Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 41(41): 8494-8507, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34452938

ABSTRACT

Previous studies have shown that infiltration of capsaicin into the surgical site can prevent incision-induced spontaneous pain like behaviors and heat hyperalgesia. In the present study, we aimed to monitor primary sensory neuron Ca2+ activity in the intact dorsal root ganglia (DRG) using Pirt-GCaMP3 male and female mice pretreated with capsaicin or vehicle before the plantar incision. Intraplantar injection of capsaicin (0.05%) significantly attenuated spontaneous pain, mechanical, and heat hypersensitivity after plantar incision. The Ca2+ response in in vivo DRG and in in situ spinal cord was significantly enhanced in the ipsilateral side compared with contralateral side or naive control. Primary sensory nerve fiber length was significantly decreased in the incision skin area in capsaicin-pretreated animals detected by immunohistochemistry and placental alkaline phosphatase (PLAP) staining. Thus, capsaicin pretreatment attenuates incisional pain by suppressing Ca2+ response because of degeneration of primary sensory nerve fibers in the skin.SIGNIFICANCE STATEMENT Postoperative surgery pain is a major health and economic problem worldwide with ∼235 million major surgical procedures annually. Approximately 50% of these patients report uncontrolled or poorly controlled postoperative pain. However, mechanistic studies of postoperative surgery pain in primary sensory neurons have been limited to in vitro models or small numbers of neurons. Using an innovative, distinctive, and interdisciplinary in vivo populational dorsal root ganglia (DRG) imaging (>1800 neurons/DRG) approach, we revealed increased DRG neuronal Ca2+ activity from postoperative pain mouse model. This indicates widespread DRG primary sensory neuron plasticity. Increased neuronal Ca2+ activity occurs among various sizes of neurons but mostly in small-diameter and medium-diameter nociceptors. Capsaicin pretreatment as a therapeutic option significantly attenuates Ca2+ activity and postoperative pain.


Subject(s)
Calcium/metabolism , Capsaicin/administration & dosage , Ganglia, Spinal/metabolism , Pain, Postoperative/metabolism , Pain, Postoperative/prevention & control , Surgical Wound/metabolism , Afferent Pathways/chemistry , Afferent Pathways/drug effects , Afferent Pathways/metabolism , Animals , Female , Ganglia, Spinal/chemistry , Hindlimb/innervation , Hindlimb/metabolism , Hyperalgesia/metabolism , Hyperalgesia/prevention & control , Male , Mice , Mice, Inbred C57BL , Plantar Plate/chemistry , Plantar Plate/innervation , Plantar Plate/metabolism , Sensory System Agents/administration & dosage
3.
Mol Pain ; 14: 1744806918807050, 2018.
Article in English | MEDLINE | ID: mdl-30270727

ABSTRACT

Background Severe postoperative pain remains a clinical problem that impacts patient's rehabilitation. The present work aims to investigate the role of Toll-like receptor-4 (TLR4) activation in wounded plantar tissue and dorsal root ganglion (DRG) in the genesis of postoperative pain and its underlying mechanisms. Results Postoperative pain was induced by plantar incision in rat hind paw. Plantar incision led to increased expression of TLR4 in ipsilateral lumbar 4-5 (L4/L5) DRGs, which occurred at 2 h and was persistent to the third day after surgery. Similar to the change in TLR4 expression, there was also significant increase in phosphorylated nuclear factor-kappa B p65 (p-p65) in DRGs after surgery. Immunofluorescence staining revealed that the increased expressions of TLR4 and p-p65 not only in neuronal cells but also in satellite glial cells in DRG. Furthermore, the enhanced expressions of TLR4 and p-p65 were also detected in plantar tissues around the incision, which was observed starting at 2 h and lasting until the third day after surgery. Prior intrathecal (i.t.) injections of TAK-242 (a TLR4-specific antagonist) or 4',6-diamidino-2-phenylindole-dihydrochloride (PDTC, a nuclear factor-kappa B activation inhibitor) dose dependently alleviated plantar incision-induced mechanical allodynia and thermal hyperalgesia and inhibited the increased expressions of p-p65, tumor necrosis factor-alpha, and interleukin-1 beta in DRG. Prior subcutaneous (s.c.) plantar injection of TAK-242 or PDTC also ameliorated pain-related hypersensitivity following plantar incision. Moreover, the plantar s.c. injection of TAK-242 or PDTC inhibited the increased expressions of p-p65, tumor necrosis factor-alpha, and interleukin-1 beta not only in local wounded plantar tissue but also dramatically in ipsilateral lumbar 4-5 DRGs. Conclusion TLR4/ nuclear factor-kappa B signaling activation in local injured tissue and DRG contribute to the development of postoperative pain via regulating pro-inflammatory cytokines release. Targeting TLR4/ nuclear factor-kappa B signaling in local tissue at early stage of surgery may be an effective strategy for the treatment of postoperative pain.


Subject(s)
Ganglia, Spinal/metabolism , NF-kappa B/metabolism , Pain, Postoperative/pathology , Plantar Plate/metabolism , Signal Transduction/physiology , Toll-Like Receptor 4/metabolism , Analysis of Variance , Animals , Antioxidants/pharmacology , Cytokines/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Glial Fibrillary Acidic Protein/metabolism , Lectins/metabolism , Male , Pain Threshold/drug effects , Proline/analogs & derivatives , Proline/pharmacology , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Sulfonamides/pharmacology , Thiocarbamates/pharmacology , Toll-Like Receptor 4/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...