Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 314
Filter
1.
Cell Mol Life Sci ; 81(1): 186, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632116

ABSTRACT

Pathogenic variants in SLC6A8, the gene which encodes creatine transporter SLC6A8, prevent creatine uptake in the brain and result in a variable degree of intellectual disability, behavioral disorders (e.g., autism spectrum disorder), epilepsy, and severe speech and language delay. There are no treatments to improve neurodevelopmental outcomes for creatine transporter deficiency (CTD). In this spotlight, we summarize recent advances in innovative molecules to treat CTD, with a focus on dodecyl creatine ester, the most promising drug candidate.


Subject(s)
Autism Spectrum Disorder , Brain Diseases, Metabolic, Inborn , Creatine/deficiency , Intellectual Disability , Mental Retardation, X-Linked , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Humans , Creatine/genetics , Creatine/therapeutic use , Brain Diseases, Metabolic, Inborn/drug therapy , Brain Diseases, Metabolic, Inborn/genetics , Intellectual Disability/genetics , Mental Retardation, X-Linked/drug therapy , Mental Retardation, X-Linked/genetics
2.
Neurology ; 102(8): e209243, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38531017

ABSTRACT

BACKGROUND AND OBJECTIVES: Creatine transporter deficiency (CTD) is a rare X-linked genetic disorder characterized by intellectual disability (ID). We evaluated the clinical characteristics and trajectory of patients with CTD and the impact of the disease on caregivers to identify relevant endpoints for future therapeutic trials. METHODS: As part of a French National Research Program, patients with CTD were included based on (1) a pathogenic SLC6A8 variant and (2) ID and/or autism spectrum disorder. Families and patients were referred by the physician who ordered the genetic analysis through Reference Centers of ID from rare causes and inherited metabolic diseases. After we informed the patients and their parents/guardians about the study, all of them gave written consent and were included. A control group of age-matched and sex-matched patients with Fragile X syndrome was also included. Physical examination, neuropsychological assessments, and caregiver impact were assessed. All data were analyzed using R software. RESULTS: Thirty-one patients (27 male, 4 female) were included (25/31 aged 18 years or younger). Most of the patients (71%) had symptoms at <24 months of age. The mean age at diagnosis was 6.5 years. Epilepsy occurred in 45% (mean age at onset: 8 years). Early-onset behavioral disorder occurred in 82%. Developmental trajectory was consistently delayed (fine and gross motor skills, language, and communication/sociability). Half of the patients with CTD had axial hypotonia during the first year of life. All patients were able to walk without help, but 7/31 had ataxia and only 14/31 could walk tandem gait. Most of them had abnormal fine motor skills (27/31), and most of them had language impairment (30/31), but 12/23 male patients (52.2%) completed the Peabody Picture Vocabulary Test. Approximately half (14/31) had slender build. Most of them needed nursing care (20/31), generally 1-4 h/d. Adaptive assessment (Vineland) confirmed that male patients with CTD had moderate-to-severe ID. Most caregivers (79%) were at risk of burnout, as shown by Caregiver Burden Inventory (CBI) > 36 (significantly higher than for patients with Fragile X syndrome) with a high burden of time dependence. DISCUSSION: In addition to clinical endpoints, such as the assessment of epilepsy and the developmental trajectory of the patient, the Vineland scale, PPVT5, and CBI are of particular interest as outcome measures for future trials. TRIAL REGISTRATION INFORMATION: ANSM Registration Number 2010-A00327-32.


Subject(s)
Autism Spectrum Disorder , Brain Diseases, Metabolic, Inborn , Creatine/deficiency , Epilepsy , Fragile X Syndrome , Intellectual Disability , Mental Retardation, X-Linked , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Humans , Male , Female , Child , Caregiver Burden , Nerve Tissue Proteins
3.
Mol Genet Metab ; 142(1): 108362, 2024 May.
Article in English | MEDLINE | ID: mdl-38452609

ABSTRACT

Cerebral creatine deficiency syndromes (CCDS) are inherited metabolic phenotypes of creatine synthesis and transport. There are two enzyme deficiencies, guanidinoacetate methyltransferase (GAMT), encoded by GAMT and arginine-glycine amidinotransferase (AGAT), encoded by GATM, which are involved in the synthesis of creatine. After synthesis, creatine is taken up by a sodium-dependent membrane bound creatine transporter (CRTR), encoded by SLC6A8, into all organs. Creatine uptake is very important especially in high energy demanding organs such as the brain, and muscle. To classify the pathogenicity of variants in GAMT, GATM, and SLC6A8, we developed the CCDS Variant Curation Expert Panel (VCEP) in 2018, supported by The Clinical Genome Resource (ClinGen), a National Institutes of Health (NIH)-funded resource. We developed disease-specific variant classification guidelines for GAMT-, GATM-, and SLC6A8-related CCDS, adapted from the American College of Medical Genetics/Association of Molecular Pathology (ACMG/AMP) variant interpretation guidelines. We applied specific variant classification guidelines to 30 pilot variants in each of the three genes that have variants associated with CCDS. Our CCDS VCEP was approved by the ClinGen Sequence Variant Interpretation Working Group (SVI WG) and Clinical Domain Oversight Committee in July 2022. We curated 181 variants including 72 variants in GAMT, 45 variants in GATM, and 64 variants in SLC6A8 and submitted these classifications to ClinVar, a public variant database supported by the National Center for Biotechnology Information. Missense variants were the most common variant type in all three genes. We submitted 32 new variants and reclassified 34 variants with conflicting interpretations. We report specific phenotype (PP4) using a points system based on the urine and plasma guanidinoacetate and creatine levels, brain magnetic resonance spectroscopy (MRS) creatine level, and enzyme activity or creatine uptake in fibroblasts ranging from PP4, PP4_Moderate and PP4_Strong. Our CCDS VCEP is one of the first panels applying disease specific variant classification algorithms for an X-linked disease. The availability of these guidelines and classifications can guide molecular genetics and genomic laboratories and health care providers to assess the molecular diagnosis of individuals with a CCDS phenotype.


Subject(s)
Amidinotransferases , Amidinotransferases/deficiency , Amino Acid Metabolism, Inborn Errors , Creatine , Creatine/deficiency , Guanidinoacetate N-Methyltransferase , Intellectual Disability , Language Development Disorders , Movement Disorders/congenital , Nerve Tissue Proteins , Plasma Membrane Neurotransmitter Transport Proteins , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Speech Disorders , Humans , Guanidinoacetate N-Methyltransferase/deficiency , Guanidinoacetate N-Methyltransferase/genetics , Creatine/metabolism , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Amidinotransferases/genetics , Amidinotransferases/metabolism , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/diagnosis , Mutation , Brain Diseases, Metabolic, Inborn/genetics , Brain Diseases, Metabolic, Inborn/diagnosis , Phenotype , Data Curation , Developmental Disabilities
4.
Mol Genet Metab ; 142(1): 108455, 2024 May.
Article in English | MEDLINE | ID: mdl-38531184

ABSTRACT

Creatine transporter deficiency has been described with normal or uninformative levels of creatine and creatinine in plasma, while urine has been the preferred specimen type for biochemical diagnosis. We report a cohort of untreated patients with creatine transporter deficiency and abnormal plasma creatine panel results, characterized mainly by markedly decreased plasma creatinine. We conclude that plasma should be considered a viable specimen type for the biochemical diagnosis of this disorder, and abnormal results should be followed up with further confirmatory testing.


Subject(s)
Brain Diseases, Metabolic, Inborn , Creatine , Creatine/deficiency , Creatinine , Mental Retardation, X-Linked , Plasma Membrane Neurotransmitter Transport Proteins , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Humans , Creatine/blood , Creatine/urine , Creatinine/blood , Creatinine/urine , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/blood , Male , Female , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/blood , Mental Retardation, X-Linked/diagnosis , Child , Child, Preschool , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/blood , Nerve Tissue Proteins/deficiency , Infant , Adolescent , Membrane Transport Proteins/genetics , Membrane Transport Proteins/deficiency , Membrane Transport Proteins/blood , Adult
5.
Biol Pharm Bull ; 47(1): 187-191, 2024.
Article in English | MEDLINE | ID: mdl-38233148

ABSTRACT

Cerebral creatine deficiency syndromes (CCDS) are neurodevelopmental disorders caused by a decrease in creatine levels in the central nervous system (CNS) due to functional mutations in creatine synthetic enzymes or creatine transporter (CRT/SLC6A8). Although SLC6A8 mutations have been reported to be the most frequent cause of CCDS, sufficient treatment for patients with CCDS harboring SLC6A8 mutations has not yet been achieved. This study aimed to elucidate the molecular mechanism of SLC6A8 dysfunction caused by the c. 1699T > C missense mutation, which is thought to induce dysfunction through an unidentified mechanism. A study on SLC6A8-expressing oocytes showed that the c.1699T > C mutation decreased creatine uptake compared to that in wild-type (WT) oocytes. In addition, a kinetics study of creatine uptake revealed that the c.1699T > C mutation reduced the maximum uptake rate but not Michaelis-Menten constant. In contrast, the c.1699T > C mutation did not attenuate SLC6A8 protein levels or alter its cellular localization. Based on the SLC6A8 structure in the AlphaFold protein structure database, it is possible that the c.1699T > C mutation alters the interaction between the S567 and Y143 residues of SLC6A8, leading to decreased creatine transport function. These findings contribute to the understanding of the pathology of CCDS and to the development of strategies for CCDS treatment.


Subject(s)
Creatine , Mutation, Missense , Humans , Creatine/metabolism , Mutation , Biological Transport , Nerve Tissue Proteins/metabolism , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/metabolism
6.
Elife ; 122024 Jan 25.
Article in English | MEDLINE | ID: mdl-38271216

ABSTRACT

The neurotransmitter:sodium symporters (NSSs) are secondary active transporters that couple the reuptake of substrate to the symport of one or two sodium ions. One bound Na+ (Na1) contributes to the substrate binding, while the other Na+ (Na2) is thought to be involved in the conformational transition of the NSS. Two NSS members, the serotonin transporter (SERT) and the Drosophila dopamine transporter (dDAT), also couple substrate uptake to the antiport of K+ by a largely undefined mechanism. We have previously shown that the bacterial NSS homologue, LeuT, also binds K+, and could therefore serve as a model protein for the exploration of K+ binding in NSS proteins. Here, we characterize the impact of K+ on substrate affinity and transport as well as on LeuT conformational equilibrium states. Both radioligand binding assays and transition metal ion FRET (tmFRET) yielded similar K+ affinities for LeuT. K+ binding was specific and saturable. LeuT reconstituted into proteoliposomes showed that intra-vesicular K+ dose-dependently increased the transport velocity of [3H]alanine, whereas extra-vesicular K+ had no apparent effect. K+ binding induced a LeuT conformation distinct from the Na+- and substrate-bound conformation. Conservative mutations of the Na1 site residues affected the binding of Na+ and K+ to different degrees. The Na1 site mutation N27Q caused a >10-fold decrease in K+ affinity but at the same time a ~3-fold increase in Na+ affinity. Together, the results suggest that K+ binding to LeuT modulates substrate transport and that the K+ affinity and selectivity for LeuT is sensitive to mutations in the Na1 site, pointing toward the Na1 site as a candidate site for facilitating the interaction with K+ in some NSSs.


Subject(s)
Sodium , Symporters , Sodium/metabolism , Plasma Membrane Neurotransmitter Transport Proteins/metabolism , Symporters/metabolism , Binding Sites , Neurotransmitter Agents
7.
J Mol Biol ; 436(2): 168383, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38070861

ABSTRACT

Creatine is an essential metabolite for the storage and rapid supply of energy in muscle and nerve cells. In humans, impaired metabolism, transport, and distribution of creatine throughout tissues can cause varying forms of mental disability, also known as creatine deficiency syndrome (CDS). So far, 80 mutations in the creatine transporter (SLC6A8) have been associated to CDS. To better understand the effect of human genetic variants on the physiology of SLC6A8 and their possible impact on CDS, we studied 30 missense variants including 15 variants of unknown significance, two of which are reported here for the first time. We expressed these variants in HEK293 cells and explored their subcellular localization and transport activity. We also applied computational methods to predict variant effect and estimate site-specific changes in thermodynamic stability. To explore variants that might have a differential effect on the transporter's conformers along the transport cycle, we constructed homology models of the inward facing, and outward facing conformations. In addition, we used mass-spectrometry to study proteins that interact with wild type SLC6A8 and five selected variants in HEK293 cells. In silico models of the protein complexes revealed how two variants impact the interaction interface of SLC6A8 with other proteins and how pathogenic variants lead to an enrichment of ER protein partners. Overall, our integrated analysis disambiguates the pathogenicity of 15 variants of unknown significance revealing diverse mechanisms of pathogenicity, including two previously unreported variants obtained from patients suffering from the creatine deficiency syndrome.


Subject(s)
Brain Diseases, Metabolic, Inborn , Creatine , Mental Retardation, X-Linked , Nerve Tissue Proteins , Plasma Membrane Neurotransmitter Transport Proteins , Humans , Creatine/deficiency , HEK293 Cells , Mental Retardation, X-Linked/genetics , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Brain Diseases, Metabolic, Inborn/genetics , DNA Mutational Analysis/methods , Mutation, Missense , Computational Biology/methods
8.
Am J Med Genet A ; 194(2): 337-345, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37850681

ABSTRACT

Seizures occur in up to 59% of boys with creatine transporter deficiency (CTD). While seizure phenotypes have been previously described, electroencephalogram (EEG) findings have only been reported in several case reports. In this prospective observational study, we report seizure characteristics and EEG findings in combination with neurobehavioral and SLC6A8 pathogenic variants in twenty males with CTD. Eighteen study participants (SP) underwent video-EEG, and seven had follow-up EEG recordings. Seizures typically occurred by age of 2 years. Thirteen (65%) had non-febrile seizures, requiring anti-seizure medications in nine. Four had febrile seizures. Seizures were bilateral tonic-clonic in 7 SP and focal impaired awareness in 5 SP; often responding to 1 to 2 antiseizure medications. EEG showed slowing in 5 SP, beta activity in 6 SP, and focal/multifocal, and/or generalized epileptiform activity in 9 SP. Follow-up EEGs in 7 SP showed emergence of epileptiform activity in 1 SP, and increased activity in 2 SP. In conclusion, seizures were frequent in our cohort but tended to respond to antiseizure medications. Longitudinal follow up provided further insight into emergence of seizures and EEG abnormalities soliciting future studies with long term follow up. Biomarkers of epileptogenicity in CTD are needed to predict seizures in this population.


Subject(s)
Brain Diseases, Metabolic, Inborn , Creatine/deficiency , Electroencephalography , Mental Retardation, X-Linked , Male , Humans , Child, Preschool , Mutation , Seizures/diagnosis , Seizures/drug therapy , Seizures/genetics , Nerve Tissue Proteins , Plasma Membrane Neurotransmitter Transport Proteins/genetics
10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(11): 1397-1403, 2023 Nov 10.
Article in Chinese | MEDLINE | ID: mdl-37906149

ABSTRACT

OBJECTIVE: To explore the clinical features and genetic variant in a child with Cerebral creatine deficiency syndrome (CCDS). METHODS: A child who had presented at the Affiliated Children's Hospital of Fudan University on March 5, 2021 was selected as the study subject. Whole exome sequencing (WES) was carried out for the child, and candidate variant was verified by Sanger sequencing. The level of creatine in the brain was determined by magnetic resonance spectroscopy. RESULTS: The patient, a 1-year-and-10-month male, had presented with developmental delay and epilepsy. Both his mother and grandmother had a history of convulsions. MRS showed reduced cerebral creatine in bilateral basal ganglia and thalamus. The child was found to harbor a hemizygous splicing variant of the SLC6A8 gene, namely c.1767+1_1767+2insA, which may lead to protein truncation. The variant was not found in the public databases. Both his mother and grandmother were heterozygous carriers for the same variant. CONCLUSION: The hemizygous c.1767+1_1767+2insA variant of the SLC6A8 gene probably underlay the CCDS in this child. Discovery of the novel variant has also expanded the mutational spectrum of the SLC6A8 gene.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Creatine , Humans , Male , Brain , Creatine/genetics , Heterozygote , Mothers , Nerve Tissue Proteins , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Infant
11.
Mol Genet Metab ; 140(3): 107694, 2023 11.
Article in English | MEDLINE | ID: mdl-37708665

ABSTRACT

Creatine transporter deficiency (CTD), caused by pathogenic variants in SLC6A8, is the second most common cause of X-linked intellectual disability. Symptoms include intellectual disability, epilepsy, and behavioral disorders and are caused by reduced cerebral creatine levels. Targeted treatment with oral supplementation is available, however the treatment efficacy is still being investigated. There are clinical and theoretical indications that heterozygous females with CTD respond better to supplementation treatment than hemizygous males. Unfortunately, heterozygous females with CTD often have more subtle and uncharacteristic clinical and biochemical phenotypes, rendering diagnosis more difficult. We report a new female case who presented with learning disabilities and seizures. After determining the diagnosis with molecular genetic testing confirmed by proton magnetic resonance spectroscopy (1H-MRS), the patient was treated with supplementation treatment including creatine, arginine, and glycine. After 28 months of treatment, the patient showed prominent clinical improvement and increased creatine levels in the brain. Furthermore, we provide a review of the 32 female cases reported in the current literature including a description of phenotypes, genotypes, diagnostic approaches, and effects of supplementation treatment. Based on this, we find that supplementation treatment should be tested in heterozygous female patients with CTD, and a prospective treatment underlines the importance of diagnosing these patients. The diagnosis should be suspected in a broad clinical spectrum of female patients and can only be made by molecular genetic testing. 1H-MRS of cerebral creatine levels is essential for establishing the diagnosis in females, and especially valuable when assessing variants of unknown significance.


Subject(s)
Brain Diseases, Metabolic, Inborn , Intellectual Disability , Mental Retardation, X-Linked , Male , Humans , Female , Intellectual Disability/genetics , Creatine , Brain Diseases, Metabolic, Inborn/diagnosis , Brain Diseases, Metabolic, Inborn/genetics , Brain Diseases, Metabolic, Inborn/drug therapy , Mental Retardation, X-Linked/diagnosis , Mental Retardation, X-Linked/genetics , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Nerve Tissue Proteins
12.
J Investig Med High Impact Case Rep ; 11: 23247096231154438, 2023.
Article in English | MEDLINE | ID: mdl-36752093

ABSTRACT

Cerebral creatine deficiency syndromes (CCDS) are a rare group of inherited metabolic disorders (IMDs) that often present with nonspecific findings including global developmental delay (GDD), intellectual disability (ID), seizures, hypotonia, and behavioral differences. Creatine transporter (CRTR) deficiency is the most common CCDS, exhibiting X-linked inheritance and an estimated prevalence as high as 2.6% in individuals with neurodevelopmental disorders. Here, we present a 20-month-old boy with worsening failure to thrive (FTT) and GDD admitted for evaluation. He was found to have persistently low serum creatinine levels and a family history notable for a mother with learning disabilities and a maternal male cousin with GDD. Urine analyses revealed a marked elevation of creatine and elevated creatine:creatinine ratio suggestive of CRTR deficiency. Molecular genetic testing of SLC6A8 identified a maternally inherited hemizygous variant and brain magnetic resonance spectroscopy (MRS) showed diffusely diminished creatine peaks, further supporting the diagnosis of CRTR deficiency. The proband was started on creatine, arginine, and glycine supplementation and has demonstrated improved development. This case highlights that CRTR deficiency should be considered in all patients presenting with FTT and abnormal neurodevelopmental features, particularly if creatinine levels are low on serum chemistry studies. The nonspecific presentation of this condition in males and females likely has resulted in CRTR deficiency being underdiagnosed. There are existing therapies for individuals affected with CRTR deficiency and other CCDS, highlighting the importance of early diagnosis and intervention for affected individuals.


Subject(s)
Brain Diseases, Metabolic, Inborn , Intellectual Disability , Humans , Infant , Male , Brain Diseases, Metabolic, Inborn/diagnosis , Brain Diseases, Metabolic, Inborn/genetics , Brain Diseases, Metabolic, Inborn/pathology , Creatine/genetics , Creatine/metabolism , Creatinine , Failure to Thrive , Intellectual Disability/genetics , Nerve Tissue Proteins/metabolism , Plasma Membrane Neurotransmitter Transport Proteins
13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1009311

ABSTRACT

OBJECTIVE@#To explore the clinical features and genetic variant in a child with Cerebral creatine deficiency syndrome (CCDS).@*METHODS@#A child who had presented at the Affiliated Children's Hospital of Fudan University on March 5, 2021 was selected as the study subject. Whole exome sequencing (WES) was carried out for the child, and candidate variant was verified by Sanger sequencing. The level of creatine in the brain was determined by magnetic resonance spectroscopy.@*RESULTS@#The patient, a 1-year-and-10-month male, had presented with developmental delay and epilepsy. Both his mother and grandmother had a history of convulsions. MRS showed reduced cerebral creatine in bilateral basal ganglia and thalamus. The child was found to harbor a hemizygous splicing variant of the SLC6A8 gene, namely c.1767+1_1767+2insA, which may lead to protein truncation. The variant was not found in the public databases. Both his mother and grandmother were heterozygous carriers for the same variant.@*CONCLUSION@#The hemizygous c.1767+1_1767+2insA variant of the SLC6A8 gene probably underlay the CCDS in this child. Discovery of the novel variant has also expanded the mutational spectrum of the SLC6A8 gene.


Subject(s)
Humans , Male , Infant , Amino Acid Metabolism, Inborn Errors , Brain , Creatine/genetics , Heterozygote , Mothers , Nerve Tissue Proteins , Plasma Membrane Neurotransmitter Transport Proteins/genetics
14.
Clin Chim Acta ; 532: 29-36, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35588794

ABSTRACT

Cerebral creatine deficiency syndromes (CCDSs) are a group of rare mendelian disorders mainly characterized by intellectual disability, movement anomaly, behavior disorder and seizures. SLC6A8, GAMT, and GATM are known genes responsible for CCDS. In this study, seven pediatric patients with developmental delay were recruited and submitted to a series of clinical evaluation, laboratory testing, and genetic analysis. The clinical manifestations and core biochemical indications of each child were basically consistent with the diagnosis of CCDS. Genetic diagnosis determined that all patients were positive for SLC6A8 or GAMT variation. A total of 12 variants were identified in this cohort, including six novel ones. The frequency of these variants, the Revel scores and the conservatism of the affected amino acids support their pathogenicity. Our findings expanded the mutation spectrum of CCDS disorders, and provided solid evidence for the counseling to affected families.


Subject(s)
Brain Diseases, Metabolic, Inborn , Guanidinoacetate N-Methyltransferase , Intellectual Disability , Nerve Tissue Proteins , Plasma Membrane Neurotransmitter Transport Proteins , Brain Diseases, Metabolic, Inborn/diagnosis , Brain Diseases, Metabolic, Inborn/genetics , Child , Creatine/deficiency , Guanidinoacetate N-Methyltransferase/genetics , Humans , Intellectual Disability/genetics , Nerve Tissue Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Syndrome
15.
Brain Dev ; 44(4): 271-280, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34974949

ABSTRACT

INTRODUCTION: Cerebral creatine deficiency syndromes (CCDS) are a group of potentially treatable neurometabolic disorders. The clinical, genetic profile and follow up outcome of Indian CCDS patients is presented. MATERIALS AND METHODS: This was a retrospective cohort of CCDS patients seen over six-years. Diagnosis was based either on low creatine peak on proton magnetic resonance spectroscopy (MRS) and/or genetic evaluation. RESULTS: Thirteen patients were eligible [8 creatine transporter deficiency (CTD), 4 guanidinoacetate methyltransferase (GAMT) deficiency and 1 could not be classified]. The mean (±SD) age at diagnosis was 7.2(±5.0) years. Clinical manifestations included intellectual disability (ID) with significant expressive speech delay in all. Most had significant behavior issues (8/13) and/or autism (8/13). All had history of convulsive seizures (11/13 had epilepsy; 2 patients only had febrile seizures) and 2/13 had movement disorder. Constipation was the commonest non-neurological manifestation (5/13 patients). Cranial MRI was normal in all CTD patients but showed globus pallidus hyperintensity in all four with GAMT deficiency. MRS performed in 11/13 patients, revealed abnormally low creatine peak. A causative genetic variant (novel mutation in nine) was identified in 12 patients. Three GAMT deficiency and one CTD patient reported neurodevelopmental improvement and good seizure control after creatine supplementation. CONCLUSION: Intellectual disability, disproportionate speech delay, autism, and epilepsy, were common in our CCDS patients. A normal structural neuroimaging with easily controlled febrile and/or afebrile seizures differentiated CTD from GAMT deficiency patients who had abnormal neuroimaging and often difficult to control epilepsy and movement disorder.


Subject(s)
Brain Diseases, Metabolic, Inborn/diagnosis , Creatine/deficiency , Guanidinoacetate N-Methyltransferase/deficiency , Language Development Disorders/diagnosis , Mental Retardation, X-Linked/diagnosis , Movement Disorders/congenital , Neurodevelopmental Disorders/diagnosis , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Brain Diseases, Metabolic, Inborn/complications , Brain Diseases, Metabolic, Inborn/genetics , Brain Diseases, Metabolic, Inborn/physiopathology , Child , Child, Preschool , Creatine/genetics , Female , Follow-Up Studies , Guanidinoacetate N-Methyltransferase/genetics , Humans , India , Language Development Disorders/complications , Language Development Disorders/genetics , Language Development Disorders/physiopathology , Male , Mental Retardation, X-Linked/complications , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/physiopathology , Movement Disorders/complications , Movement Disorders/diagnosis , Movement Disorders/genetics , Movement Disorders/physiopathology , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/physiopathology , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Retrospective Studies
16.
J Mol Biol ; 434(2): 167356, 2022 01 30.
Article in English | MEDLINE | ID: mdl-34780780

ABSTRACT

The crucial function of neurotransmitter:sodium symporters (NSS) in facilitating the reuptake of neurotransmitters into neuronal cells makes them attractive drug targets for treating multiple mental diseases. Due to the challenges in working with eukaryotic NSS proteins, LeuT, a prokaryotic amino acid transporter, has served as a model protein for studying structure-function relationships of NSS family proteins. With hydrogen-deuterium exchange mass spectrometry (HDX-MS), slow unfolding/refolding kinetics were identified in multiple regions of LeuT, suggesting that substrate translocation involves cooperative fluctuations of helical stretches. Earlier work has solely been performed at non-native temperatures (25 °C) for LeuT, which is evolutionarily adapted to function at high temperatures (85 - 95 °C). To address the effect of temperature on LeuT dynamics, we have performed HDX-MS experiments at elevated temperatures (45 °C and 60 °C). At these elevated temperatures, multiple regions in LeuT exhibited increased dynamics compared to 25 °C. Interestingly, coordinated slow unfolding/refolding of key regions could still be observed, though considerably faster. We have further investigated the conformational impact of binding the efficiently transported substrate alanine (Ala) relative to the much slower transported substrate leucine (Leu). Comparing the HDX of the Ala-bound versus Leu-bound state of LeuT, we observe distinct differences that could explain the faster transport rate (kcat) of Ala relative to Leu. Importantly, slow unfolding/refolding dynamics could still be observed in regions of Ala-bound LeuT . Overall, our work brings new insights into the conformational dynamics of LeuT and provides a better understanding of the transport mechanism of LeuT and possibly other transporters bearing the LeuT fold.


Subject(s)
Molecular Conformation , Neurotransmitter Agents , Symporters/chemistry , Temperature , Kinetics , Membrane Proteins , Molecular Dynamics Simulation , Pharmaceutical Preparations , Plasma Membrane Neurotransmitter Transport Proteins/chemistry , Plasma Membrane Neurotransmitter Transport Proteins/metabolism , Protein Conformation , Sodium
17.
J Extracell Vesicles ; 10(13): e12168, 2021 11.
Article in English | MEDLINE | ID: mdl-34807526

ABSTRACT

Acute myeloid leukaemia (AML) carrying nucleophosmin (NPM1) mutations has been defined as a distinct entity of acute leukaemia. Despite remarkable improvements in diagnosis and treatment, the long-term outcomes for this entity remain unsatisfactory. Emerging evidence suggests that leukaemia, similar to other malignant diseases, employs various mechanisms to evade killing by immune cells. However, the mechanism of immune escape in NPM1-mutated AML remains unknown. In this study, both serum and leukemic cells from patients with NPM1-mutated AML impaired the immune function of CD8+ T cells in a co-culture system. Mechanistically, leukemic cells secreted miR-19a-3p into the tumour microenvironment (TME) via small extracellular vesicles (sEVs), which was controlled by the NPM1-mutated protein/CCCTC-binding factor (CTCF)/poly (A)-binding protein cytoplasmic 1 (PABPC1) signalling axis. sEV-related miR-19a-3p was internalized by CD8+ T cells and directly repressed the expression of solute-carrier family 6 member 8 (SLC6A8; a creatine-specific transporter) to inhibit creatine import. Decreased creatine levels can reduce ATP production and impair CD8+ T cell immune function, leading to immune escape by leukemic cells. In summary, leukemic cell-derived sEV-related miR-19a-3p confers immunosuppression to CD8+ T cells by targeting SLC6A8-mediated creatine import, indicating that sEV-related miR-19a-3p might be a promising therapeutic target for NPM1-mutated AML.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Creatine/metabolism , Extracellular Vesicles/metabolism , Immune Tolerance , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Mutation , Nerve Tissue Proteins/metabolism , Nucleophosmin/genetics , Plasma Membrane Neurotransmitter Transport Proteins/metabolism , Signal Transduction/immunology , Adult , Aged , Biological Transport , Coculture Techniques/methods , Female , Humans , Leukemia, Myeloid, Acute/blood , Male , MicroRNAs/metabolism , Middle Aged , Tumor Escape , Tumor Microenvironment/immunology
18.
Sci Adv ; 7(41): eabi7511, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34613776

ABSTRACT

Colorectal cancer (CRC) is a leading cause of cancer mortality. Creatine metabolism was previously shown to critically regulate colon cancer progression. We report that RGX-202, an oral small-molecule SLC6A8 transporter inhibitor, robustly inhibits creatine import in vitro and in vivo, reduces intracellular phosphocreatine and ATP levels, and induces tumor apoptosis. RGX-202 suppressed CRC growth across KRAS wild-type and KRAS mutant xenograft, syngeneic, and patient-derived xenograft (PDX) tumors. Antitumor efficacy correlated with tumoral expression of creatine kinase B. Combining RGX-202 with 5-fluorouracil or the DHODH inhibitor leflunomide caused regressions of multiple colorectal xenograft and PDX tumors of distinct mutational backgrounds. RGX-202 also perturbed creatine metabolism in patients with metastatic CRC in a phase 1 trial, mirroring pharmacodynamic effects on creatine metabolism observed in mice. This is, to our knowledge, the first demonstration of preclinical and human pharmacodynamic activity for creatine metabolism targeting in oncology, thus revealing a critical therapeutic target.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Colorectal Neoplasms , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colorectal Neoplasms/pathology , Creatine/metabolism , Creatine/pharmacology , Creatine/therapeutic use , Humans , Membrane Transport Proteins , Mice , Mice, Nude , Mutation , Nerve Tissue Proteins/metabolism , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/pharmacology , Proto-Oncogene Proteins p21(ras)/metabolism
19.
Genes (Basel) ; 12(8)2021 07 24.
Article in English | MEDLINE | ID: mdl-34440297

ABSTRACT

Creatine (Cr) Transporter Deficiency (CTD) is an X-linked metabolic disorder, mostly caused by missense mutations in the SLC6A8 gene and presenting with intellectual disability, autistic behavior, and epilepsy. There is no effective treatment for CTD and patients need lifelong assistance. Thus, the research of novel intervention strategies is a major scientific challenge. Animal models are an excellent tool to dissect the disease pathogenetic mechanisms and drive the preclinical development of therapeutics. This review illustrates the current knowledge about Cr metabolism and CTD clinical aspects, with a focus on mainstay diagnostic and therapeutic options. Then, we discuss the rodent models of CTD characterized in the last decade, comparing the phenotypes expressed within clinically relevant domains and the timeline of symptom development. This analysis highlights that animals with the ubiquitous deletion/mutation of SLC6A8 genes well recapitulate the early onset and the complex pathological phenotype of the human condition. Thus, they should represent the preferred model for preclinical efficacy studies. On the other hand, brain- and cell-specific conditional mutants are ideal for understanding the basis of CTD at a cellular and molecular level. Finally, we explain how CTD models might provide novel insight about the pathogenesis of other disorders, including cancer.


Subject(s)
Brain Diseases, Metabolic, Inborn/pathology , Brain Diseases, Metabolic, Inborn/therapy , Central Nervous System/pathology , Creatine/deficiency , Disease Models, Animal , Mental Retardation, X-Linked/pathology , Mental Retardation, X-Linked/therapy , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Animals , Biomarkers/metabolism , Brain Diseases, Metabolic, Inborn/metabolism , Creatine/metabolism , Humans , Mental Retardation, X-Linked/metabolism , Mice , Plasma Membrane Neurotransmitter Transport Proteins/metabolism , Rats
20.
JCI Insight ; 6(17)2021 09 08.
Article in English | MEDLINE | ID: mdl-34324436

ABSTRACT

The creatine transporter (CrT) maintains brain creatine (Cr) levels, but the effects of its deficiency on energetics adaptation under stress remain unclear. There are also no effective treatments for CrT deficiency, the second most common cause of X-linked intellectual disabilities. Herein, we examined the consequences of CrT deficiency in brain energetics and stress-adaptation responses plus the effects of intranasal Cr supplementation. We found that CrT-deficient (CrT-/y) mice harbored dendritic spine and synaptic dysgenesis. Nurtured newborn CrT-/y mice maintained baseline brain ATP levels, with a trend toward signaling imbalance between the p-AMPK/autophagy and mTOR pathways. Starvation elevated the signaling imbalance and reduced brain ATP levels in P3 CrT-/y mice. Similarly, CrT-/y neurons and P10 CrT-/y mice showed an imbalance between autophagy and mTOR signaling pathways and greater susceptibility to cerebral hypoxia-ischemia and ischemic insults. Notably, intranasal administration of Cr after cerebral ischemia increased the brain Cr/N-acetylaspartate ratio, partially averted the signaling imbalance, and reduced infarct size more potently than intraperitoneal Cr injection. These findings suggest important functions for CrT and Cr in preserving the homeostasis of brain energetics in stress conditions. Moreover, intranasal Cr supplementation may be an effective treatment for congenital CrT deficiency and acute brain injury.


Subject(s)
Brain Diseases, Metabolic, Inborn/genetics , Brain/metabolism , Creatine/deficiency , DNA/genetics , Membrane Transport Proteins/genetics , Mental Retardation, X-Linked/genetics , Mutation , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Animals , Animals, Newborn , Brain/ultrastructure , Brain Diseases, Metabolic, Inborn/metabolism , Brain Diseases, Metabolic, Inborn/pathology , Creatine/genetics , Creatine/metabolism , DNA Mutational Analysis , Disease Models, Animal , Homeostasis , Male , Membrane Transport Proteins/deficiency , Mental Retardation, X-Linked/metabolism , Mental Retardation, X-Linked/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Mutant Strains , Microscopy, Electron , Neurons/metabolism , Neurons/ultrastructure , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...