Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Metab ; 142(1): 108455, 2024 May.
Article in English | MEDLINE | ID: mdl-38531184

ABSTRACT

Creatine transporter deficiency has been described with normal or uninformative levels of creatine and creatinine in plasma, while urine has been the preferred specimen type for biochemical diagnosis. We report a cohort of untreated patients with creatine transporter deficiency and abnormal plasma creatine panel results, characterized mainly by markedly decreased plasma creatinine. We conclude that plasma should be considered a viable specimen type for the biochemical diagnosis of this disorder, and abnormal results should be followed up with further confirmatory testing.


Subject(s)
Brain Diseases, Metabolic, Inborn , Creatine , Creatine/deficiency , Creatinine , Mental Retardation, X-Linked , Plasma Membrane Neurotransmitter Transport Proteins , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Humans , Creatine/blood , Creatine/urine , Creatinine/blood , Creatinine/urine , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/blood , Male , Female , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/blood , Mental Retardation, X-Linked/diagnosis , Child , Child, Preschool , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/blood , Nerve Tissue Proteins/deficiency , Infant , Adolescent , Membrane Transport Proteins/genetics , Membrane Transport Proteins/deficiency , Membrane Transport Proteins/blood , Adult
2.
J Strength Cond Res ; 34(11): 3022-3030, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33105350

ABSTRACT

Machek, SB, Hwang, PS, Cardaci, TD, Wilburn, DT, Bagley, JR, Blake, DT, Galpin, AJ, and Willoughby, DS. Myosin heavy chain composition, creatine analogues, and the relationship of muscle creatine content and fast-twitch proportion to Wilks coefficient in powerlifters. J Strength Cond Res 34(11): 3022-3030, 2020-Little data exist on powerlifting-specific skeletal muscle adaptations, and none elucidate sex differences in powerlifters. Powerlifters tend to display higher fast-twitch fiber content and phosphagen system dependence. Nevertheless, it is unknown whether fast-twitch fiber or muscle creatine content are predictive of competitive powerlifting performance (via Wilks coefficient). Twelve actively competing powerlifters (PL; n = 6M/6F; age = 21.3 ± 1.0; 3.0 ± 1.8 year competing; 7.3 ± 6.6 meets attended) and 10 sedentary controls (CON; n = 5M/5F; age = 19.4 ± 2.0 year) underwent vastus lateralis muscle biopsies and venipuncture to compare the myosin heavy chain (MHC) fiber type and creatine analogue profiles between groups of both sexes, and determine whether MHC IIa and muscle total creatine (MTC) composition predict powerlifting performance. Samples were analyzed for specific MHC isoform (I, IIa, and IIx) content via mixed homogenate SDS-PAGE, and creatine analogues (MTC, muscle creatine transporter [SLC6A8], serum total creatine [STC], and serum creatinine [CRT]). Furthermore, MHC IIa and MTC content were compared with Wilks coefficient using Pearson correlation coefficients. Male PL MHC content was 50 ± 6% I, 45 ± 6% IIa, and 5 ± 11% IIx, versus 46 ± 6% I, 53 ± 6 IIa, and 0% IIx in female PL. Conversely, male CON MHC content was 33 ± 5% I, 38 ± 7% IIa, and 30 ± 8% IIx, vs. 35 ± 9% I, 44 ± 8% IIa, and 21 ± 17% IIx in female CON. Muscle total creatine, SLC6A8, STC, and CRT did not significantly differ between groups nor sexes. Finally, neither MHC IIa content (r = -0.288; p = 0.364) nor MTC (r = 0.488; p = 0.108) significantly predicted Wilks coefficient, suggesting these characteristics alone do not determine powerlifting skill variation.


Subject(s)
Athletic Performance/physiology , Muscle Fibers, Fast-Twitch/physiology , Myosin Heavy Chains/biosynthesis , Quadriceps Muscle/physiology , Weight Lifting/physiology , Adolescent , Adult , Creatine/blood , Female , Humans , Male , Muscle Fibers, Skeletal/physiology , Myosin Heavy Chains/physiology , Nerve Tissue Proteins/blood , Plasma Membrane Neurotransmitter Transport Proteins/blood , Protein Isoforms , Sex Factors , Young Adult
3.
Genet Med ; 19(2): 256-263, 2017 02.
Article in English | MEDLINE | ID: mdl-28055022

ABSTRACT

Disclaimer: These ACMG Standards and Guidelines are intended as an educational resource for clinical laboratory geneticists to help them provide quality clinical laboratory genetic services. Adherence to these standards and guidelines is voluntary and does not necessarily assure a successful medical outcome. These Standards and Guidelines should not be considered inclusive of all proper procedures and tests or exclusive of others that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, clinical laboratory geneticists should apply their professional judgment to the specific circumstances presented by the patient or specimen. Clinical laboratory geneticists are encouraged to document in the patient's record the rationale for the use of a particular procedure or test, whether or not it is in conformance with these Standards and Guidelines. They also are advised to take notice of the date any particular guideline was adopted, and to consider other relevant medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.Cerebral creatine deficiency syndromes are neurometabolic conditions characterized by intellectual disability, seizures, speech delay, and behavioral abnormalities. Several laboratory methods are available for preliminary and confirmatory diagnosis of these conditions, including measurement of creatine and related metabolites in biofluids using liquid chromatography-tandem mass spectrometry or gas chromatography-mass spectrometry, enzyme activity assays in cultured cells, and DNA sequence analysis. These guidelines are intended to standardize these procedures to help optimize the diagnosis of creatine deficiency syndromes. While biochemical methods are emphasized, considerations for confirmatory molecular testing are also discussed, along with variables that influence test results and interpretation.Genet Med 19 2, 256-263.


Subject(s)
Amidinotransferases/deficiency , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic, Inborn/genetics , Creatine/deficiency , Creatine/metabolism , Guanidinoacetate N-Methyltransferase/deficiency , Intellectual Disability/genetics , Language Development Disorders/genetics , Mental Retardation, X-Linked/genetics , Movement Disorders/congenital , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Repressor Proteins/genetics , Speech Disorders/genetics , Amidinotransferases/blood , Amidinotransferases/cerebrospinal fluid , Amidinotransferases/genetics , Amidinotransferases/urine , Amino Acid Metabolism, Inborn Errors/blood , Amino Acid Metabolism, Inborn Errors/cerebrospinal fluid , Amino Acid Metabolism, Inborn Errors/urine , Brain Diseases, Metabolic, Inborn/blood , Brain Diseases, Metabolic, Inborn/cerebrospinal fluid , Brain Diseases, Metabolic, Inborn/urine , Clinical Laboratory Techniques/methods , Creatine/blood , Creatine/cerebrospinal fluid , Creatine/genetics , Creatine/urine , Developmental Disabilities/blood , Developmental Disabilities/cerebrospinal fluid , Developmental Disabilities/genetics , Developmental Disabilities/urine , Genetic Testing/standards , Genetics, Medical/standards , Genomics , Guanidinoacetate N-Methyltransferase/blood , Guanidinoacetate N-Methyltransferase/cerebrospinal fluid , Guanidinoacetate N-Methyltransferase/genetics , Guanidinoacetate N-Methyltransferase/urine , Guidelines as Topic , Humans , Intellectual Disability/blood , Intellectual Disability/cerebrospinal fluid , Intellectual Disability/urine , Language Development Disorders/blood , Language Development Disorders/cerebrospinal fluid , Language Development Disorders/urine , Mental Retardation, X-Linked/blood , Mental Retardation, X-Linked/cerebrospinal fluid , Mental Retardation, X-Linked/urine , Movement Disorders/blood , Movement Disorders/cerebrospinal fluid , Movement Disorders/genetics , Movement Disorders/urine , Plasma Membrane Neurotransmitter Transport Proteins/blood , Plasma Membrane Neurotransmitter Transport Proteins/cerebrospinal fluid , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/urine , Repressor Proteins/blood , Repressor Proteins/cerebrospinal fluid , Repressor Proteins/urine , Speech Disorders/blood , Speech Disorders/cerebrospinal fluid
4.
Pediatr Neurol ; 67: 45-52, 2017 02.
Article in English | MEDLINE | ID: mdl-28065824

ABSTRACT

BACKGROUND: The X-linked creatine transporter deficiency (CRTD) caused by an SLC6A8 mutation represents the second most common cause of X-linked intellectual disability. The clinical phenotype ranges from mild to severe intellectual disability, epilepsy, short stature, poor language skills, and autism spectrum disorders. The objective of this study was to investigate phenotypic variability in the context of genotype, cerebral creatine concentration, and volumetric analysis in a family with CRTD. PATIENTS AND METHODS: The clinical phenotype and manifestations of epilepsy were assessed in a Caucasian family with CRTD. DNA sequencing and creatine metabolism analysis confirmed the diagnosis. Cerebral magnetic resonance imaging (cMRI) with voxel-based morphometry and magnetic resonance spectroscopy was performed in all family members. RESULTS: An SLC6A8 missense mutation (c.1169C>T; p.Pro390Leu, exon 8) was detected in four of five individuals. Both male siblings were hemizygous, the mother and the affected sister heterozygous for the mutation. Structural cMRI was normal, whereas voxel-based morphometry analysis showed reduced white matter volume below the first percentile of the reference population of 290 subjects in the more severely affected boy compared with family members and controls. Normalized creatine concentration differed significantly between the individuals (P < 0.005). CONCLUSIONS: There is a broad phenotypic variability in CRTD even in family members with the same mutation. Differences in mental development could be related to atrophy of the subcortical white matter.


Subject(s)
Brain Diseases, Metabolic, Inborn/diagnostic imaging , Brain Diseases, Metabolic, Inborn/genetics , Creatine/deficiency , Intellectual Disability/diagnostic imaging , Intellectual Disability/genetics , Mental Retardation, X-Linked/diagnostic imaging , Mental Retardation, X-Linked/genetics , Nerve Tissue Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , White Matter/diagnostic imaging , Adolescent , Atrophy/blood , Atrophy/diagnostic imaging , Atrophy/genetics , Atrophy/psychology , Brain Diseases, Metabolic, Inborn/blood , Brain Diseases, Metabolic, Inborn/psychology , Child , Creatine/blood , Creatine/genetics , Female , Genotype , Humans , Intellectual Disability/blood , Intellectual Disability/psychology , Male , Mental Retardation, X-Linked/blood , Mental Retardation, X-Linked/psychology , Middle Aged , Mutation, Missense , Phenotype , Plasma Membrane Neurotransmitter Transport Proteins/blood , Plasma Membrane Neurotransmitter Transport Proteins/genetics , White Matter/metabolism
6.
Neurogenetics ; 9(3): 183-90, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18350323

ABSTRACT

Creatine transporter deficiency is an X-linked mental retardation disorder caused by mutations in the creatine transporter gene, SLC6A8. In a European Mental Retardation Consortium panel of 66 patients, we identified a male with mental retardation, caused by a c.1059_1061delCTT; p.Phe354del mutation in the SLC6A8 gene. With the use of direct DNA sequencing, the mutation was also found in the brother of the proband, but not in their mother. However, by analyzing EDTA blood of the mother with denaturing high-performance liquid chromatography (DHPLC), we could show that the mother displays low-level somatic mosaicism for the three base-pair deletion. This study indicates DHPLC as an important tool in the detection of low-level mosaicism, as does it illustrate the importance of considering somatic and germline mosaicism in the case of apparent de novo mutation.


Subject(s)
Germ-Line Mutation , Mental Retardation, X-Linked/genetics , Mosaicism , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Adolescent , Amino Acid Sequence , Base Sequence , Cells, Cultured , Chromatography, High Pressure Liquid , DNA/blood , DNA/genetics , DNA Mutational Analysis , Exons , Female , Genes, X-Linked , Humans , Male , Mental Retardation, X-Linked/blood , Molecular Sequence Data , Nerve Tissue Proteins/blood , Nucleic Acid Denaturation , Pedigree , Plasma Membrane Neurotransmitter Transport Proteins/blood , Sequence Deletion , Sequence Homology, Amino Acid , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...