Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.883
Filter
1.
Rev. esp. patol ; 57(2): 111-115, Abr-Jun, 2024. tab, ilus
Article in English | IBECS | ID: ibc-232414

ABSTRACT

Russell bodies (RBs) are round eosinophilic intracytoplasmic inclusions formed by condensed immunoglobulins in mature plasma cells, which are called Mott cells. These cells are rarely found in the gastric tract, with even less cases reported in the colorectal region. There are still many questions about this event, as it is still unknown the relationship between the agents reported of increasing the probability of appearance of these cells and the generation of RBs. In this case report we describe the fifth patient presenting an infiltration of Mott cells in a colorectal polyp, being the second case with a monoclonal origin without a neoplastic cause, and the first one monoclonal for lambda. A comparison with previously similar reported cases is also done, and a possible etiopathogenic hypothesis proposed. (AU)


Los cuerpos de Russell (RB) son inclusiones intracitoplasmáticas eosinofílicas redondas formadas por inmunoglobulinas condensadas en las células plasmáticas maduras, que se denominan células de Mott. Estas células rara vez se encuentran en el tracto gástrico, y son aún más infrecuentes en la región colorrectal. Actualmente hay muchas dudas sobre este evento, ya que se desconoce la relación entre los agentes causantes de aumentar la probabilidad de aparición tanto de estas células como de la de RB. En este caso describimos al quinto paciente con un pólipo colorrectal, localizado en el tracto colorrectal e infiltrado por células de Mott, siendo el segundo caso de origen monoclonal sin causa neoplásica y el primero monoclonal para lambda. También se hace una comparación con casos similares previamente reportados y se propone una hipótesis etiopatogénica. (AU)


Subject(s)
Humans , Siphoviridae , Colonic Polyps , Plasma Cells , Lewy Bodies , Immunoglobulins
2.
Recenti Prog Med ; 115(5): 238-242, 2024 May.
Article in English | MEDLINE | ID: mdl-38708535

ABSTRACT

Plasma cell multiple myeloma (MM) is a multiform clinical entity characterized by different laboratory hallmarks. This case shows a rare entity of plasma cell myeloma: the entire plasma cell population lack the CD138 expression. In this case, a careful analysis of laboratory finding, particular flow cytometry gating strategies and the use of other ancillary laboratory tests, guide the clinicians to correct diagnosis. The correct evaluation of pre-analytical phase and the correct gating strategy are the necessary conditions to produce robust and solid flow cytometric results. The diagnostic implications of CD138-negative plasma cell are strictly linked to stem cell-like clonogenic features, such as possible more aggressive clinical behaviour and increasing probability of chemotherapy resistance. At this time, clinical laboratory remains the main reference point to MM diagnosis.


Subject(s)
Flow Cytometry , Multiple Myeloma , Plasma Cells , Syndecan-1 , Aged , Humans , Male , Flow Cytometry/methods , Multiple Myeloma/diagnosis , Multiple Myeloma/pathology , Plasma Cells/pathology , Syndecan-1/metabolism , Syndecan-1/analysis
3.
Sci Rep ; 14(1): 10362, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710832

ABSTRACT

POEMS syndrome (polyneuropathy, organomegaly, endocrinopathy, monoclonal protein [M-protein], and skin changes) is a rare systemic disorder characterized by various symptoms caused by underlying plasma cell (PC) dyscrasia. Detection of monoclonal PCs is mandatory for the diagnosis of POEMS syndrome; however, the usefulness of EuroFlow-based next-generation flow cytometry (EuroFlow-NGF) in POEMS syndrome for detecting monoclonal PCs in bone marrow (BM) and the gating strategy suitable for flow cytometry study of POEMS syndrome remain unknown. We employed EuroFlow-NGF-based single-tube eight-color multiparameter flow cytometry (MM-flow) and established a new gating strategy (POEMS-flow) to detect the monoclonal PCs in POEMS syndrome, gating CD38 broadly from dim to bright and CD45 narrowly from negative to dim compared to MM-flow. MM-flow detected monoclonal PCs in 9/25 (36.0%) cases, including 2/2 immunofixation electrophoresis (IFE)-negative cases (100%). However, POEMS-flow detected monoclonal PCs in 18/25 cases (72.0%), including 2/2 IFE-negative cases (100%). POEMS-flow detected monoclonal PCs with immunophenotypes of CD19- in 17/18 (94.4%). In six cases where post-treatment samples were available, the size of the clones was significantly reduced after the treatment (P = 0.031). POEMS-flow can enhance the identification rate of monoclonal PCs in POEMS syndrome and become a valuable tool for the diagnosis of POEMS syndrome.


Subject(s)
Flow Cytometry , POEMS Syndrome , Plasma Cells , POEMS Syndrome/diagnosis , Humans , Flow Cytometry/methods , Middle Aged , Male , Female , Aged , Plasma Cells/metabolism , Plasma Cells/pathology , Adult , Immunophenotyping/methods , Bone Marrow/pathology
4.
Front Immunol ; 15: 1382911, 2024.
Article in English | MEDLINE | ID: mdl-38807606

ABSTRACT

Introduction: COVID-19 vaccines are highly effective in inducing protective immunity. While the serum antibody response to COVID-19 vaccination has been studied in depth, our knowledge of the underlying plasmablast and memory B cell (Bmem) responses is still incomplete. Here, we determined the antibody and B cell response to COVID-19 vaccination in a naïve population and contrasted it with the response to a single influenza vaccination in a primed cohort. In addition, we analyzed the antibody and B cell responses against the four endemic human coronaviruses (HCoVs). Methods: Measurement of specific plasma IgG antibodies was combined with functional analyses of antibody-secreting plasmablasts and Bmems. SARS-CoV-2- and HCoV-specific IgG antibodies were quantified with an in-house bead-based multiplexed immunoassay. Results: The antibody and B cell responses to COVID-19 vaccination reflected the kinetics of a prime-boost immunization, characterized by a slow and moderate primary response and a faster and stronger secondary response. In contrast, the influenza vaccinees possessed robust immune memory for the vaccine antigens prior to vaccination, and the recall vaccination moderately boosted antibody production and Bmem responses. Antibody levels and Bmem responses waned several months after the 2nd COVID-19 vaccination, but were restored upon the 3rd vaccination. The COVID-19 vaccine-induced antibodies mainly targeted novel, non-cross-reactive S1 epitopes of the viral spike protein, while cross-reactive S2 epitopes were less immunogenic. Booster vaccination not only strongly enhanced neutralizing antibodies against an original SARS-CoV-2 strain, but also induced neutralizing antibodies against the Omicron BA.2 variant. We observed a 100% plasma antibody prevalence against the S1 subunits of HCoVs, which was not affected by vaccination. Discussion: Overall, by complementing classical serology with a functional evaluation of plasmablasts and memory B cells we provide new insights into the specificity of COVID-19 vaccine-induced antibody and B cell responses.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Cross Reactions , Immunity, Humoral , Immunoglobulin G , Memory B Cells , Plasma Cells , SARS-CoV-2 , Humans , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , Memory B Cells/immunology , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , Male , Adult , Cross Reactions/immunology , Female , Plasma Cells/immunology , Middle Aged , Immunoglobulin G/immunology , Immunoglobulin G/blood , Vaccination , Influenza Vaccines/immunology , Immunologic Memory/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Epitopes, B-Lymphocyte/immunology , B-Lymphocytes/immunology , Spike Glycoprotein, Coronavirus/immunology , Kinetics
5.
Nat Commun ; 15(1): 4182, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755157

ABSTRACT

Bone marrow plasma cells (BMPC) are the correlate of humoral immunity, consistently releasing antibodies into the bloodstream. It remains unclear if BMPC reflect different activation environments or maturation of their precursors. Here we define human BMPC heterogeneity and track the recruitment of antibody-secreting cells (ASC) from SARS-CoV-2 vaccine immune reactions to the bone marrow (BM). Trajectories based on single-cell transcriptomes and repertoires of peripheral and BM ASC reveal sequential colonisation of BMPC compartments. In activated B cells, IL-21 suppresses CD19 expression, indicating that CD19low-BMPC are derived from follicular, while CD19high-BMPC originate from extrafollicular immune reactions. In primary immune reactions, both CD19low- and CD19high-BMPC compartments are populated. In secondary immune reactions, most BMPC are recruited to CD19high-BMPC compartments, reflecting their origin from extrafollicular reactivations of memory B cells. A pattern also observable in vaccinated-convalescent individuals and upon diphtheria/tetanus/pertussis recall-vaccination. Thus, BMPC diversity reflects the evolution of a given humoral immune response.


Subject(s)
Antigens, CD19 , Bone Marrow , Interleukins , Plasma Cells , Humans , Plasma Cells/immunology , Interleukins/immunology , Interleukins/metabolism , Bone Marrow/immunology , Antigens, CD19/immunology , Antigens, CD19/metabolism , Immunity, Humoral/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Bone Marrow Cells/immunology , Bone Marrow Cells/cytology , Single-Cell Analysis , Adult , B-Lymphocytes/immunology , Antibody-Producing Cells/immunology , Female , Male , Vaccination , Middle Aged , Diphtheria-Tetanus-Pertussis Vaccine/immunology
6.
JCI Insight ; 9(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38713510

ABSTRACT

Multiple myeloma is a largely incurable and life-threatening malignancy of antibody-secreting plasma cells. An effective and widely available animal model that recapitulates human myeloma and related plasma cell disorders is lacking. We show that busulfan-conditioned human IL-6-transgenic (hIL-6-transgenic) NSG (NSG+hIL6) mice reliably support the engraftment of malignant and premalignant human plasma cells, including from patients diagnosed with monoclonal gammopathy of undetermined significance, pre- and postrelapse myeloma, plasma cell leukemia, and amyloid light chain amyloidosis. Consistent with human disease, NSG+hIL6 mice engrafted with patient-derived myeloma cells developed serum M spikes, and a majority developed anemia, hypercalcemia, and/or bone lesions. Single-cell RNA sequencing showed nonmalignant and malignant cell engraftment, the latter expressing a wide array of mRNAs associated with myeloma cell survival and proliferation. Myeloma-engrafted mice given CAR T cells targeting plasma cells or bortezomib experienced reduced tumor burden. Our results establish NSG+hIL6 mice as an effective patient-derived xenograft model for study and preclinical drug development of multiple myeloma and related plasma cell disorders.


Subject(s)
Disease Models, Animal , Interleukin-6 , Multiple Myeloma , Animals , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Humans , Mice , Interleukin-6/metabolism , Mice, Transgenic , Bortezomib/pharmacology , Bortezomib/therapeutic use , Male , Female , Plasma Cells/immunology , Monoclonal Gammopathy of Undetermined Significance/immunology , Monoclonal Gammopathy of Undetermined Significance/pathology
7.
Sci Rep ; 14(1): 11176, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750071

ABSTRACT

Multiple Myeloma (MM) is a hematological malignancy characterized by the clonal proliferation of plasma cells within the bone marrow. Diagnosing MM presents considerable challenges, involving the identification of plasma cells in cytology examinations on hematological slides. At present, this is still a time-consuming manual task and has high labor costs. These challenges have adverse implications, which rely heavily on medical professionals' expertise and experience. To tackle these challenges, we present an investigation using Artificial Intelligence, specifically a Machine Learning analysis of hematological slides with a Deep Neural Network (DNN), to support specialists during the process of diagnosing MM. In this sense, the contribution of this study is twofold: in addition to the trained model to diagnose MM, we also make available to the community a fully-curated hematological slide dataset with thousands of images of plasma cells. Taken together, the setup we established here is a framework that researchers and hospitals with limited resources can promptly use. Our contributions provide practical results that have been directly applied in the public health system in Brazil. Given the open-source nature of the project, we anticipate it will be used and extended to diagnose other malignancies.


Subject(s)
Multiple Myeloma , Humans , Bone Marrow/pathology , Brazil , Hematology/methods , Machine Learning , Multiple Myeloma/diagnosis , Multiple Myeloma/pathology , Neural Networks, Computer , Plasma Cells/pathology
8.
Clin Transl Med ; 14(5): e1699, 2024 May.
Article in English | MEDLINE | ID: mdl-38783408

ABSTRACT

BACKGROUND: The gut is an important site for human immunodeficiency virus (HIV) infection and immune responses. The role of gut mucosal immune cells in immune restoration in patients infected with HIV undergoing antiretroviral therapy remains unclear. METHODS: Ileocytes, including 54 475 immune cells, were obtained from colonoscopic biopsies of five HIV-negative controls, nine immunological responders (IRs), and three immunological non-responders (INRs) and were analyzed using single-cell RNA sequencing. Immunohistochemical assays were performed for validation. The 16S rRNA gene was amplified using PCR in faecal samples to analyze faecal microbiota. Flow cytometry was used to analyze CD4+ T-cell counts and the activation of T cells. RESULTS: This study presents a global transcriptomic profile of the gut mucosal immune cells in patients infected with HIV. Compared with the IRs, the INRs exhibited a lower proportion of gut plasma cells, especially the IGKC+IgA+ plasma cell subpopulation. IGKC+IgA+ plasma cells were negatively associated with enriched f. Prevotellaceae the INRs and negatively correlated with the overactivation of T cells, but they were positively correlated with CD4+ T-cell counts. The INRs exhibited a higher proportion of B cells than the IRs. Follicular and memory B cells were significantly higher in the INRs. Reduced potential was observed in the differentiation of follicular or memory B cells into gut plasma cells in INRs. In addition, the receptor-ligand pairs CD74_MIF and CD74_COPA of memory B/ follicular helper T cells were significantly reduced in the INRs, which may hinder the differentiation of memory and follicular B cells into plasma cells. CONCLUSIONS: Our study shows that plasma cells are dysregulated in INRs and provides an extensive resource for deciphering the immune pathogenesis of HIV in INRs. KEY POINTS: An investigation was carried out at the single-cell-level to analyze gut mucosal immune cells alterations in PLWH after ART. B cells were significantly increased and plasma cells were significantly decreased in the INRs compared to the IRs and NCs. There are gaps in the transition from gut follicular or memory B cellsinto plasma cells in INRs.


Subject(s)
HIV Infections , Intestinal Mucosa , Plasma Cells , Humans , HIV Infections/immunology , HIV Infections/drug therapy , Male , Plasma Cells/immunology , Intestinal Mucosa/immunology , Female , Adult , Middle Aged , Memory B Cells/immunology , B-Lymphocytes/immunology
9.
Nat Commun ; 15(1): 4144, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755140

ABSTRACT

Multiple Myeloma is an incurable plasma cell malignancy with a poor survival rate that is usually treated with immunomodulatory drugs (iMiDs) and proteosome inhibitors (PIs). The malignant plasma cells quickly become resistant to these agents causing relapse and uncontrolled growth of resistant clones. From whole genome sequencing (WGS) and RNA sequencing (RNA-seq) studies, different high-risk translocation, copy number, mutational, and transcriptional markers can be identified. One of these markers, PHF19, epigenetically regulates cell cycle and other processes and is already studied using RNA-seq. In this study, we generate a large (325,025 cells and 49 patients) single cell multi-omic dataset and jointly quantify ATAC- and RNA-seq for each cell and matched genomic profiles for each patient. We identify an association between one plasma cell subtype with myeloma progression that we call relapsed/refractory plasma cells (RRPCs). These cells are associated with chromosome 1q alterations, TP53 mutations, and higher expression of PHF19. We also identify downstream regulation of cell cycle inhibitors in these cells, possible regulation by the transcription factor (TF) PBX1 on chromosome 1q, and determine that PHF19 may be acting primarily through this subset of cells.


Subject(s)
Chromosomes, Human, Pair 1 , DNA-Binding Proteins , Multiple Myeloma , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Multiple Myeloma/drug therapy , Humans , Chromosomes, Human, Pair 1/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Plasma Cells/metabolism , Mutation , Neoplasm Recurrence, Local/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Drug Resistance, Neoplasm/genetics , Gene Amplification
10.
Iran J Kidney Dis ; 18(2): 133-135, 2024 03.
Article in English | MEDLINE | ID: mdl-38660697

ABSTRACT

IgG4-related disease (IgG4-RD) is a chronic systemic inflammatory  disease, characterized by tissue infiltration of lymphocytes and  IgG4-secreting plasma cells, presenting by fibrosis of different  tissues, which is usually responsive only to oral steroids therapy.  Kidneys are the most commonly involved organs, exhibiting renal  insufficiency, tubulointerstitial nephritis, and glomerulonephritis.  Here, we describe a patient with acute renal insufficiency who  was presented with edema, weakness, anemia and multiple  lymphadenopathies. Kidney and lymph node biopsy showed  crescentic glomerulonephritis in kidneys and lymphoplasmacytic  infiltration in lymph nodes. After a course of treatment with an  intravenous pulse of corticosteroid and cyclophosphamide, the  patient's symptoms subsided, and kidney function improved. DOI: 10.52547/ijkd.7788.


Subject(s)
Cyclophosphamide , Glomerulonephritis , Immunoglobulin G4-Related Disease , Humans , Immunoglobulin G4-Related Disease/complications , Immunoglobulin G4-Related Disease/drug therapy , Immunoglobulin G4-Related Disease/diagnosis , Glomerulonephritis/immunology , Glomerulonephritis/drug therapy , Glomerulonephritis/diagnosis , Glomerulonephritis/pathology , Cyclophosphamide/therapeutic use , Male , Lymph Nodes/pathology , Immunosuppressive Agents/therapeutic use , Acute Kidney Injury/etiology , Acute Kidney Injury/immunology , Kidney/pathology , Biopsy , Immunoglobulin G/blood , Glucocorticoids/therapeutic use , Middle Aged , Treatment Outcome , Lymphadenopathy/etiology , Plasma Cells/immunology , Plasma Cells/pathology
11.
J Hematop ; 17(2): 117-119, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580782

ABSTRACT

A 71-year-old female with relapsed IgA lambda myeloma developed progressive cytopenia. The peripheral blood film showed 5% blastoid cells. Flow cytometry analysis was indicative of plasma cells. The bone marrow smear was packed with plasmablasts. Target CD138-cell FISH and molecular karyotyping identified a complex genome. NGS identified high-risk mutations. Bone marrow histology confirmed myeloma with no evidence of acute leukaemia. The patient was diagnosed with plasmablastic progression of myeloma and secondary PCL. Secondary PCL patients have a poor prognosis. It is essential to recognize this subtype and explore a novel treatment approach.


Subject(s)
Leukemia, Plasma Cell , Plasma Cells , Humans , Female , Aged , Leukemia, Plasma Cell/pathology , Leukemia, Plasma Cell/genetics , Leukemia, Plasma Cell/diagnosis , Plasma Cells/pathology , Multiple Myeloma/pathology , Multiple Myeloma/diagnosis , Mutation
13.
Metab Eng ; 83: 110-122, 2024 May.
Article in English | MEDLINE | ID: mdl-38561148

ABSTRACT

Especially for the production of artificial, difficult to express molecules a further development of the CHO production cell line is required to keep pace with the continuously increasing demands. However, the identification of novel targets for cell line engineering to improve CHO cells is a time and cost intensive process. Since plasma cells are evolutionary optimized for a high antibody expression in mammals, we performed a comprehensive multi-omics comparison between CHO and plasma cells to exploit optimized cellular production traits. Comparing the transcriptome, proteome, miRNome, surfaceome and secretome of both cell lines identified key differences including 392 potential overexpression targets for CHO cell engineering categorized in 15 functional classes like transcription factors, protein processing or secretory pathway. In addition, 3 protein classes including 209 potential knock-down/out targets for CHO engineering were determined likely to affect aggregation or proteolysis. For production phenotype engineering, several of these novel targets were successfully applied to transient and transposase mediated overexpression or knock-down strategies to efficiently improve productivity of CHO cells. Thus, substantial improvement of CHO productivity was achieved by taking nature as a blueprint for cell line engineering.


Subject(s)
Cricetulus , Animals , CHO Cells , Plasma Cells/metabolism , Proteome/metabolism , Proteome/genetics , Transcriptome , Metabolic Engineering , Multiomics
14.
Cell Rep ; 43(4): 114045, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38578826

ABSTRACT

Autoantibodies against the enzyme transglutaminase 2 (TG2) are characteristic of celiac disease (CeD), and TG2-specific immunoglobulin (Ig) A plasma cells are abundant in gut biopsies of patients. Here, we describe the corresponding population of autoreactive B cells in blood. Circulating TG2-specific IgA cells are present in untreated patients on a gluten-containing diet but not in controls. They are clonally related to TG2-specific small intestinal plasma cells, and they express gut-homing molecules, indicating that they are plasma cell precursors. Unlike other IgA-switched cells, the TG2-specific cells are negative for CD27, placing them in the double-negative (IgD-CD27-) category. They have a plasmablast or activated memory B cell phenotype, and they harbor fewer variable region mutations than other IgA cells. Based on their similarity to naive B cells, we propose that autoreactive IgA cells in CeD are generated mainly through chronic recruitment of naive B cells via an extrafollicular response involving gluten-specific CD4+ T cells.


Subject(s)
B-Lymphocytes , Celiac Disease , GTP-Binding Proteins , Immunoglobulin A , Plasma Cells , Protein Glutamine gamma Glutamyltransferase 2 , Transglutaminases , Celiac Disease/immunology , Celiac Disease/pathology , Humans , Transglutaminases/immunology , Transglutaminases/metabolism , Immunoglobulin A/immunology , Immunoglobulin A/metabolism , Immunoglobulin A/blood , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Plasma Cells/immunology , Plasma Cells/metabolism , GTP-Binding Proteins/immunology , GTP-Binding Proteins/metabolism , Autoantibodies/immunology , Autoantibodies/blood , Adult , Male , Female , Middle Aged , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , Glutens/immunology
15.
Pediatr Dermatol ; 41(3): 556-557, 2024.
Article in English | MEDLINE | ID: mdl-38556801

ABSTRACT

Lymphoplasmocytic plaque in children (LPC) is a rare and distinctive skin disorder primarily affecting the pediatric population. Characterized by its unique histopathological features, the condition manifests as well-defined plaques with a predominance of lymphocytes and plasma cells infiltrating the dermis. Despite its limited prevalence, recognizing this entity is crucial for accurate diagnosis and appropriate management of affected patients. We report the case of a 10-year-old male presenting with LPC in the extensor surface of the upper arm, a rarely reported location, treated with both topical and intralesional corticosteroids resulting in partial improvement.


Subject(s)
Skin Diseases , Humans , Male , Child , Skin Diseases/pathology , Skin Diseases/diagnosis , Skin Diseases/drug therapy , Lymphocytes/pathology , Arm/pathology , Plasma Cells/pathology
16.
Front Immunol ; 15: 1340001, 2024.
Article in English | MEDLINE | ID: mdl-38680492

ABSTRACT

Germinal center (GC) responses are essential for establishing protective, long-lasting immunity through the differentiation of GC B cells (BGC) and plasma cells (BPC), along with the generation of antigen-specific antibodies. Among the various pathways influencing immune responses, the STING (Stimulator of Interferon Genes) pathway has emerged as significant, especially in innate immunity, and extends its influence to adaptive responses. In this study, we examined how the STING ligand cGAMP can modulate these key elements of the adaptive immune response, particularly in enhancing GC reactions and the differentiation of BGC, BPC, and follicular helper T cells (TFH). Employing in vivo models, we evaluated various antigens and the administration of cGAMP in Alum adjuvant, investigating the differentiation of BGC, BPC, and TFH cells, along with the production of antigen-specific antibodies. cGAMP enhances the differentiation of BGC and BPC, leading to increased antigen-specific antibody production. This effect is shown to be type I Interferon-dependent, with a substantial reduction in BPC frequency upon interferon (IFN)-ß blockade. Additionally, cGAMP's influence on TFH differentiation varies over time, which may be critical for refining vaccine strategies. The findings elucidate a complex, antigen-specific influence of cGAMP on T and B cell responses, providing insights that could optimize vaccine efficacy.


Subject(s)
Cell Differentiation , Germinal Center , Membrane Proteins , Nucleotides, Cyclic , Signal Transduction , Germinal Center/immunology , Germinal Center/metabolism , Animals , Nucleotides, Cyclic/metabolism , Nucleotides, Cyclic/immunology , Cell Differentiation/immunology , Membrane Proteins/metabolism , Membrane Proteins/immunology , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Mice, Inbred C57BL , Lymphocyte Activation/immunology , Plasma Cells/immunology , Plasma Cells/metabolism
17.
EMBO J ; 43(10): 1947-1964, 2024 May.
Article in English | MEDLINE | ID: mdl-38605225

ABSTRACT

Transcription factors BACH2 and IRF4 are both essential for antibody class-switch recombination (CSR) in activated B lymphocytes, while they oppositely regulate the differentiation of plasma cells (PCs). Here, we investigated how BACH2 and IRF4 interact during CSR and plasma-cell differentiation. We found that BACH2 organizes heterochromatin formation of target gene loci in mouse splenic B cells, including targets of IRF4 activation such as Aicda, an inducer of CSR, and Prdm1, a master plasma-cell regulator. Release of these gene loci from heterochromatin in response to B-cell receptor stimulation was coupled to AKT-mTOR pathway activation. In Bach2-deficient B cells, PC genes' activation depended on IRF4 protein accumulation, without an increase in Irf4 mRNA. Mechanistically, a PU.1-IRF4 heterodimer in activated B cells promoted BACH2 function by inducing gene expression of Bach2 and Pten, a negative regulator of AKT signaling. Elevated AKT activity in Bach2-deficient B cells resulted in IRF4 protein accumulation. Thus, BACH2 and IRF4 mutually modulate the activity of each other, and BACH2 inhibits PC differentiation by both the repression of PC genes and the restriction of IRF4 protein accumulation.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Cell Differentiation , Interferon Regulatory Factors , Plasma Cells , Animals , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Mice , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Plasma Cells/metabolism , Plasma Cells/immunology , Plasma Cells/cytology , Immunoglobulin Class Switching/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/cytology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Mice, Knockout , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Mice, Inbred C57BL , Trans-Activators/metabolism , Trans-Activators/genetics , Heterochromatin/metabolism , Heterochromatin/genetics , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics
18.
Hematol Oncol ; 42(3): e3270, 2024 May.
Article in English | MEDLINE | ID: mdl-38590272

ABSTRACT

Light chain amyloidosis is a rare disease caused by clonal plasma cells in the bone marrow generating an excessive amount of immunoglobulin light chains. These chains misfold and produce insoluble fibrils that deposit in various organs, including the heart, kidneys, liver, nervous system, and digestive tract. Life expectancy and symptoms during the course of the disease vary depending on which and how many organs are affected. Targeted plasma cell therapy has significantly advanced the clinical management of amyloidosis, with ongoing progress. However, current clinical studies are investigating innovative targets, drug combinations and treatment strategies to improve therapeutic outcomes by minimizing adverse effects and refining patient prognosis in these challenging hematological conditions. In this paper, we review the state of the art regarding the use of anti-amyloid antibodies, as a revolutionary and innovative approach in the current scenario of amyloid treatment.


Subject(s)
Amyloidosis , Immunoglobulin Light-chain Amyloidosis , Humans , Immunoglobulin Light-chain Amyloidosis/drug therapy , Antibodies, Monoclonal/therapeutic use , Amyloidosis/complications , Amyloidosis/diagnosis , Amyloidosis/therapy , Immunoglobulin Light Chains , Plasma Cells
19.
Rev Esp Patol ; 57(2): 111-115, 2024.
Article in English | MEDLINE | ID: mdl-38599729

ABSTRACT

Russell bodies (RBs) are round eosinophilic intracytoplasmic inclusions formed by condensed immunoglobulins in mature plasma cells, which are called Mott cells. These cells are rarely found in the gastric tract, with even less cases reported in the colorectal region. There are still many questions about this event, as it is still unknown the relationship between the agents reported of increasing the probability of appearance of these cells and the generation of RBs. In this case report we describe the fifth patient presenting an infiltration of Mott cells in a colorectal polyp, being the second case with a monoclonal origin without a neoplastic cause, and the first one monoclonal for lambda. A comparison with previously similar reported cases is also done, and a possible etiopathogenic hypothesis proposed.


Subject(s)
Adenomatous Polyps , Colonic Polyps , Humans , Colonic Polyps/pathology , Plasma Cells/pathology , Adenomatous Polyps/complications , Adenomatous Polyps/pathology
20.
Ann Med ; 56(1): 2338604, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38599340

ABSTRACT

BACKGROUND: Circulating plasma cells (CPCs) are defined by the presence of peripheral blood clonal plasma cells, which would contribute to the progression and dissemination of multiple myeloma (MM). An increasing number of studies have demonstrated the predictive potential of CPCs in the past few years. Therefore, there is a growing need for an updated meta-analysis to identify the specific relationship between CPCs and the prognosis of MM based on the current research status. METHODS: The PubMed, Embase, and Cochrane Library databases were screened to determine eligible studies from inception to November 5, 2023. Publications that reported the prognostic value of CPCs in MM patients were included. Hazard ratios (HRs) with 95% confidence intervals (CIs) of overall survival (OS) and progression-free survival (PFS) were extracted to pool the results. Subgroup analyses were performed based on region, sample size, cut-off value, detection time, initial treatment, and data type. The association between CPCs level and clinicopathological characteristics, including the International Staging System (ISS), Revised-ISS (R-ISS), and cytogenetic abnormalities were also evaluated. Statistical analyses were conducted using STATA 17.0 software. RESULTS: Twenty-two studies with a total of 5637 myeloma patients were enrolled in the current meta-analysis. The results indicated that myeloma patients with elevated CPCs were expected to have a poor OS (HR = 2.19, 95% CI: 1.81-2.66, p < 0.001) and PFS (HR = 2.45, 95% CI: 1.93-3.12, p < 0.001). Subgroup analyses did not alter the prognostic role of CPCs, regardless of region, sample size, cut-off value, detection time, initial treatment, or data type. Moreover, the increased CPCs were significantly related to advanced tumour stage (ISS III vs. ISS I-II: pooled OR = 2.89, 95% CI: 2.41-3.46, p < 0.001; R-ISS III vs. R-ISS I-II: pooled OR = 3.65, 95% CI: 2.43-5.50, p < 0.001) and high-risk cytogenetics (high-risk vs. standard-risk: OR = 2.22, 95% CI: 1.60-3.08, p < 0.001). CONCLUSION: Our meta-analysis confirmed that the increased number of CPCs had a negative impact on the PFS and OS of MM patients. Therefore, CPCs could be a promising prognostic biomarker that helps with risk stratification and disease monitoring.


There is a growing need for an updated meta-analysis to identify the specific relationship between CPCs and the prognosis of MM based on the current research status.Our meta-analysis revealed that a high CPCs level was significantly associated with worse OS and PFS in MM patients.CPCs could be a promising predictive biomarker that helps with risk stratification and disease monitoring.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/diagnosis , Multiple Myeloma/therapy , Plasma Cells/pathology , Prognosis , Biomarkers , Proportional Hazards Models
SELECTION OF CITATIONS
SEARCH DETAIL
...