Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.285
Filter
1.
Front Immunol ; 15: 1402000, 2024.
Article in English | MEDLINE | ID: mdl-38827747

ABSTRACT

Sialic acids as terminal sugar residues on cell surface or secreted proteins have many functional roles. In particular, the presence or absence of α2,6-linked sialic acid residues at the immunoglobulin G (IgG) Fc fragment can switch IgG effector functions from pro- to anti-inflammatory activity. IgG glycosylation is considered to take place inside the plasma blast/plasma cell while the molecule travels through the endoplasmic reticulum and Golgi apparatus before being secreted. However, more recent studies have suggested that IgG sialylation may occur predominantly post-antibody secretion. To what extent this extracellular IgG sialylation process contributes to overall IgG sialylation remains unclear, however. By generating bone marrow chimeric mice with a B cell-specific deletion of ST6Gal1, the key enzyme required for IgG sialylation, we now show that sialylation of the IgG Fc fragment exclusively occurs within B cells pre-IgG secretion. We further demonstrate that B cells expressing ST6Gal1 have a developmental advantage over B cells lacking ST6Gal1 expression and thus dominate the plasma cell pool and the resulting serum IgG population in mouse models in which both ST6Gal1-sufficient and -deficient B cells are present.


Subject(s)
B-Lymphocytes , Immunoglobulin G , Sialyltransferases , Animals , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Mice , Sialyltransferases/metabolism , Sialyltransferases/genetics , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Mice, Knockout , Glycosylation , Mice, Inbred C57BL , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin Fc Fragments/genetics , beta-D-Galactoside alpha 2-6-Sialyltransferase , Plasma Cells/immunology , Plasma Cells/metabolism , Antibody Formation
3.
Nat Commun ; 15(1): 4182, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755157

ABSTRACT

Bone marrow plasma cells (BMPC) are the correlate of humoral immunity, consistently releasing antibodies into the bloodstream. It remains unclear if BMPC reflect different activation environments or maturation of their precursors. Here we define human BMPC heterogeneity and track the recruitment of antibody-secreting cells (ASC) from SARS-CoV-2 vaccine immune reactions to the bone marrow (BM). Trajectories based on single-cell transcriptomes and repertoires of peripheral and BM ASC reveal sequential colonisation of BMPC compartments. In activated B cells, IL-21 suppresses CD19 expression, indicating that CD19low-BMPC are derived from follicular, while CD19high-BMPC originate from extrafollicular immune reactions. In primary immune reactions, both CD19low- and CD19high-BMPC compartments are populated. In secondary immune reactions, most BMPC are recruited to CD19high-BMPC compartments, reflecting their origin from extrafollicular reactivations of memory B cells. A pattern also observable in vaccinated-convalescent individuals and upon diphtheria/tetanus/pertussis recall-vaccination. Thus, BMPC diversity reflects the evolution of a given humoral immune response.


Subject(s)
Antigens, CD19 , Bone Marrow , Interleukins , Plasma Cells , Humans , Plasma Cells/immunology , Interleukins/immunology , Interleukins/metabolism , Bone Marrow/immunology , Antigens, CD19/immunology , Antigens, CD19/metabolism , Immunity, Humoral/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Bone Marrow Cells/immunology , Bone Marrow Cells/cytology , Single-Cell Analysis , Adult , B-Lymphocytes/immunology , Antibody-Producing Cells/immunology , Female , Male , Vaccination , Middle Aged , Diphtheria-Tetanus-Pertussis Vaccine/immunology
4.
Clin Transl Med ; 14(5): e1699, 2024 May.
Article in English | MEDLINE | ID: mdl-38783408

ABSTRACT

BACKGROUND: The gut is an important site for human immunodeficiency virus (HIV) infection and immune responses. The role of gut mucosal immune cells in immune restoration in patients infected with HIV undergoing antiretroviral therapy remains unclear. METHODS: Ileocytes, including 54 475 immune cells, were obtained from colonoscopic biopsies of five HIV-negative controls, nine immunological responders (IRs), and three immunological non-responders (INRs) and were analyzed using single-cell RNA sequencing. Immunohistochemical assays were performed for validation. The 16S rRNA gene was amplified using PCR in faecal samples to analyze faecal microbiota. Flow cytometry was used to analyze CD4+ T-cell counts and the activation of T cells. RESULTS: This study presents a global transcriptomic profile of the gut mucosal immune cells in patients infected with HIV. Compared with the IRs, the INRs exhibited a lower proportion of gut plasma cells, especially the IGKC+IgA+ plasma cell subpopulation. IGKC+IgA+ plasma cells were negatively associated with enriched f. Prevotellaceae the INRs and negatively correlated with the overactivation of T cells, but they were positively correlated with CD4+ T-cell counts. The INRs exhibited a higher proportion of B cells than the IRs. Follicular and memory B cells were significantly higher in the INRs. Reduced potential was observed in the differentiation of follicular or memory B cells into gut plasma cells in INRs. In addition, the receptor-ligand pairs CD74_MIF and CD74_COPA of memory B/ follicular helper T cells were significantly reduced in the INRs, which may hinder the differentiation of memory and follicular B cells into plasma cells. CONCLUSIONS: Our study shows that plasma cells are dysregulated in INRs and provides an extensive resource for deciphering the immune pathogenesis of HIV in INRs. KEY POINTS: An investigation was carried out at the single-cell-level to analyze gut mucosal immune cells alterations in PLWH after ART. B cells were significantly increased and plasma cells were significantly decreased in the INRs compared to the IRs and NCs. There are gaps in the transition from gut follicular or memory B cellsinto plasma cells in INRs.


Subject(s)
HIV Infections , Intestinal Mucosa , Plasma Cells , Humans , HIV Infections/immunology , HIV Infections/drug therapy , Male , Plasma Cells/immunology , Intestinal Mucosa/immunology , Female , Adult , Middle Aged , Memory B Cells/immunology , B-Lymphocytes/immunology
5.
JCI Insight ; 9(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38713510

ABSTRACT

Multiple myeloma is a largely incurable and life-threatening malignancy of antibody-secreting plasma cells. An effective and widely available animal model that recapitulates human myeloma and related plasma cell disorders is lacking. We show that busulfan-conditioned human IL-6-transgenic (hIL-6-transgenic) NSG (NSG+hIL6) mice reliably support the engraftment of malignant and premalignant human plasma cells, including from patients diagnosed with monoclonal gammopathy of undetermined significance, pre- and postrelapse myeloma, plasma cell leukemia, and amyloid light chain amyloidosis. Consistent with human disease, NSG+hIL6 mice engrafted with patient-derived myeloma cells developed serum M spikes, and a majority developed anemia, hypercalcemia, and/or bone lesions. Single-cell RNA sequencing showed nonmalignant and malignant cell engraftment, the latter expressing a wide array of mRNAs associated with myeloma cell survival and proliferation. Myeloma-engrafted mice given CAR T cells targeting plasma cells or bortezomib experienced reduced tumor burden. Our results establish NSG+hIL6 mice as an effective patient-derived xenograft model for study and preclinical drug development of multiple myeloma and related plasma cell disorders.


Subject(s)
Disease Models, Animal , Interleukin-6 , Multiple Myeloma , Animals , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Humans , Mice , Interleukin-6/metabolism , Mice, Transgenic , Bortezomib/pharmacology , Bortezomib/therapeutic use , Male , Female , Plasma Cells/immunology , Monoclonal Gammopathy of Undetermined Significance/immunology , Monoclonal Gammopathy of Undetermined Significance/pathology
6.
Nat Immunol ; 25(6): 1097-1109, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698087

ABSTRACT

Affinity-matured plasma cells (PCs) of varying lifespans are generated through a germinal center (GC) response. The developmental dynamics and genomic programs of antigen-specific PC precursors remain to be elucidated. Here, using a model antigen in mice, we demonstrate biphasic generation of PC precursors, with those generating long-lived bone marrow PCs preferentially produced in the late phase of GC response. Clonal tracing using single-cell RNA sequencing and B cell antigen receptor sequencing in spleen and bone marrow compartments, coupled with adoptive transfer experiments, reveals a new PC transition state that gives rise to functionally competent PC precursors. The latter undergo clonal expansion, dependent on inducible expression of TIGIT. We propose a model for the proliferation and programming of precursors of long-lived PCs, based on extended antigen encounters in the GC.


Subject(s)
Cell Differentiation , Germinal Center , Plasma Cells , Animals , Plasma Cells/immunology , Plasma Cells/metabolism , Mice , Germinal Center/immunology , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/genetics , Mice, Inbred C57BL , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Mice, Transgenic
7.
Front Immunol ; 15: 1382911, 2024.
Article in English | MEDLINE | ID: mdl-38807606

ABSTRACT

Introduction: COVID-19 vaccines are highly effective in inducing protective immunity. While the serum antibody response to COVID-19 vaccination has been studied in depth, our knowledge of the underlying plasmablast and memory B cell (Bmem) responses is still incomplete. Here, we determined the antibody and B cell response to COVID-19 vaccination in a naïve population and contrasted it with the response to a single influenza vaccination in a primed cohort. In addition, we analyzed the antibody and B cell responses against the four endemic human coronaviruses (HCoVs). Methods: Measurement of specific plasma IgG antibodies was combined with functional analyses of antibody-secreting plasmablasts and Bmems. SARS-CoV-2- and HCoV-specific IgG antibodies were quantified with an in-house bead-based multiplexed immunoassay. Results: The antibody and B cell responses to COVID-19 vaccination reflected the kinetics of a prime-boost immunization, characterized by a slow and moderate primary response and a faster and stronger secondary response. In contrast, the influenza vaccinees possessed robust immune memory for the vaccine antigens prior to vaccination, and the recall vaccination moderately boosted antibody production and Bmem responses. Antibody levels and Bmem responses waned several months after the 2nd COVID-19 vaccination, but were restored upon the 3rd vaccination. The COVID-19 vaccine-induced antibodies mainly targeted novel, non-cross-reactive S1 epitopes of the viral spike protein, while cross-reactive S2 epitopes were less immunogenic. Booster vaccination not only strongly enhanced neutralizing antibodies against an original SARS-CoV-2 strain, but also induced neutralizing antibodies against the Omicron BA.2 variant. We observed a 100% plasma antibody prevalence against the S1 subunits of HCoVs, which was not affected by vaccination. Discussion: Overall, by complementing classical serology with a functional evaluation of plasmablasts and memory B cells we provide new insights into the specificity of COVID-19 vaccine-induced antibody and B cell responses.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Cross Reactions , Immunity, Humoral , Immunoglobulin G , Memory B Cells , Plasma Cells , SARS-CoV-2 , Humans , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , Memory B Cells/immunology , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , Male , Adult , Cross Reactions/immunology , Female , Plasma Cells/immunology , Middle Aged , Immunoglobulin G/immunology , Immunoglobulin G/blood , Vaccination , Influenza Vaccines/immunology , Immunologic Memory/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Epitopes, B-Lymphocyte/immunology , B-Lymphocytes/immunology , Spike Glycoprotein, Coronavirus/immunology , Kinetics
8.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38661717

ABSTRACT

During secondary infection with influenza virus, plasma cells (PCs) develop within the lung, providing a local source of antibodies. However, the site and mechanisms that regulate this process are poorly defined. Here, we show that while circulating memory B cells entered the lung during rechallenge and were activated within inducible bronchus-associated lymphoid tissues (iBALTs), resident memory B (BRM) cells responded earlier, and their activation occurred in a different niche: directly near infected alveoli. This process required NK cells but was largely independent of CD4 and CD8 T cells. Innate stimuli induced by virus-like particles containing ssRNA triggered BRM cell differentiation in the absence of cognate antigen, suggesting a low threshold of activation. In contrast, expansion of PCs in iBALTs took longer to develop and was critically dependent on CD4 T cells. Our work demonstrates that spatially distinct mechanisms evolved to support pulmonary secondary PC responses, and it reveals a specialized function for BRM cells as guardians of the alveoli.


Subject(s)
CD4-Positive T-Lymphocytes , Lung , Orthomyxoviridae Infections , Plasma Cells , Animals , Plasma Cells/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Lung/immunology , Lung/virology , Lung/pathology , Mice , CD4-Positive T-Lymphocytes/immunology , Mice, Inbred C57BL , Killer Cells, Natural/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Memory B Cells/immunology , Lymphocyte Activation/immunology , Orthomyxoviridae/immunology , Orthomyxoviridae/physiology
10.
Cell Rep ; 43(4): 114045, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38578826

ABSTRACT

Autoantibodies against the enzyme transglutaminase 2 (TG2) are characteristic of celiac disease (CeD), and TG2-specific immunoglobulin (Ig) A plasma cells are abundant in gut biopsies of patients. Here, we describe the corresponding population of autoreactive B cells in blood. Circulating TG2-specific IgA cells are present in untreated patients on a gluten-containing diet but not in controls. They are clonally related to TG2-specific small intestinal plasma cells, and they express gut-homing molecules, indicating that they are plasma cell precursors. Unlike other IgA-switched cells, the TG2-specific cells are negative for CD27, placing them in the double-negative (IgD-CD27-) category. They have a plasmablast or activated memory B cell phenotype, and they harbor fewer variable region mutations than other IgA cells. Based on their similarity to naive B cells, we propose that autoreactive IgA cells in CeD are generated mainly through chronic recruitment of naive B cells via an extrafollicular response involving gluten-specific CD4+ T cells.


Subject(s)
B-Lymphocytes , Celiac Disease , GTP-Binding Proteins , Immunoglobulin A , Plasma Cells , Protein Glutamine gamma Glutamyltransferase 2 , Transglutaminases , Celiac Disease/immunology , Celiac Disease/pathology , Humans , Transglutaminases/immunology , Transglutaminases/metabolism , Immunoglobulin A/immunology , Immunoglobulin A/metabolism , Immunoglobulin A/blood , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Plasma Cells/immunology , Plasma Cells/metabolism , GTP-Binding Proteins/immunology , GTP-Binding Proteins/metabolism , Autoantibodies/immunology , Autoantibodies/blood , Adult , Male , Female , Middle Aged , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , Glutens/immunology
11.
Iran J Kidney Dis ; 18(2): 133-135, 2024 03.
Article in English | MEDLINE | ID: mdl-38660697

ABSTRACT

IgG4-related disease (IgG4-RD) is a chronic systemic inflammatory  disease, characterized by tissue infiltration of lymphocytes and  IgG4-secreting plasma cells, presenting by fibrosis of different  tissues, which is usually responsive only to oral steroids therapy.  Kidneys are the most commonly involved organs, exhibiting renal  insufficiency, tubulointerstitial nephritis, and glomerulonephritis.  Here, we describe a patient with acute renal insufficiency who  was presented with edema, weakness, anemia and multiple  lymphadenopathies. Kidney and lymph node biopsy showed  crescentic glomerulonephritis in kidneys and lymphoplasmacytic  infiltration in lymph nodes. After a course of treatment with an  intravenous pulse of corticosteroid and cyclophosphamide, the  patient's symptoms subsided, and kidney function improved. DOI: 10.52547/ijkd.7788.


Subject(s)
Cyclophosphamide , Glomerulonephritis , Immunoglobulin G4-Related Disease , Humans , Immunoglobulin G4-Related Disease/complications , Immunoglobulin G4-Related Disease/drug therapy , Immunoglobulin G4-Related Disease/diagnosis , Glomerulonephritis/immunology , Glomerulonephritis/drug therapy , Glomerulonephritis/diagnosis , Glomerulonephritis/pathology , Cyclophosphamide/therapeutic use , Male , Lymph Nodes/pathology , Immunosuppressive Agents/therapeutic use , Acute Kidney Injury/etiology , Acute Kidney Injury/immunology , Kidney/pathology , Biopsy , Immunoglobulin G/blood , Glucocorticoids/therapeutic use , Middle Aged , Treatment Outcome , Lymphadenopathy/etiology , Plasma Cells/immunology , Plasma Cells/pathology
12.
EMBO J ; 43(10): 1947-1964, 2024 May.
Article in English | MEDLINE | ID: mdl-38605225

ABSTRACT

Transcription factors BACH2 and IRF4 are both essential for antibody class-switch recombination (CSR) in activated B lymphocytes, while they oppositely regulate the differentiation of plasma cells (PCs). Here, we investigated how BACH2 and IRF4 interact during CSR and plasma-cell differentiation. We found that BACH2 organizes heterochromatin formation of target gene loci in mouse splenic B cells, including targets of IRF4 activation such as Aicda, an inducer of CSR, and Prdm1, a master plasma-cell regulator. Release of these gene loci from heterochromatin in response to B-cell receptor stimulation was coupled to AKT-mTOR pathway activation. In Bach2-deficient B cells, PC genes' activation depended on IRF4 protein accumulation, without an increase in Irf4 mRNA. Mechanistically, a PU.1-IRF4 heterodimer in activated B cells promoted BACH2 function by inducing gene expression of Bach2 and Pten, a negative regulator of AKT signaling. Elevated AKT activity in Bach2-deficient B cells resulted in IRF4 protein accumulation. Thus, BACH2 and IRF4 mutually modulate the activity of each other, and BACH2 inhibits PC differentiation by both the repression of PC genes and the restriction of IRF4 protein accumulation.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Cell Differentiation , Interferon Regulatory Factors , Plasma Cells , Animals , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Mice , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Plasma Cells/metabolism , Plasma Cells/immunology , Plasma Cells/cytology , Immunoglobulin Class Switching/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/cytology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Mice, Knockout , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Mice, Inbred C57BL , Trans-Activators/metabolism , Trans-Activators/genetics , Heterochromatin/metabolism , Heterochromatin/genetics , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics
13.
Front Immunol ; 15: 1340001, 2024.
Article in English | MEDLINE | ID: mdl-38680492

ABSTRACT

Germinal center (GC) responses are essential for establishing protective, long-lasting immunity through the differentiation of GC B cells (BGC) and plasma cells (BPC), along with the generation of antigen-specific antibodies. Among the various pathways influencing immune responses, the STING (Stimulator of Interferon Genes) pathway has emerged as significant, especially in innate immunity, and extends its influence to adaptive responses. In this study, we examined how the STING ligand cGAMP can modulate these key elements of the adaptive immune response, particularly in enhancing GC reactions and the differentiation of BGC, BPC, and follicular helper T cells (TFH). Employing in vivo models, we evaluated various antigens and the administration of cGAMP in Alum adjuvant, investigating the differentiation of BGC, BPC, and TFH cells, along with the production of antigen-specific antibodies. cGAMP enhances the differentiation of BGC and BPC, leading to increased antigen-specific antibody production. This effect is shown to be type I Interferon-dependent, with a substantial reduction in BPC frequency upon interferon (IFN)-ß blockade. Additionally, cGAMP's influence on TFH differentiation varies over time, which may be critical for refining vaccine strategies. The findings elucidate a complex, antigen-specific influence of cGAMP on T and B cell responses, providing insights that could optimize vaccine efficacy.


Subject(s)
Cell Differentiation , Germinal Center , Membrane Proteins , Nucleotides, Cyclic , Signal Transduction , Germinal Center/immunology , Germinal Center/metabolism , Animals , Nucleotides, Cyclic/metabolism , Nucleotides, Cyclic/immunology , Cell Differentiation/immunology , Membrane Proteins/metabolism , Membrane Proteins/immunology , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Mice, Inbred C57BL , Lymphocyte Activation/immunology , Plasma Cells/immunology , Plasma Cells/metabolism
14.
Nature ; 628(8008): 612-619, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509366

ABSTRACT

There is increasing interest in how immune cells in the meninges-the membranes that surround the brain and spinal cord-contribute to homeostasis and disease in the central nervous system1,2. The outer layer of the meninges, the dura mater, has recently been described to contain both innate and adaptive immune cells, and functions as a site for B cell development3-6. Here we identify organized lymphoid structures that protect fenestrated vasculature in the dura mater. The most elaborate of these dural-associated lymphoid tissues (DALT) surrounded the rostral-rhinal confluence of the sinuses and included lymphatic vessels. We termed this structure, which interfaces with the skull bone marrow and a comparable venous plexus at the skull base, the rostral-rhinal venolymphatic hub. Immune aggregates were present in DALT during homeostasis and expanded with age or after challenge with systemic or nasal antigens. DALT contain germinal centre B cells and support the generation of somatically mutated, antibody-producing cells in response to a nasal pathogen challenge. Inhibition of lymphocyte entry into the rostral-rhinal hub at the time of nasal viral challenge abrogated the generation of germinal centre B cells and class-switched plasma cells, as did perturbation of B-T cell interactions. These data demonstrate a lymphoid structure around vasculature in the dura mater that can sample antigens and rapidly support humoral immune responses after local pathogen challenge.


Subject(s)
Dura Mater , Immunity, Humoral , Lymphoid Tissue , Veins , Administration, Intranasal , Antigens/administration & dosage , Antigens/immunology , Bone Marrow/immunology , Central Nervous System/blood supply , Central Nervous System/immunology , Dura Mater/blood supply , Dura Mater/immunology , Germinal Center/cytology , Germinal Center/immunology , Lymphatic Vessels/immunology , Lymphoid Tissue/blood supply , Lymphoid Tissue/immunology , Plasma Cells/immunology , Skull/blood supply , T-Lymphocytes/immunology , Veins/physiology , Humans , Male , Female , Adult , Middle Aged , Animals , Mice , Aged, 80 and over
15.
Nature ; 626(8001): 1102-1107, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38355795

ABSTRACT

Plasma cells produce large quantities of antibodies and so play essential roles in immune protection1. Plasma cells, including a long-lived subset, reside in the bone marrow where they depend on poorly defined microenvironment-linked survival signals1. We show that bone marrow plasma cells use the ligand-gated purinergic ion channel P2RX4 to sense extracellular ATP released by bone marrow osteoblasts through the gap-junction protein pannexin 3 (PANX3). Mutation of Panx3 or P2rx4 each caused decreased serum antibodies and selective loss of bone marrow plasma cells. Compared to their wild-type counterparts, PANX3-null osteoblasts secreted less extracellular ATP and failed to support plasma cells in vitro. The P2RX4-specific inhibitor 5-BDBD abrogated the impact of extracellular ATP on bone marrow plasma cells in vitro, depleted bone marrow plasma cells in vivo and reduced pre-induced antigen-specific serum antibody titre with little posttreatment rebound. P2RX4 blockade also reduced autoantibody titre and kidney disease in two mouse models of humoral autoimmunity. P2RX4 promotes plasma cell survival by regulating endoplasmic reticulum homeostasis, as short-term P2RX4 blockade caused accumulation of endoplasmic reticulum stress-associated regulatory proteins including ATF4 and B-lineage mutation of the pro-apoptotic ATF4 target Chop prevented bone marrow plasma cell demise on P2RX4 inhibition. Thus, generating mature protective and pathogenic plasma cells requires P2RX4 signalling controlled by PANX3-regulated extracellular ATP release from bone marrow niche cells.


Subject(s)
Adenosine Triphosphate , Bone Marrow Cells , Plasma Cells , Animals , Mice , Adenosine Triphosphate/metabolism , Autoantibodies/immunology , Autoimmunity/immunology , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Lineage , Connexins/genetics , Connexins/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Mutation , Osteoblasts/metabolism , Plasma Cells/cytology , Plasma Cells/immunology , Plasma Cells/metabolism , Receptors, Purinergic P2X4/metabolism , Signal Transduction
16.
Nature ; 619(7971): 801-810, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438528

ABSTRACT

The function of a cell is defined by its intrinsic characteristics and its niche: the tissue microenvironment in which it dwells. Here we combine single-cell and spatial transcriptomics data to discover cellular niches within eight regions of the human heart. We map cells to microanatomical locations and integrate knowledge-based and unsupervised structural annotations. We also profile the cells of the human cardiac conduction system1. The results revealed their distinctive repertoire of ion channels, G-protein-coupled receptors (GPCRs) and regulatory networks, and implicated FOXP2 in the pacemaker phenotype. We show that the sinoatrial node is compartmentalized, with a core of pacemaker cells, fibroblasts and glial cells supporting glutamatergic signalling. Using a custom CellPhoneDB.org module, we identify trans-synaptic pacemaker cell interactions with glia. We introduce a druggable target prediction tool, drug2cell, which leverages single-cell profiles and drug-target interactions to provide mechanistic insights into the chronotropic effects of drugs, including GLP-1 analogues. In the epicardium, we show enrichment of both IgG+ and IgA+ plasma cells forming immune niches that may contribute to infection defence. Overall, we provide new clarity to cardiac electro-anatomy and immunology, and our suite of computational approaches can be applied to other tissues and organs.


Subject(s)
Cellular Microenvironment , Heart , Multiomics , Myocardium , Humans , Cell Communication , Fibroblasts/cytology , Glutamic Acid/metabolism , Heart/anatomy & histology , Heart/innervation , Ion Channels/metabolism , Myocardium/cytology , Myocardium/immunology , Myocardium/metabolism , Myocytes, Cardiac/cytology , Neuroglia/cytology , Pericardium/cytology , Pericardium/immunology , Plasma Cells/immunology , Receptors, G-Protein-Coupled/metabolism , Sinoatrial Node/anatomy & histology , Sinoatrial Node/cytology , Sinoatrial Node/physiology , Heart Conduction System/anatomy & histology , Heart Conduction System/cytology , Heart Conduction System/metabolism
17.
Nature ; 617(7961): 592-598, 2023 May.
Article in English | MEDLINE | ID: mdl-37011668

ABSTRACT

The primary two-dose SARS-CoV-2 mRNA vaccine series are strongly immunogenic in humans, but the emergence of highly infectious variants necessitated additional doses and the development of vaccines aimed at the new variants1-4. SARS-CoV-2 booster immunizations in humans primarily recruit pre-existing memory B cells5-9. However, it remains unclear whether the additional doses induce germinal centre reactions whereby re-engaged B cells can further mature, and whether variant-derived vaccines can elicit responses to variant-specific epitopes. Here we show that boosting with an mRNA vaccine against the original monovalent SARS-CoV-2 mRNA vaccine or the bivalent B.1.351 and B.1.617.2 (Beta/Delta) mRNA vaccine induced robust spike-specific germinal centre B cell responses in humans. The germinal centre response persisted for at least eight weeks, leading to significantly more mutated antigen-specific bone marrow plasma cell and memory B cell compartments. Spike-binding monoclonal antibodies derived from memory B cells isolated from individuals boosted with either the original SARS-CoV-2 spike protein, bivalent Beta/Delta vaccine or a monovalent Omicron BA.1-based vaccine predominantly recognized the original SARS-CoV-2 spike protein. Nonetheless, using a more targeted sorting approach, we isolated monoclonal antibodies that recognized the BA.1 spike protein but not the original SARS-CoV-2 spike protein from individuals who received the mRNA-1273.529 booster; these antibodies were less mutated and recognized novel epitopes within the spike protein, suggesting that they originated from naive B cells. Thus, SARS-CoV-2 booster immunizations in humans induce robust germinal centre B cell responses and can generate de novo B cell responses targeting variant-specific epitopes.


Subject(s)
B-Lymphocytes , COVID-19 Vaccines , COVID-19 , Germinal Center , Immunization, Secondary , Humans , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Germinal Center/cytology , Germinal Center/immunology , Plasma Cells/cytology , Plasma Cells/immunology , Memory B Cells/cytology , Memory B Cells/immunology , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology
18.
J Immunol ; 208(8): 1912-1923, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35379745

ABSTRACT

The mechanism regulating the life span of short-lived plasma cells (SLPCs) remains poorly understood. Here we demonstrated that the EP4-mediated activation of AKT by PGE2 was required for the proper control of inositol-requiring transmembrane kinase endoribonuclease-1α (IRE1α) hyperactivation and hence the endoplasmic reticulum (ER) homeostasis in IgM-producing SLPCs. Disruption of the PGE2-EP4-AKT signaling pathway resulted in IRE1α-induced activation of JNK, leading to accelerated death of SLPCs. Consequently, Ptger4-deficient mice (C57BL/6) exhibited a markedly impaired IgM response to T-independent Ags and increased susceptibility to Streptococcus pneumoniae infection. This study reveals a highly selective impact of the PGE2-EP4 signal on the humoral immunity and provides a link between ER stress response and the life span of SLPCs.


Subject(s)
Cell Survival , Dinoprostone , Endoplasmic Reticulum Stress , Endoribonucleases , Plasma Cells , Protein Serine-Threonine Kinases , Animals , Cell Survival/immunology , Dinoprostone/immunology , Endoplasmic Reticulum Stress/immunology , Endoribonucleases/immunology , Immunoglobulin M/immunology , Mice , Mice, Inbred C57BL , Plasma Cells/immunology , Prostaglandins/immunology , Prostaglandins E/immunology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Proto-Oncogene Proteins c-akt/immunology
19.
J Exp Med ; 219(3)2022 03 07.
Article in English | MEDLINE | ID: mdl-35195681

ABSTRACT

The gastrointestinal tract contains trillions of microorganisms that exist symbiotically with the host due to a tolerant, regulatory cell-rich intestinal immune system. However, this intimate relationship with the microbiome inevitably comes with risks, with intestinal organisms being the most common cause of bacteremia. The vasculature of the brain-lining meninges contains fenestrated endothelium, conferring vulnerability to invasion by circulating microbes. We propose that this has evolutionarily led to close links between gut and meningeal immunity, to prime the central nervous system defense against the most likely invaders. This paradigm is exemplified by the dural venous sinus IgA defense system, where the antibody repertoire mirrors that of the gut.


Subject(s)
Gastrointestinal Tract/immunology , Meninges/immunology , Animals , Gastrointestinal Microbiome/immunology , Humans , Immunoglobulin A/immunology , Meninges/microbiology , Models, Immunological , Plasma Cells/immunology
20.
Leukemia ; 36(3): 613-624, 2022 03.
Article in English | MEDLINE | ID: mdl-35110727

ABSTRACT

The role of infection and chronic inflammation in plasma cell disorders (PCD) has been well-described. Despite not being a diagnostic criterion, infection is a common complication of most PCD and represents a significant cause of morbidity and mortality in this population. As immune-based therapeutic agents are being increasingly used in multiple myeloma, it is important to recognize their impact on the epidemiology of infections and to identify preventive measures to improve outcomes. This review outlines the multiple factors attributed to the high infectious risk in PCD (e.g. the underlying disease status, patient age and comorbidities, and myeloma-directed treatment), with the aim of highlighting future prophylactic and preventive strategies that could be implemented in the clinic. Beyond this, infection and pathogens as an entity are believed to also influence disease biology from initiation to response to treatment and progression through a complex interplay involving pathogen exposure, chronic inflammation, and immune response. This review will outline both the direct and indirect role played by oncogenic pathogens in PCD, highlight the requirement for large-scale studies to decipher the precise implication of the microbiome and direct pathogens in the natural history of myeloma and its precursor disease states, and understand how, in turn, pathogens shape plasma cell biology.


Subject(s)
Infections/immunology , Inflammation/immunology , Multiple Myeloma/immunology , Adaptive Immunity , Animals , Humans , Immunity, Innate , Infections/complications , Infections/pathology , Inflammation/complications , Inflammation/pathology , Multiple Myeloma/etiology , Multiple Myeloma/pathology , Plasma Cells/immunology , Plasma Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...