habitat-specific. Species indicative of wet floodplain grasslands appear to be more sensitive to drought than species indicative of dry grasslands. Because of species- and habitat-specific responses to reduced water availability, future drought periods due to climate change may severely affect some species from dry and wet habitats, while others may be unaffected.


Subject(s)
Apiaceae/growth & development , Grassland , Plantaginaceae/growth & development , Rosaceae/growth & development , Seedlings/growth & development , Apiaceae/physiology , Droughts , Ecosystem , Plant Leaves/physiology , Plant Roots/physiology , Plantaginaceae/physiology , Rosaceae/physiology , Sanguisorba
SELECTION OF CITATIONS
SEARCH DETAIL
...