Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Mol Genet Metab ; 142(1): 108362, 2024 May.
Article in English | MEDLINE | ID: mdl-38452609

ABSTRACT

Cerebral creatine deficiency syndromes (CCDS) are inherited metabolic phenotypes of creatine synthesis and transport. There are two enzyme deficiencies, guanidinoacetate methyltransferase (GAMT), encoded by GAMT and arginine-glycine amidinotransferase (AGAT), encoded by GATM, which are involved in the synthesis of creatine. After synthesis, creatine is taken up by a sodium-dependent membrane bound creatine transporter (CRTR), encoded by SLC6A8, into all organs. Creatine uptake is very important especially in high energy demanding organs such as the brain, and muscle. To classify the pathogenicity of variants in GAMT, GATM, and SLC6A8, we developed the CCDS Variant Curation Expert Panel (VCEP) in 2018, supported by The Clinical Genome Resource (ClinGen), a National Institutes of Health (NIH)-funded resource. We developed disease-specific variant classification guidelines for GAMT-, GATM-, and SLC6A8-related CCDS, adapted from the American College of Medical Genetics/Association of Molecular Pathology (ACMG/AMP) variant interpretation guidelines. We applied specific variant classification guidelines to 30 pilot variants in each of the three genes that have variants associated with CCDS. Our CCDS VCEP was approved by the ClinGen Sequence Variant Interpretation Working Group (SVI WG) and Clinical Domain Oversight Committee in July 2022. We curated 181 variants including 72 variants in GAMT, 45 variants in GATM, and 64 variants in SLC6A8 and submitted these classifications to ClinVar, a public variant database supported by the National Center for Biotechnology Information. Missense variants were the most common variant type in all three genes. We submitted 32 new variants and reclassified 34 variants with conflicting interpretations. We report specific phenotype (PP4) using a points system based on the urine and plasma guanidinoacetate and creatine levels, brain magnetic resonance spectroscopy (MRS) creatine level, and enzyme activity or creatine uptake in fibroblasts ranging from PP4, PP4_Moderate and PP4_Strong. Our CCDS VCEP is one of the first panels applying disease specific variant classification algorithms for an X-linked disease. The availability of these guidelines and classifications can guide molecular genetics and genomic laboratories and health care providers to assess the molecular diagnosis of individuals with a CCDS phenotype.


Subject(s)
Amidinotransferases , Amidinotransferases/deficiency , Amino Acid Metabolism, Inborn Errors , Creatine , Creatine/deficiency , Guanidinoacetate N-Methyltransferase , Intellectual Disability , Language Development Disorders , Movement Disorders/congenital , Nerve Tissue Proteins , Plasma Membrane Neurotransmitter Transport Proteins , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Speech Disorders , Humans , Guanidinoacetate N-Methyltransferase/deficiency , Guanidinoacetate N-Methyltransferase/genetics , Creatine/metabolism , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Amidinotransferases/genetics , Amidinotransferases/metabolism , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/diagnosis , Mutation , Brain Diseases, Metabolic, Inborn/genetics , Brain Diseases, Metabolic, Inborn/diagnosis , Phenotype , Data Curation , Developmental Disabilities
2.
Mol Genet Metab ; 142(1): 108455, 2024 May.
Article in English | MEDLINE | ID: mdl-38531184

ABSTRACT

Creatine transporter deficiency has been described with normal or uninformative levels of creatine and creatinine in plasma, while urine has been the preferred specimen type for biochemical diagnosis. We report a cohort of untreated patients with creatine transporter deficiency and abnormal plasma creatine panel results, characterized mainly by markedly decreased plasma creatinine. We conclude that plasma should be considered a viable specimen type for the biochemical diagnosis of this disorder, and abnormal results should be followed up with further confirmatory testing.


Subject(s)
Brain Diseases, Metabolic, Inborn , Creatine , Creatine/deficiency , Creatinine , Mental Retardation, X-Linked , Plasma Membrane Neurotransmitter Transport Proteins , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Humans , Creatine/blood , Creatine/urine , Creatinine/blood , Creatinine/urine , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/blood , Male , Female , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/blood , Mental Retardation, X-Linked/diagnosis , Child , Child, Preschool , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/blood , Nerve Tissue Proteins/deficiency , Infant , Adolescent , Membrane Transport Proteins/genetics , Membrane Transport Proteins/deficiency , Membrane Transport Proteins/blood , Adult
3.
Biol Pharm Bull ; 47(1): 187-191, 2024.
Article in English | MEDLINE | ID: mdl-38233148

ABSTRACT

Cerebral creatine deficiency syndromes (CCDS) are neurodevelopmental disorders caused by a decrease in creatine levels in the central nervous system (CNS) due to functional mutations in creatine synthetic enzymes or creatine transporter (CRT/SLC6A8). Although SLC6A8 mutations have been reported to be the most frequent cause of CCDS, sufficient treatment for patients with CCDS harboring SLC6A8 mutations has not yet been achieved. This study aimed to elucidate the molecular mechanism of SLC6A8 dysfunction caused by the c. 1699T > C missense mutation, which is thought to induce dysfunction through an unidentified mechanism. A study on SLC6A8-expressing oocytes showed that the c.1699T > C mutation decreased creatine uptake compared to that in wild-type (WT) oocytes. In addition, a kinetics study of creatine uptake revealed that the c.1699T > C mutation reduced the maximum uptake rate but not Michaelis-Menten constant. In contrast, the c.1699T > C mutation did not attenuate SLC6A8 protein levels or alter its cellular localization. Based on the SLC6A8 structure in the AlphaFold protein structure database, it is possible that the c.1699T > C mutation alters the interaction between the S567 and Y143 residues of SLC6A8, leading to decreased creatine transport function. These findings contribute to the understanding of the pathology of CCDS and to the development of strategies for CCDS treatment.


Subject(s)
Creatine , Mutation, Missense , Humans , Creatine/metabolism , Mutation , Biological Transport , Nerve Tissue Proteins/metabolism , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/metabolism
4.
J Mol Biol ; 436(2): 168383, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38070861

ABSTRACT

Creatine is an essential metabolite for the storage and rapid supply of energy in muscle and nerve cells. In humans, impaired metabolism, transport, and distribution of creatine throughout tissues can cause varying forms of mental disability, also known as creatine deficiency syndrome (CDS). So far, 80 mutations in the creatine transporter (SLC6A8) have been associated to CDS. To better understand the effect of human genetic variants on the physiology of SLC6A8 and their possible impact on CDS, we studied 30 missense variants including 15 variants of unknown significance, two of which are reported here for the first time. We expressed these variants in HEK293 cells and explored their subcellular localization and transport activity. We also applied computational methods to predict variant effect and estimate site-specific changes in thermodynamic stability. To explore variants that might have a differential effect on the transporter's conformers along the transport cycle, we constructed homology models of the inward facing, and outward facing conformations. In addition, we used mass-spectrometry to study proteins that interact with wild type SLC6A8 and five selected variants in HEK293 cells. In silico models of the protein complexes revealed how two variants impact the interaction interface of SLC6A8 with other proteins and how pathogenic variants lead to an enrichment of ER protein partners. Overall, our integrated analysis disambiguates the pathogenicity of 15 variants of unknown significance revealing diverse mechanisms of pathogenicity, including two previously unreported variants obtained from patients suffering from the creatine deficiency syndrome.


Subject(s)
Brain Diseases, Metabolic, Inborn , Creatine , Mental Retardation, X-Linked , Nerve Tissue Proteins , Plasma Membrane Neurotransmitter Transport Proteins , Humans , Creatine/deficiency , HEK293 Cells , Mental Retardation, X-Linked/genetics , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Brain Diseases, Metabolic, Inborn/genetics , DNA Mutational Analysis/methods , Mutation, Missense , Computational Biology/methods
5.
Am J Med Genet A ; 194(2): 337-345, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37850681

ABSTRACT

Seizures occur in up to 59% of boys with creatine transporter deficiency (CTD). While seizure phenotypes have been previously described, electroencephalogram (EEG) findings have only been reported in several case reports. In this prospective observational study, we report seizure characteristics and EEG findings in combination with neurobehavioral and SLC6A8 pathogenic variants in twenty males with CTD. Eighteen study participants (SP) underwent video-EEG, and seven had follow-up EEG recordings. Seizures typically occurred by age of 2 years. Thirteen (65%) had non-febrile seizures, requiring anti-seizure medications in nine. Four had febrile seizures. Seizures were bilateral tonic-clonic in 7 SP and focal impaired awareness in 5 SP; often responding to 1 to 2 antiseizure medications. EEG showed slowing in 5 SP, beta activity in 6 SP, and focal/multifocal, and/or generalized epileptiform activity in 9 SP. Follow-up EEGs in 7 SP showed emergence of epileptiform activity in 1 SP, and increased activity in 2 SP. In conclusion, seizures were frequent in our cohort but tended to respond to antiseizure medications. Longitudinal follow up provided further insight into emergence of seizures and EEG abnormalities soliciting future studies with long term follow up. Biomarkers of epileptogenicity in CTD are needed to predict seizures in this population.


Subject(s)
Brain Diseases, Metabolic, Inborn , Creatine/deficiency , Electroencephalography , Mental Retardation, X-Linked , Male , Humans , Child, Preschool , Mutation , Seizures/diagnosis , Seizures/drug therapy , Seizures/genetics , Nerve Tissue Proteins , Plasma Membrane Neurotransmitter Transport Proteins/genetics
7.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(11): 1397-1403, 2023 Nov 10.
Article in Chinese | MEDLINE | ID: mdl-37906149

ABSTRACT

OBJECTIVE: To explore the clinical features and genetic variant in a child with Cerebral creatine deficiency syndrome (CCDS). METHODS: A child who had presented at the Affiliated Children's Hospital of Fudan University on March 5, 2021 was selected as the study subject. Whole exome sequencing (WES) was carried out for the child, and candidate variant was verified by Sanger sequencing. The level of creatine in the brain was determined by magnetic resonance spectroscopy. RESULTS: The patient, a 1-year-and-10-month male, had presented with developmental delay and epilepsy. Both his mother and grandmother had a history of convulsions. MRS showed reduced cerebral creatine in bilateral basal ganglia and thalamus. The child was found to harbor a hemizygous splicing variant of the SLC6A8 gene, namely c.1767+1_1767+2insA, which may lead to protein truncation. The variant was not found in the public databases. Both his mother and grandmother were heterozygous carriers for the same variant. CONCLUSION: The hemizygous c.1767+1_1767+2insA variant of the SLC6A8 gene probably underlay the CCDS in this child. Discovery of the novel variant has also expanded the mutational spectrum of the SLC6A8 gene.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Creatine , Humans , Male , Brain , Creatine/genetics , Heterozygote , Mothers , Nerve Tissue Proteins , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Infant
8.
Mol Genet Metab ; 140(3): 107694, 2023 11.
Article in English | MEDLINE | ID: mdl-37708665

ABSTRACT

Creatine transporter deficiency (CTD), caused by pathogenic variants in SLC6A8, is the second most common cause of X-linked intellectual disability. Symptoms include intellectual disability, epilepsy, and behavioral disorders and are caused by reduced cerebral creatine levels. Targeted treatment with oral supplementation is available, however the treatment efficacy is still being investigated. There are clinical and theoretical indications that heterozygous females with CTD respond better to supplementation treatment than hemizygous males. Unfortunately, heterozygous females with CTD often have more subtle and uncharacteristic clinical and biochemical phenotypes, rendering diagnosis more difficult. We report a new female case who presented with learning disabilities and seizures. After determining the diagnosis with molecular genetic testing confirmed by proton magnetic resonance spectroscopy (1H-MRS), the patient was treated with supplementation treatment including creatine, arginine, and glycine. After 28 months of treatment, the patient showed prominent clinical improvement and increased creatine levels in the brain. Furthermore, we provide a review of the 32 female cases reported in the current literature including a description of phenotypes, genotypes, diagnostic approaches, and effects of supplementation treatment. Based on this, we find that supplementation treatment should be tested in heterozygous female patients with CTD, and a prospective treatment underlines the importance of diagnosing these patients. The diagnosis should be suspected in a broad clinical spectrum of female patients and can only be made by molecular genetic testing. 1H-MRS of cerebral creatine levels is essential for establishing the diagnosis in females, and especially valuable when assessing variants of unknown significance.


Subject(s)
Brain Diseases, Metabolic, Inborn , Intellectual Disability , Mental Retardation, X-Linked , Male , Humans , Female , Intellectual Disability/genetics , Creatine , Brain Diseases, Metabolic, Inborn/diagnosis , Brain Diseases, Metabolic, Inborn/genetics , Brain Diseases, Metabolic, Inborn/drug therapy , Mental Retardation, X-Linked/diagnosis , Mental Retardation, X-Linked/genetics , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Nerve Tissue Proteins
9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1009311

ABSTRACT

OBJECTIVE@#To explore the clinical features and genetic variant in a child with Cerebral creatine deficiency syndrome (CCDS).@*METHODS@#A child who had presented at the Affiliated Children's Hospital of Fudan University on March 5, 2021 was selected as the study subject. Whole exome sequencing (WES) was carried out for the child, and candidate variant was verified by Sanger sequencing. The level of creatine in the brain was determined by magnetic resonance spectroscopy.@*RESULTS@#The patient, a 1-year-and-10-month male, had presented with developmental delay and epilepsy. Both his mother and grandmother had a history of convulsions. MRS showed reduced cerebral creatine in bilateral basal ganglia and thalamus. The child was found to harbor a hemizygous splicing variant of the SLC6A8 gene, namely c.1767+1_1767+2insA, which may lead to protein truncation. The variant was not found in the public databases. Both his mother and grandmother were heterozygous carriers for the same variant.@*CONCLUSION@#The hemizygous c.1767+1_1767+2insA variant of the SLC6A8 gene probably underlay the CCDS in this child. Discovery of the novel variant has also expanded the mutational spectrum of the SLC6A8 gene.


Subject(s)
Humans , Male , Infant , Amino Acid Metabolism, Inborn Errors , Brain , Creatine/genetics , Heterozygote , Mothers , Nerve Tissue Proteins , Plasma Membrane Neurotransmitter Transport Proteins/genetics
10.
Clin Chim Acta ; 532: 29-36, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35588794

ABSTRACT

Cerebral creatine deficiency syndromes (CCDSs) are a group of rare mendelian disorders mainly characterized by intellectual disability, movement anomaly, behavior disorder and seizures. SLC6A8, GAMT, and GATM are known genes responsible for CCDS. In this study, seven pediatric patients with developmental delay were recruited and submitted to a series of clinical evaluation, laboratory testing, and genetic analysis. The clinical manifestations and core biochemical indications of each child were basically consistent with the diagnosis of CCDS. Genetic diagnosis determined that all patients were positive for SLC6A8 or GAMT variation. A total of 12 variants were identified in this cohort, including six novel ones. The frequency of these variants, the Revel scores and the conservatism of the affected amino acids support their pathogenicity. Our findings expanded the mutation spectrum of CCDS disorders, and provided solid evidence for the counseling to affected families.


Subject(s)
Brain Diseases, Metabolic, Inborn , Guanidinoacetate N-Methyltransferase , Intellectual Disability , Nerve Tissue Proteins , Plasma Membrane Neurotransmitter Transport Proteins , Brain Diseases, Metabolic, Inborn/diagnosis , Brain Diseases, Metabolic, Inborn/genetics , Child , Creatine/deficiency , Guanidinoacetate N-Methyltransferase/genetics , Humans , Intellectual Disability/genetics , Nerve Tissue Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Syndrome
11.
Brain Dev ; 44(4): 271-280, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34974949

ABSTRACT

INTRODUCTION: Cerebral creatine deficiency syndromes (CCDS) are a group of potentially treatable neurometabolic disorders. The clinical, genetic profile and follow up outcome of Indian CCDS patients is presented. MATERIALS AND METHODS: This was a retrospective cohort of CCDS patients seen over six-years. Diagnosis was based either on low creatine peak on proton magnetic resonance spectroscopy (MRS) and/or genetic evaluation. RESULTS: Thirteen patients were eligible [8 creatine transporter deficiency (CTD), 4 guanidinoacetate methyltransferase (GAMT) deficiency and 1 could not be classified]. The mean (±SD) age at diagnosis was 7.2(±5.0) years. Clinical manifestations included intellectual disability (ID) with significant expressive speech delay in all. Most had significant behavior issues (8/13) and/or autism (8/13). All had history of convulsive seizures (11/13 had epilepsy; 2 patients only had febrile seizures) and 2/13 had movement disorder. Constipation was the commonest non-neurological manifestation (5/13 patients). Cranial MRI was normal in all CTD patients but showed globus pallidus hyperintensity in all four with GAMT deficiency. MRS performed in 11/13 patients, revealed abnormally low creatine peak. A causative genetic variant (novel mutation in nine) was identified in 12 patients. Three GAMT deficiency and one CTD patient reported neurodevelopmental improvement and good seizure control after creatine supplementation. CONCLUSION: Intellectual disability, disproportionate speech delay, autism, and epilepsy, were common in our CCDS patients. A normal structural neuroimaging with easily controlled febrile and/or afebrile seizures differentiated CTD from GAMT deficiency patients who had abnormal neuroimaging and often difficult to control epilepsy and movement disorder.


Subject(s)
Brain Diseases, Metabolic, Inborn/diagnosis , Creatine/deficiency , Guanidinoacetate N-Methyltransferase/deficiency , Language Development Disorders/diagnosis , Mental Retardation, X-Linked/diagnosis , Movement Disorders/congenital , Neurodevelopmental Disorders/diagnosis , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Brain Diseases, Metabolic, Inborn/complications , Brain Diseases, Metabolic, Inborn/genetics , Brain Diseases, Metabolic, Inborn/physiopathology , Child , Child, Preschool , Creatine/genetics , Female , Follow-Up Studies , Guanidinoacetate N-Methyltransferase/genetics , Humans , India , Language Development Disorders/complications , Language Development Disorders/genetics , Language Development Disorders/physiopathology , Male , Mental Retardation, X-Linked/complications , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/physiopathology , Movement Disorders/complications , Movement Disorders/diagnosis , Movement Disorders/genetics , Movement Disorders/physiopathology , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/physiopathology , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Retrospective Studies
12.
Sci Adv ; 7(41): eabi7511, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34613776

ABSTRACT

Colorectal cancer (CRC) is a leading cause of cancer mortality. Creatine metabolism was previously shown to critically regulate colon cancer progression. We report that RGX-202, an oral small-molecule SLC6A8 transporter inhibitor, robustly inhibits creatine import in vitro and in vivo, reduces intracellular phosphocreatine and ATP levels, and induces tumor apoptosis. RGX-202 suppressed CRC growth across KRAS wild-type and KRAS mutant xenograft, syngeneic, and patient-derived xenograft (PDX) tumors. Antitumor efficacy correlated with tumoral expression of creatine kinase B. Combining RGX-202 with 5-fluorouracil or the DHODH inhibitor leflunomide caused regressions of multiple colorectal xenograft and PDX tumors of distinct mutational backgrounds. RGX-202 also perturbed creatine metabolism in patients with metastatic CRC in a phase 1 trial, mirroring pharmacodynamic effects on creatine metabolism observed in mice. This is, to our knowledge, the first demonstration of preclinical and human pharmacodynamic activity for creatine metabolism targeting in oncology, thus revealing a critical therapeutic target.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Colorectal Neoplasms , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colorectal Neoplasms/pathology , Creatine/metabolism , Creatine/pharmacology , Creatine/therapeutic use , Humans , Membrane Transport Proteins , Mice , Mice, Nude , Mutation , Nerve Tissue Proteins/metabolism , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/pharmacology , Proto-Oncogene Proteins p21(ras)/metabolism
13.
JCI Insight ; 6(17)2021 09 08.
Article in English | MEDLINE | ID: mdl-34324436

ABSTRACT

The creatine transporter (CrT) maintains brain creatine (Cr) levels, but the effects of its deficiency on energetics adaptation under stress remain unclear. There are also no effective treatments for CrT deficiency, the second most common cause of X-linked intellectual disabilities. Herein, we examined the consequences of CrT deficiency in brain energetics and stress-adaptation responses plus the effects of intranasal Cr supplementation. We found that CrT-deficient (CrT-/y) mice harbored dendritic spine and synaptic dysgenesis. Nurtured newborn CrT-/y mice maintained baseline brain ATP levels, with a trend toward signaling imbalance between the p-AMPK/autophagy and mTOR pathways. Starvation elevated the signaling imbalance and reduced brain ATP levels in P3 CrT-/y mice. Similarly, CrT-/y neurons and P10 CrT-/y mice showed an imbalance between autophagy and mTOR signaling pathways and greater susceptibility to cerebral hypoxia-ischemia and ischemic insults. Notably, intranasal administration of Cr after cerebral ischemia increased the brain Cr/N-acetylaspartate ratio, partially averted the signaling imbalance, and reduced infarct size more potently than intraperitoneal Cr injection. These findings suggest important functions for CrT and Cr in preserving the homeostasis of brain energetics in stress conditions. Moreover, intranasal Cr supplementation may be an effective treatment for congenital CrT deficiency and acute brain injury.


Subject(s)
Brain Diseases, Metabolic, Inborn/genetics , Brain/metabolism , Creatine/deficiency , DNA/genetics , Membrane Transport Proteins/genetics , Mental Retardation, X-Linked/genetics , Mutation , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Animals , Animals, Newborn , Brain/ultrastructure , Brain Diseases, Metabolic, Inborn/metabolism , Brain Diseases, Metabolic, Inborn/pathology , Creatine/genetics , Creatine/metabolism , DNA Mutational Analysis , Disease Models, Animal , Homeostasis , Male , Membrane Transport Proteins/deficiency , Mental Retardation, X-Linked/metabolism , Mental Retardation, X-Linked/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Mutant Strains , Microscopy, Electron , Neurons/metabolism , Neurons/ultrastructure , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/metabolism
14.
Mol Genet Genomic Med ; 9(4): e1640, 2021 04.
Article in English | MEDLINE | ID: mdl-33656256

ABSTRACT

BACKGROUND: Creatine transporter deficiency is an inborn error of metabolism caused by a deficiency in the creatine transporter protein encoded by the SLC6A8 gene. Previous treatment with creatine supplementation, either alone or in combination with creatine precursors (arginine or glycine), has been attempted; the efficacy of therapy, however, remains controversial. METHODS AND RESULTS: To analyze the treatment efficacy of high-dose creatine supplementation on creatine transporter deficiency, we reported a child diagnosed with creatine transporter deficiency, who was treated with a conventional dose of creatine (400 mg/kg/d) for 1 month, then twice the dose (800 mg/kg/d) for 2 months, and finally 3 times the dose (1200 mg/kg/d) for 3 months. The patient tolerated the treatment well and showed improvements in muscle mass and strength when the creatine dose was gradually increased to 1200 mg/kg/d. However, when assessed by proton magnetic resonance spectroscopy (H-MRS), the brain creatine concentration did not increase, and there was no improvement in speech and neurodevelopmental symptoms. CONCLUSION: We conclude that high-dose creatine supplementation (1200 mg/kg/d) alone improved muscular symptoms, but did not improve cognitive symptoms and brain creatine concentration assessed using H-MRS. Therefore, new treatment strategies are required for the management of creatine transporter deficiency.


Subject(s)
Creatine/therapeutic use , Developmental Disabilities/drug therapy , Metabolism, Inborn Errors/drug therapy , Nerve Tissue Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Child , Cognition , Creatine/administration & dosage , Creatine/adverse effects , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Dietary Supplements , Drug Tolerance , Humans , Language Development , Male , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/pathology , Muscle Strength , Nerve Tissue Proteins/deficiency , Plasma Membrane Neurotransmitter Transport Proteins/deficiency
15.
Sci Rep ; 11(1): 1636, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33452333

ABSTRACT

Creatine is an organic compound used as fast phosphate energy buffer to recycle ATP, important in tissues with high energy demand such as muscle or brain. Creatine is taken from the diet or endogenously synthetized by the enzymes AGAT and GAMT, and specifically taken up by the transporter SLC6A8. Deficit in the endogenous synthesis or in the transport leads to Cerebral Creatine Deficiency Syndromes (CCDS). CCDS are characterized by brain creatine deficiency, intellectual disability with severe speech delay, behavioral troubles such as attention deficits and/or autistic features, and epilepsy. Among CCDS, the X-linked creatine transporter deficiency (CTD) is the most prevalent with no efficient treatment so far. Different mouse models of CTD were generated by doing long deletions in the Slc6a8 gene showing reduced brain creatine and cognitive deficiencies or impaired motor function. We present a new knock-in (KI) rat model of CTD holding an identical point mutation found in patients with reported lack of transporter activity. KI males showed brain creatine deficiency, increased urinary creatine/creatinine ratio, cognitive deficits and autistic-like traits. The Slc6a8Y389C KI rat fairly enriches the spectrum of CTD models and provides new data about the pathology, being the first animal model of CTD carrying a point mutation.


Subject(s)
Brain/metabolism , Nerve Tissue Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Animals , Base Sequence , Behavior, Animal , Body Weight , Brain Diseases, Metabolic, Inborn/genetics , Brain Diseases, Metabolic, Inborn/pathology , Creatine/blood , Creatine/deficiency , Creatine/genetics , Disease Models, Animal , Female , Gene Knock-In Techniques , Genotype , Humans , Male , Memory, Short-Term , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/pathology , Mutation, Missense , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Plasma Membrane Neurotransmitter Transport Proteins/chemistry , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Plasma Membrane Neurotransmitter Transport Proteins/metabolism , Rats
16.
J Inherit Metab Dis ; 44(4): 939-948, 2021 07.
Article in English | MEDLINE | ID: mdl-33389772

ABSTRACT

The severe impact on brain function and lack of effective therapy for patients with creatine (Cr) transporter deficiency motivated the generation of three ubiquitous Slc6a8 deficient mice (-/y). While each mouse knock-out line has similar behavioral effects at 2 to 3 months of age, other features critical to the efficient use of these mice in drug discovery are unclear or lacking: the concentration of Cr in brain and heart differ widely between mouse lines, there are limited data on histopathologic changes, and no data on Cr uptake. Here, we determined survival, measured endogenous Cr and uptake of its deuterium-labeled analogue Cr-d3 using a liquid chromatography coupled with tandem mass spectrometry assay, and performed comprehensive histopathologic examination on the Slc6a8-/y mouse developed by Skelton et al. Our results show that Slc6a8-/y mice have widely varying organ-specific uptake of Cr-d3, significantly diminished growth with the exception of brain, progressive vacuolar myopathy, and markedly shortened lifespan.


Subject(s)
Brain Diseases, Metabolic, Inborn/genetics , Creatine/deficiency , Mental Retardation, X-Linked/genetics , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Animals , Brain Diseases, Metabolic, Inborn/pathology , Chromatography, Liquid , Creatine/genetics , Mental Retardation, X-Linked/pathology , Mice , Mice, Knockout , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Tandem Mass Spectrometry
17.
Gene ; 768: 145260, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33164824

ABSTRACT

Correct diagnosis of children presenting with developmental delay and intellectual disability remains challenging due to the complex and heterogeneous etiology. High throughput sequencing technologies like exome sequencing have become more commonly available and are significantly improving genetic testing. We present two siblings - a 14-year old male and an 8-year old female patient - with a similar clinical phenotype that was characterized by combined developmental delay primarily affecting speech, mild to moderate intellectual disability, behavioral abnormalities, and autism spectrum disorder, but with no congenital anomalies. The sister showed additional muscular hypotonia and more pronounced dysmorphic features compared to her brother. Both parents had psychiatric disorders and mild to moderate intellectual disability. A common genetic etiology in the siblings was suspected. Metabolic, psychological and neuroradiological examinations were complemented by basic genetic testing including chromosome analysis and array comparative genomics hybridization analysis (CGH), followed by exome sequencing and combined data analysis of the family. Exome sequencing identified two different underlying genetic conditions: in the sister, a maternally inherited pathogenic variant c.1661C > T, p.Pro554Leu in SLC6A8 (NM_005629.4) was identified causing cerebral creatine deficiency syndrome 1 (MIM #300352) which was confirmed by MR spectroscopy and treated accordingly. In the brother, a paternally inherited 16p13.11 duplication was identified by exome sequencing and considered to be likely associated with his and possibly his father's phenotype. The 16p13.11 duplication had been previously identified in an array CGH but had not been prioritized due to the lack of segregation in the siblings. In conclusion, we report a case of intra-familial locus heterogeneity of developmental delay in two siblings. We advocate for the need of unbiased and comprehensive genetic testing to provide accurate diagnosis despite locus heterogeneity.


Subject(s)
Autism Spectrum Disorder/genetics , Developmental Disabilities/genetics , Intellectual Disability/genetics , Nerve Tissue Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Brain Diseases, Metabolic, Inborn/genetics , Child , Chromosomes, Human, Pair 16/genetics , Comparative Genomic Hybridization , Creatine/deficiency , Creatine/genetics , Female , Gene Duplication/genetics , Genetic Testing , Humans , Male , Mental Retardation, X-Linked/genetics , Muscle Hypotonia/genetics , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Siblings , Exome Sequencing
18.
BMJ Case Rep ; 13(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33334757

ABSTRACT

X-linked creatine transporter deficiency is caused by the deficiency of the creatine transporter encoded by the SLC6A8 gene on Xq28. We here report a 3-year-old boy with global developmental delay, autism and epilepsy. He had a normal MRI of the brain. Brain magnetic resonance spectroscopy (MRS) subsequently showed an abnormally small creatine peak. His high urine creatine/creatinine ratio further suggested the diagnosis, later confirmed by hemizygous mutation detected in the SLC6A8 gene. His mother was also heterozygous for the same mutation. Supplementation with creatine monohydrate, arginine, and glycine (precursors of creatine) and supportive therapies, resulted in modest clinical improvement after 12 months. This case highlights the importance of doing MRS for boys with global delay/intellectual disability, autism and epilepsy even with a normal MRI of the brain, to pick up a potentially treatable cause.


Subject(s)
Autistic Disorder/genetics , Brain Diseases, Metabolic, Inborn/diagnosis , Creatine/deficiency , Epilepsy/genetics , Intellectual Disability/genetics , Mental Retardation, X-Linked/diagnosis , Nerve Tissue Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Brain Diseases, Metabolic, Inborn/complications , Brain Diseases, Metabolic, Inborn/genetics , Child, Preschool , Creatine/analysis , Creatine/genetics , Creatine/metabolism , Hemizygote , Humans , Magnetic Resonance Spectroscopy , Male , Mental Retardation, X-Linked/complications , Mental Retardation, X-Linked/genetics , Mutation , Nerve Tissue Proteins/deficiency , Plasma Membrane Neurotransmitter Transport Proteins/genetics
19.
Technol Cancer Res Treat ; 19: 1533033820983029, 2020.
Article in English | MEDLINE | ID: mdl-33356959

ABSTRACT

Liver cancer is considered the sixth most commonly diagnosed cancer and the fourth leading cause of cancer-related deaths worldwide. Currently, there is no specific and effective therapy for hepatocellular carcinoma. Therefore, developing novel diagnostic and therapeutic strategies against hepatocellular carcinoma is of paramount importance. Solute carrier family 6 member 8 (SLC6A8) encodes the solute carrier family 6-8 to transport creatine into cells in a Na+ and Cl-- dependent manner. SLC6A8 deficiency is characterized by intellectual disabilities, loss of speech, and behavioral abnormalities. Of concern, the association of SLC6A8 with hepatocellular carcinoma remains elusive. In this study, we revealed that SLC6A8 knockdown significantly induced apoptosis and suppressed the migration and invasion of Hep3B and Huh-7 cells. These findings depicted the vital role of SLC6A8 in the initiation and progression of human hepatocellular carcinoma.


Subject(s)
Biomarkers, Tumor , Cell Movement/genetics , Nerve Tissue Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Apoptosis , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Proliferation , Cells, Cultured , Gene Knockdown Techniques , Gene Silencing , Humans , Neoplasm Invasiveness
20.
Pediatrics ; 146(5)2020 11.
Article in English | MEDLINE | ID: mdl-33093139

ABSTRACT

Autism spectrum disorder (ASD) is the most common disability-causing neurodevelopmental disorder in childhood. Although inborn errors of metabolism (IEM) are rare causes of ASD, they are significant for several reasons, including implications in genetic counseling and determination of prognosis. In this article, we present a 6-year-old boy who presented to us with ASD and was diagnosed with creatine transporter deficiency. Physical and neurologic examination of this patient had not previously raised suspicion of IEM, but twin pregnancy, prematurity, NICU stay due to necrotizing enterocolitis, transient infantile hypotonia, gross-motor delay, breath-holding spells, and a single febrile seizure complicated the history. MRI revealed mild T2-hyperintensity in posterior periventricular white matter. Further evaluation with magnetic resonance spectroscopy, which showed a decreased creatine peak, led to diagnostic investigations for disorders of creatine metabolism, revealing increased urinary creatine:creatinine ratio and a de novo, novel hemizygous frameshift variant in SLC6A8 Clinicians are advised to maintain a high index of suspicion for IEM and to evaluate patients with ASD for syndromic features. Although current guidelines from relevant organizations differ in their recommendations regarding the necessity and the extent of metabolic screening in ASD, there is a growing trend toward screening for treatable IEM. In this case report, we present challenges and pitfalls in the diagnostic journey for creatine transporter deficiency and underline the significance of a thorough history and physical examination in the evaluation of a child with ASD.


Subject(s)
Autism Spectrum Disorder/genetics , Brain Diseases, Metabolic, Inborn/genetics , Creatine/deficiency , Diseases in Twins/genetics , Frameshift Mutation , Mental Retardation, X-Linked/genetics , Nerve Tissue Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/drug therapy , Brain/diagnostic imaging , Brain Diseases, Metabolic, Inborn/diagnosis , Brain Diseases, Metabolic, Inborn/drug therapy , Child , Creatine/genetics , Creatinine/metabolism , Diseases in Twins/diagnosis , Diseases in Twins/drug therapy , Humans , Intellectual Disability/diagnosis , Intellectual Disability/drug therapy , Intellectual Disability/genetics , Male , Mental Retardation, X-Linked/diagnosis , Mental Retardation, X-Linked/drug therapy , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Proton Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...