Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.240
Filter
1.
Plant Signal Behav ; 19(1): 2359257, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38825861

ABSTRACT

Potassium (K+) plays a role in enzyme activation, membrane transport, and osmotic regulation processes. An increase in potassium content can significantly improve the elasticity and combustibility of tobacco and reduce the content of harmful substances. Here, we report that the expression analysis of Nt GF14e, a 14-3-3 gene, increased markedly after low-potassium treatment (LK). Then, chlorophyll content, POD activity and potassium content, were significantly increased in overexpression of Nt GF14e transgenic tobacco lines compared with those in the wild type plants. The net K+ efflux rates were severely lower in the transgenic plants than in the wild type under LK stress. Furthermore, transcriptome analysis identified 5708 upregulated genes and 2787 downregulated genes between Nt GF14e overexpressing transgenic tobacco plants. The expression levels of some potassium-related genes were increased, such as CBL-interacting protein kinase 2 (CIPK2), Nt CIPK23, Nt CIPK25, H+-ATPase isoform 2 a (AHA2a), Nt AHA4a, Stelar K+ outward rectifier 1(SKOR1), and high affinity K+ transporter 5 (HAK5). The result of yeast two-hybrid and luciferase complementation imaging experiments suggested Nt GF14e could interact with CIPK2. Overall, these findings indicate that NtGF14e plays a vital roles in improving tobacco LK tolerance and enhancing potassium nutrition signaling pathways in tobacco plants.


Subject(s)
14-3-3 Proteins , Gene Expression Regulation, Plant , Nicotiana , Plant Proteins , Plants, Genetically Modified , Potassium , Nicotiana/genetics , Nicotiana/metabolism , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/genetics , Potassium/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics
2.
Plant Physiol Biochem ; 211: 108726, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744083

ABSTRACT

Tea is one of the most prevalent non-alcoholic beverages. The leaves of tea plants hyperaccumulate anthocyanins under cold stress, resulting in enhanced bitterness. Previously, we determined that the RING-type E3 ubiquitin ligase CsMIEL1 from the tea plant (Camellia sinensis (L.) O. Kuntze) is involved in the response to stress conditions. This study aimed to determine the role of CsMIEL1 in anthocyanin accumulation at the post-translational modification level. The results showed that the heterologous expression of CsMIEL1 led to an 86% decrease in anthocyanin levels, resulting in a significant decrease in the mRNA levels of related genes in Arabidopsis at low temperatures but no significant differences in other phenotypes. Furthermore, multi-omics analysis and yeast two-hybrid library screening were performed to identify potential downstream targets of CsMIEL1. The results showed that the overexpression of CsMIEL1 resulted in 45% (448) of proteins being differentially expressed, of which 8% (36) were downregulated in A.thaliana, and most of these differentially expressed proteins (DEPs) were clustered in the plant growth and secondary metabolic pathways. Among the 71 potential targets that may interact with CsMIEL1, CsMYB90 and CsGSTa, which are related to anthocyanin accumulation, were selected. In subsequent analyses, these two proteins were verified to interact with CsMIEL1 via yeast two-hybrid (Y2H) and pull-down analyses in vitro. In summary, we explored the potential mechanism by which the E3 ligase relieves anthocyanin hyperaccumulation at low temperatures in tea plants. These results provide a new perspective on the mechanisms of anthocyanin regulation and the molecular breeding of tea plants.


Subject(s)
Anthocyanins , Camellia sinensis , Cold Temperature , Plant Proteins , Anthocyanins/metabolism , Camellia sinensis/metabolism , Camellia sinensis/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Plants, Genetically Modified/metabolism
3.
Food Chem ; 451: 139384, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38692235

ABSTRACT

The economic impact of fruit cracking in pomegranate products is substantial. In this study, we present the inaugural comprehensive analysis of transcriptome and metabolome in the outermost pericarp of pomegranate fruit in bagging conditions. Our investigation revealed a notable upregulation of differentially expressed genes (DEGs) associated with the calcium signaling pathway (76.92%) and xyloglucan endotransglucosylase/hydrolase (XTH) genes (87.50%) in the fruit peel of non-cracking fruit under bagging. Metabolomic analysis revealed that multiple phenolics, flavonoids, and tannins were identified in pomegranate. Among these, calmodulin-like 23 (PgCML23) exhibited a significant correlation with triterpenoids and demonstrated a marked upregulation under bagging treatment. The transgenic tomatoes overexpressing PgCML23 exhibited significantly higher cellulose content and xyloglucan endotransglucosylase (XET) enzyme activity in the pericarp at the red ripening stage compared to the wild type. Conversely, water-soluble pectin content, polygalacturonase (PG), and ß-galactosidase (ß-GAL) enzyme activities were significantly lower in the transgenic tomatoes. Importantly, the heterologous expression of PgCML23 led to a substantial reduction in the fruit cracking rate in tomatoes. Our findings highlight the reduction of fruit cracking in bagging conditions through the manipulation of PgCML23 expression.


Subject(s)
Fruit , Metabolomics , Plant Proteins , Pomegranate , Transcriptome , Fruit/chemistry , Fruit/genetics , Fruit/metabolism , Fruit/growth & development , Pomegranate/chemistry , Pomegranate/genetics , Pomegranate/metabolism , Pomegranate/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Solanum lycopersicum/chemistry , Solanum lycopersicum/growth & development , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/chemistry , Gene Expression Regulation, Plant
4.
Int J Mol Sci ; 25(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732182

ABSTRACT

Anthocyanins are water-soluble flavonoid pigments that play a crucial role in plant growth and metabolism. They serve as attractants for animals by providing plants with red, blue, and purple pigments, facilitating pollination and seed dispersal. The fruits of solanaceous plants, tomato (Solanum lycopersicum) and eggplant (Solanum melongena), primarily accumulate anthocyanins in the fruit peels, while the ripe fruits of Atropa belladonna (Ab) have a dark purple flesh due to anthocyanin accumulation. In this study, an R2R3-MYB transcription factor (TF), AbMYB1, was identified through association analysis of gene expression and anthocyanin accumulation in different tissues of A. belladonna. Its role in regulating anthocyanin biosynthesis was investigated through gene overexpression and RNA interference (RNAi). Overexpression of AbMYB1 significantly enhanced the expression of anthocyanin biosynthesis genes, such as AbF3H, AbF3'5'H, AbDFR, AbANS, and Ab3GT, leading to increased anthocyanin production. Conversely, RNAi-mediated suppression of AbMYB1 resulted in decreased expression of most anthocyanin biosynthesis genes, as well as reduced anthocyanin contents in A. belladonna. Overall, AbMYB1 was identified as a fruit-expressed R2R3-MYB TF that positively regulated anthocyanin biosynthesis in A. belladonna. This study provides valuable insights into the regulation of anthocyanin biosynthesis in Solanaceae plants, laying the foundation for understanding anthocyanin accumulation especially in the whole fruits of solanaceous plants.


Subject(s)
Anthocyanins , Fruit , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Anthocyanins/biosynthesis , Anthocyanins/metabolism , Fruit/metabolism , Fruit/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/genetics , RNA Interference
5.
J Agric Food Chem ; 72(21): 12281-12294, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747520

ABSTRACT

This study investigated the effect of AgNPs and AgNO3, at concentrations equivalent, on the production of primary and secondary metabolites on transgenic soybean plants through an NMR-based metabolomics. The plants were cultivated in a germination chamber following three different treatments: T0 (addition of water), T1 (addition of AgNPs), and T2 (addition of AgNO3). Physiological characteristics, anatomical analyses through microscopic structures, and metabolic profile studies were carried out to establish the effect of abiotic stress on these parameters in soybean plants. Analysis of the 1H NMR spectra revealed the presence of amino acids, organic acids, sugars, and polyphenols. The metabolic profiles of plants with AgNP and AgNO3 were qualitatively similar to the metabolic profile of the control group, suggesting that the application of silver does not affect secondary metabolites. From the PCA, it was possible to differentiate the three treatments applied, mainly based on the content of fatty acids, pinitol, choline, and betaine.


Subject(s)
Glycine max , Magnetic Resonance Spectroscopy , Metabolomics , Metal Nanoparticles , Plants, Genetically Modified , Silver , Glycine max/metabolism , Glycine max/genetics , Glycine max/chemistry , Glycine max/drug effects , Glycine max/growth & development , Silver/metabolism , Silver/chemistry , Metal Nanoparticles/chemistry , Magnetic Resonance Spectroscopy/methods , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/chemistry , Amino Acids/metabolism , Fatty Acids/metabolism , Fatty Acids/chemistry
6.
J Hazard Mater ; 472: 134517, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38739960

ABSTRACT

Cadmium (Cd) is a heavy metal pollutant mainly originating from the discharge of industrial sewage, irrigation with contaminated water, and the use of fertilizers. The phytoremediation of Cd polluted soil depends on the identification of the associated genes in hyperaccumulators. Here, a novel Cd tolerance gene (SpCTP3) was identified in hyperaccumulator Sedum plumbizincicola. The results of Cd2+ binding and thermodynamic analyses, revealed the CXXC motif in SpCTP3 functions is a Cd2+ binding site. A mutated CXXC motif decreased binding to Cd by 59.93%. The subcellular localization analysis suggested that SpCTP3 is primarily a cytoplasmic protein. Additionally, the SpCTP3-overexpressing (OE) plants were more tolerant to Cd and accumulated more Cd than wild-type Sedum alfredii (NHE-WT). The Cd concentrations in the cytoplasm of root and leaf cells were significantly higher (53.75% and 71.87%, respectively) in SpCTP3-OE plants than in NHE-WT. Furthermore, malic acid levels increased and decreased in SpCTP3-OE and SpCTP3-RNAi plants, respectively. Moreover, SpCTP3 interacted with malate dehydrogenase 1 (MDH1). Thus, SpCTP3 helps regulate the subcellular distribution of Cd and increases Cd accumulation when it is overexpressed in plants, ultimately Cd tolerance through its interaction with SpMDH1. This study provides new insights relevant to improving the Cd uptake by Sedum plumbizincicola.


Subject(s)
Biodegradation, Environmental , Cadmium , Plant Proteins , Sedum , Soil Pollutants , Cadmium/toxicity , Cadmium/metabolism , Sedum/metabolism , Sedum/genetics , Sedum/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant/drug effects , Malate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics
7.
Biotechnol J ; 19(5): e2300715, 2024 May.
Article in English | MEDLINE | ID: mdl-38797727

ABSTRACT

Human erythropoietin (hEPO) is one of the most in-demand biopharmaceuticals, however, its production is challenging. When produced in a plant expression system, hEPO results in extensive plant tissue damage and low expression. It is demonstrated that the modulation of the plant protein synthesis machinery enhances hEPO production. Co-expression of basic leucine zipper transcription factors with hEPO prevents plant tissue damage, boosts expression, and increases hEPO solubility. bZIP28 co-expression up-regulates genes associated with the unfolded protein response, indicating that the plant tissue damage caused by hEPO expression is due to the native protein folding machinery being overwhelmed and that this can be overcome by co-expressing bZIP28.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Erythropoietin , Nicotiana , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Erythropoietin/genetics , Erythropoietin/metabolism , Humans , Nicotiana/genetics , Nicotiana/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Gene Expression Regulation, Plant , Unfolded Protein Response/genetics
8.
BMC Biotechnol ; 24(1): 35, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790016

ABSTRACT

Fusarium head blight (FHB) is a devastating fungal disease affecting different cereals, particularly wheat, and poses a serious threat to global wheat production. Chitinases and ß-glucanases are two important proteins involved in lysing fungal cell walls by targeting essential macromolecular components, including chitin and ß-glucan micro fibrils. In our experiment, a transgenic wheat (Triticum aestivum) was generated by introducing chitinase and glucanase genes using Biolistic technique and Recombinant pBI121 plasmid (pBI-ChiGlu (-)). This plasmid contained chitinase and glucanase genes as well as nptII gene as a selectable marker. The expression of chitinase and glucanase was individually controlled by CaMV35S promoter and Nos terminator. Immature embryo explants from five Iranian cultivars (Arta, Moghan, Sisun, Gascogen and A-Line) were excised from seeds and cultured on callus induction medium to generate embryonic calluses. Embryogenic calluses with light cream color and brittle texture were selected and bombarded using gold nanoparticles coated with the recombinant pBI-ChiGlu plasmid. Bombarded calluses initially were transferred to selective callus induction medium, and later, they were transfferd to selective regeneration medium. The selective agent was kanamycin at a concentration of 25 mg/l in both media. Among five studied cultivars, A-Line showed the highest transformation percentage (4.8%), followed by the Sisun, Gascogen and Arta in descending order. PCR and Southern blot analysis confirmed the integration of genes into the genome of wheat cultivars. Furthermore, in an in-vitro assay, the growth of Fusarium graminearum was significantly inhibited by using 200 µg of leaf protein extract from transgenic plants. According to our results, the transgenic plants (T1) showed the resistance against Fusarium when were compared to the non-transgenic plants. All transgenic plants showed normal fertility and no abnormal response was observed in their growth and development.


Subject(s)
Chitinases , Disease Resistance , Fusarium , Plant Diseases , Plants, Genetically Modified , Triticum , Triticum/genetics , Triticum/metabolism , Triticum/microbiology , Fusarium/genetics , Chitinases/genetics , Chitinases/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Glucan 1,3-beta-Glucosidase/genetics , Glucan 1,3-beta-Glucosidase/metabolism , Iran
9.
Plant Physiol Biochem ; 211: 108671, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703500

ABSTRACT

Salvia castanea Diels, a close wild relative to the medicinal plant, Salvia miltiorrhiza Bunge, primarily grows in high-altitude regions. While the two species share similar active compounds, their content varies significantly. WRKY transcription factors are key proteins, which regulate plant growth, stress response, and secondary metabolism. We identified 46 ScWRKY genes in S. castanea and found that ScWRKY35 was a highly expressed gene associated with secondary metabolites accumulation. This study aimed to explore the role of ScWRKY35 gene in regulating the accumulation of secondary metabolites and its response to UV and cadmium (Cd) exposure in S. miltiorrhiza. It was found that transgenic S. miltiorrhiza hairy roots overexpressing ScWRKY35 displayed upregulated expression of genes related to phenolic acid synthesis, resulting in increased salvianolic acid B (SAB) and rosmarinic acid (RA) contents. Conversely, tanshinone pathway gene expression decreased, leading to lower tanshinone levels. Further, overexpression of ScWRKY35 upregulated Cd transport protein HMA3 in root tissues inducing Cd sequestration. In contrast, the Cd uptake gene NRAMP1 was downregulated, reducing Cd absorption. In response to UV radiation, ScWRKY35 overexpression led to an increase in the accumulation of phenolic acid and tanshinone contents, including upregulation of genes associated with salicylic acid (SA) and jasmonic acid (JA) synthesis. Altogether, these findings highlight the role of ScWRKY35 in enhancing secondary metabolites accumulation, as well as in Cd and UV stress modulation in S. miltiorrhiza, which offers a novel insight into its phytochemistry and provides a new option for the genetic improvement of the plants.


Subject(s)
Cadmium , Depsides , Gene Expression Regulation, Plant , Plant Proteins , Salvia miltiorrhiza , Salvia miltiorrhiza/genetics , Salvia miltiorrhiza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Cadmium/metabolism , Depsides/metabolism , Secondary Metabolism/genetics , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Benzofurans/metabolism , Rosmarinic Acid , Cinnamates/metabolism , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/genetics , Ultraviolet Rays , Plant Roots/metabolism , Plant Roots/genetics , Abietanes/metabolism , Abietanes/biosynthesis , Hydroxybenzoates/metabolism
10.
Physiol Plant ; 176(2): e14240, 2024.
Article in English | MEDLINE | ID: mdl-38561015

ABSTRACT

Under stress conditions, plants modulate their internal states and initiate various defence mechanisms to survive. The ubiquitin-proteasome system is one of the critical modules in these mechanisms, and Plant U-Box proteins play an important role in this process as E3 ubiquitin ligases. Here, we isolated the Plant U-box 24 gene CaPUB24 (Capsicum annuum Plant U-Box 24) from pepper and characterized its functions in response to drought stress. We found that, compared to the other CaPUBs in the same group, the expression of CaPUB24 was significantly induced by drought stress. We also found that CaPUB24 was localized to the nucleus and cytoplasm and had E3 ubiquitin ligase activity. To investigate the biological role of CaPUB24 in response to drought stress further, we generated CaPUB24-silenced pepper plants and CaPUB24-overexpressing Arabidopsis transgenic plants. CaPUB24-silenced pepper plants exhibited enhanced drought tolerance compared to the control plants due to reduced transpirational water loss and increased abscisic acid (ABA) sensitivity. In contrast, CaPUB24-overexpressing Arabidopsis transgenic plants exhibited reduced drought tolerance and ABA-insensitive phenotypes. Our findings suggest that CaPUB24 negatively modulates drought stress response in an ABA-dependent manner.


Subject(s)
Arabidopsis , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Droughts , Arabidopsis/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Plants, Genetically Modified/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Ubiquitins/genetics , Ubiquitins/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant
11.
Sci Rep ; 14(1): 8714, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622266

ABSTRACT

Green, photosynthesizing plants can be proficiently used as cost-effective, single-use, fully biodegradable bioreactors for environmentally-friendly production of a variety of valuable recombinant proteins. Being near-infinitely scalable and most energy-efficient in generating biomass, plants represent profoundly valid alternatives to conventionally used stationary fermenters. To validate this, we produced a plastome-engineered tobacco bioreactor line expressing a recombinant variant of the protein A from Staphylococcus aureus, an affinity ligand widely useful in antibody purification processes, reaching accumulation levels up to ~ 250 mg per 1 kg of fresh leaf biomass. Chromatography resin manufactured from photosynthetically-sourced recombinant protein A ligand conjugated to agarose beads demonstrated the innate pH-driven ability to bind and elute IgG-type antibodies and allowed one-step efficient purification of functional monoclonal antibodies from the supernatants of the producing hybridomas. The results of this study emphasize the versatility of plant-based recombinant protein production and illustrate its vast potential in reducing the cost of diverse biotechnological applications, particularly the downstream processing and purification of monoclonal antibodies.


Subject(s)
Chromatography , Staphylococcal Protein A , Staphylococcal Protein A/chemistry , Ligands , Plants, Genetically Modified/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Antibodies, Monoclonal/metabolism , Immunoglobulin G/metabolism , Plant Proteins/metabolism , Chromatography, Affinity/methods
12.
BMC Genomics ; 25(1): 355, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594617

ABSTRACT

BACKGROUND: Genetically modified (GM) crop plants with transgenic expression of Bacillus thuringiensis (Bt) pesticidal proteins are used to manage feeding damage by pest insects. The durability of this technology is threatened by the selection for resistance in pest populations. The molecular mechanism(s) involved in insect physiological response or evolution of resistance to Bt is not fully understood. RESULTS: To investigate the response of a susceptible target insect to Bt, the soybean pod borer, Leguminivora glycinivorella (Lepidoptera: Tortricidae), was exposed to soybean, Glycine max, expressing Cry1Ac pesticidal protein or the non-transgenic parental cultivar. Assessment of larval changes in gene expression was facilitated by a third-generation sequenced and scaffolded chromosome-level assembly of the L. glycinivorella genome (657.4 Mb; 27 autosomes + Z chromosome), and subsequent structural annotation of 18,197 RefSeq gene models encoding 23,735 putative mRNA transcripts. Exposure of L. glycinivorella larvae to transgenic Cry1Ac G. max resulted in prediction of significant differential gene expression for 204 gene models (64 up- and 140 down-regulated) and differential splicing among isoforms for 10 genes compared to unexposed cohorts. Differentially expressed genes (DEGs) included putative peritrophic membrane constituents, orthologs of Bt receptor-encoding genes previously linked or associated with Bt resistance, and those involved in stress responses. Putative functional Gene Ontology (GO) annotations assigned to DEGs were significantly enriched for 36 categories at GO level 2, respectively. Most significantly enriched cellular component (CC), biological process (BP), and molecular function (MF) categories corresponded to vacuolar and microbody, transport and metabolic processes, and binding and reductase activities. The DEGs in enriched GO categories were biased for those that were down-regulated (≥ 0.783), with only MF categories GTPase and iron binding activities were bias for up-regulation genes. CONCLUSIONS: This study provides insights into pathways and processes involved larval response to Bt intoxication, which may inform future unbiased investigations into mechanisms of resistance that show no evidence of alteration in midgut receptors.


Subject(s)
Bacillus thuringiensis , Moths , Pesticides , Animals , Larva/genetics , Larva/metabolism , Glycine max/genetics , Endotoxins/genetics , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pest Control, Biological/methods , Moths/metabolism , Bacillus thuringiensis/genetics , Bacillus thuringiensis/chemistry , Bacillus thuringiensis/metabolism , Chromosomes/metabolism , Hemolysin Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Insecticide Resistance/genetics
13.
Physiol Plant ; 176(2): e14272, 2024.
Article in English | MEDLINE | ID: mdl-38566275

ABSTRACT

The Dehydration-Responsive Element Binding (DREB) subfamily of transcription factors plays crucial roles in plant abiotic stress response. Ammopiptanthus nanus (A. nanus) is an eremophyte exhibiting remarkable tolerance to environmental stress and DREB proteins may contribute to its tolerance to water deficit and low-temperature stress. In the present study, an A. nanus DREB A5 group transcription factor gene, AnDREB5.1, was isolated and characterized in terms of structure and function in abiotic stress tolerance. AnDREB5.1 protein is distributed in the nucleus, possesses transactivation capacity, and is capable of binding to DRE core cis-acting element. The transcription of AnDREB5.1 was induced under osmotic and cold stress. Tobacco seedlings overexpressing AnDREB5.1 displayed higher tolerance to cold stress, osmotic stress, and oxidative stress compared to wild-type tobacco (WT). Under osmotic and cold stress, overexpression of AnDREB5.1 increased antioxidant enzyme activity in tobacco leaves, inhibiting excessive elevation of ROS levels. Transcriptome sequencing analysis showed that overexpression of AnDREB5.1 raised the tolerance of transgenic tobacco seedlings to abiotic stress by regulating multiple genes, including antioxidant enzymes, transcription factors, and stress-tolerant related functional genes like NtCOR413 and NtLEA14. This study provides new evidence for understanding the potential roles of the DREB A5 subgroup members in plants.


Subject(s)
Cold-Shock Response , Fabaceae , Cold-Shock Response/genetics , Antioxidants , Plant Proteins/metabolism , Transcription Factors/metabolism , Fabaceae/genetics , Stress, Physiological/genetics , Seedlings/genetics , Seedlings/metabolism , Nicotiana/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant/genetics , Cold Temperature
14.
GM Crops Food ; 15(1): 118-129, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38564429

ABSTRACT

Soybean is one of the important oil crops and a major source of protein and lipids. Drought can cause severe soybean yields. Dehydrin protein (DHN) is a subfamily of LEA proteins that play an important role in plant responses to abiotic stresses. In this study, the soybean GmDHN9 gene was cloned and induced under a variety of abiotic stresses. Results showed that the GmDHN9 gene response was more pronounced under drought induction. Subcellular localization results indicated that the protein was localized in the cytoplasm. The role of transgenic Arabidopsis plants in drought stress response was further studied. Under drought stress, the germination rate, root length, chlorophyll, proline, relative water content, and antioxidant enzyme content of transgenic Arabidopsis thaliana transgenic genes were higher than those of wild-type plants, and transgenic plants contained less O2-, H2O2 and MDA contents. In short, the GmDHN9 gene can regulate the homeostasis of ROS and enhance the drought resistance of plants.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Drought Resistance , Glycine max/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Hydrogen Peroxide/metabolism , Stress, Physiological/genetics , Droughts , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant
15.
BMC Plant Biol ; 24(1): 246, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38575869

ABSTRACT

BACKGROUND: Molecular mechanisms in response to drought stress are important for the genetic improvement of maize. In our previous study, nine ZmLAZ1 members were identified in the maize genome, but the function of ZmLAZ1 was largely unknown. RESULTS: The ZmLAZ1-3 gene was cloned from B73, and its drought-tolerant function was elucidated by expression analysis in transgenic Arabidopsis. The expression of ZmLAZ1-3 was upregulated by drought stress in different maize inbred lines. The driving activity of the ZmLAZ1-3 promoter was induced by drought stress and related to the abiotic stress-responsive elements such as MYB, MBS, and MYC. The results of subcellular localization indicated that the ZmLAZ1-3 protein localized on the plasma membrane and chloroplast. The ectopic expression of the ZmLAZ1-3 gene in Arabidopsis significantly reduced germination ratio and root length, decreased biomass, and relative water content, but increased relative electrical conductivity and malondialdehyde content under drought stress. Moreover, transcriptomics analysis showed that the differentially expressed genes between the transgenic lines and wild-type were mainly associated with response to abiotic stress and biotic stimulus, and related to pathways of hormone signal transduction, phenylpropanoid biosynthesis, mitogen-activated protein kinase signaling, and plant-pathogen interaction. CONCLUSION: The study suggests that the ZmLAZ1-3 gene is a negative regulator in regulating drought tolerance and can be used to improve maize drought tolerance via its silencing or knockout.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Drought Resistance , Zea mays/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Droughts , Gene Expression Regulation, Plant , Stress, Physiological/genetics
16.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1029-1039, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658146

ABSTRACT

This study aimed to visualize the morphological features and dynamic changes of tomato mitochondria to provide a basis for the study of its mitochondrial functions. In this study, transgenic tomatoes expressing mitochondria-localized green fluorescent protein (mitochondria-GFP, Mt-GFP) were obtained by Agrobacterium-mediated genetic transformation. The color, hardness, soluble solids, acidity content, respiration rate, and ethylene production of the transgenic Mt-GFP tomato fruits were determined at the stage of mature green, breaker, and 3, 6, 9 days after breaker, while the wild-type tomato fruits were used as a control. As expected, Mt-GFP recombinant protein did not affect the ripening process, but induced the increased acidity of tomato fruits. The accumulations of Mt-GFP protein in tomato leaves and fruits were successfully verified by Western blotting. The morphological characteristics of mitochondria in flower, leaf and fruit cells as well as the dynamic changes of mitochondria in flower cells were clearly observed and studied under confocal laser microscope. The development of transgenic Mt-GFP tomato plants helps the visualization of tomato mitochondria and provides good research materials for the study of mitochondrial function during tomato development and fruit ripening.


Subject(s)
Green Fluorescent Proteins , Mitochondria , Mitochondrial Dynamics , Plants, Genetically Modified , Solanum lycopersicum , Solanum lycopersicum/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/genetics , Mitochondria/metabolism , Mitochondria/genetics , Fruit/metabolism , Fruit/genetics
17.
Plant Physiol Biochem ; 210: 108607, 2024 May.
Article in English | MEDLINE | ID: mdl-38593486

ABSTRACT

Grafting in tomato (Solanum lycopersicum L.) has mainly been used to prevent damage by soil-borne pathogens and the negative effects of abiotic stresses, although productivity and fruit quality can also be enhanced using high vigor rootstocks. In the context of a low nutrients input agriculture, the grafting of elite cultivars onto rootstocks displaying higher Nitrogen Use Efficiency (NUE) supports a direct strategy for yield maximization. In this study we assessed the use of plants overexpressing the Arabidopsis (AtCDF3) or tomato (SlCDF3) CDF3 genes, previously reported to increase NUE in tomato, as rootstocks to improve yield in the grafted scion under low N inputs. We found that the AtCDF3 gene induced greater production of sugars and amino acids, which allowed for greater biomass and fruit yield under both sufficient and limiting N supplies. Conversely, no positive impact was found with the SlCDF3 gene. Hormone analyses suggest that gibberellins (GA4), auxin and cytokinins (tZ) might be involved in the AtCDF3 responses to N. The differential responses triggered by the two genes could be related, at least in part, to the mobility of the AtCDF3 transcript through the phloem to the shoot. Consistently, a higher expression of the target genes of the transcription factor, such as glutamine synthase 2 (SlGS2) and GA oxidase 3 (SlGA3ox), involved in amino acid and gibberellin biosynthesis, respectively, was observed in the leaves of this graft combination. Altogether, our results provided further insights into the mode of action of CDF3 genes and their biotechnology potential for transgrafting approaches.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Carbon , Nitrogen , Solanum lycopersicum , Transcription Factors , Solanum lycopersicum/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Nitrogen/metabolism , Carbon/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism
18.
J Hazard Mater ; 471: 134308, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38631255

ABSTRACT

Plants have evolved a series of zinc (Zn) homeostasis mechanisms to cope with the fluctuating Zn in the environment. How Zn is taken up, translocated and tolerate by tea plant remains unknown. In this study, on the basis of RNA-Sequencing, we isolated a plasma membrane-localized Metal Tolerance Protein (MTP) family member CsMTP4 from Zn-deficient tea plant roots and investigated its role in regulation of Zn homeostasis in tea plant. Heterologous expression of CsMTP4 specifically enhanced the tolerance of transgenic yeast to Zn excess. Moreover, overexpression of CsMTP4 in tea plant hairy roots stimulated Zn uptake under Zn deficiency. In addition, CsMTP4 promoted the growth of transgenic Arabidopsis plants by translocating Zn from roots to shoots under Zn deficiency and conferred the tolerance to Zn excess by enhancing the efflux of Zn from root cells. Transcriptome analysis of the CsMTP4 transgenic Arabidopsis found that the expression of Zn metabolism-related genes were differentially regulated compared with wild-type plants when exposed to Zn deficiency and excess conditions. This study provides a mechanistic understanding of Zn uptake and translocation in plants and a new strategy to improve phytoremediation efficiency.


Subject(s)
Arabidopsis , Camellia sinensis , Homeostasis , Plant Proteins , Plant Roots , Plants, Genetically Modified , Zinc , Zinc/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Roots/metabolism , Plant Roots/growth & development , Camellia sinensis/metabolism , Camellia sinensis/genetics , Gene Expression Regulation, Plant , Biodegradation, Environmental , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics
19.
J Hazard Mater ; 471: 134276, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38640682

ABSTRACT

Environmental pollution from cadmium (Cd) presents a serious threat to plant growth and development. Therefore, it's crucial to find out how plants resist this toxic metal to develop strategies for remediating Cd-contaminated soils. In this study, we identified CIP1, a transporter protein, by screening interactors of the protein kinase CIPK23. CIP1 is located in vesicles membranes and can transport Cd2+ when expressed in yeast cells. Cd stress specifically induced the accumulation of CIP1 transcripts and functional proteins, particularly in the epidermal cells of the root tip. CIKP23 could interact directly with the central loop region of CIP1, phosphorylating it, which is essential for the efficient transport of Cd2+. A loss-of-function mutation of CIP1 in wild-type plants led to increased sensitivity to Cd stress. Conversely, tobacco plants overexpressing CIP1 exhibited improved Cd tolerance and increased Cd accumulation capacity. Interestingly, this Cd accumulation was restricted to roots but not shoots, suggesting that manipulating CIP1 does not risk Cd contamination of plants' edible parts. Overall, this study characterizes a novel Cd transporter, CIP1, with potential to enhance plant tolerance to Cd toxicity while effectively eliminating environmental contamination without economic losses.


Subject(s)
Biodegradation, Environmental , Cadmium , Nicotiana , Cadmium/toxicity , Cadmium/metabolism , Nicotiana/metabolism , Nicotiana/genetics , Nicotiana/drug effects , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/drug effects , Plant Roots/metabolism , Plant Roots/drug effects , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Plants, Genetically Modified/metabolism
20.
Funct Plant Biol ; 51: FP24034, 2024 04.
Article in English | MEDLINE | ID: mdl-38640358

ABSTRACT

Transgenic Arabidopsis thaliana (ecotype Columbia) was successfully transformed with the gene fructose-1,6-bisphosphatase (FBPas e) and named as AtFBPase plants. Transgenic plants exhibited stable transformation, integration and significantly higher expressions for the transformed gene. Morphological evaluation of transgenic plants showed increased plant height (35cm), number of leaves (25), chlorophyll contents (28%), water use efficiency (increased from 1.5 to 2.6µmol CO2 µmol-1 H2 O) and stomatal conductance (20%), which all resulted in an enhanced photosynthetic rate (2.7µmolm-2 s-1 ) compared to wild type plants. This study suggests the vital role of FBPase gene in the modification of regulatory pathways to enhance the photosynthetic rate, which can also be utilised for economic crops in future.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphatase/metabolism , Fructose/metabolism , Photosynthesis/genetics , Chlorophyll/genetics , Chlorophyll/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...