Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-21527350

ABSTRACT

The detailed sterol (free sterol proportions and compositions) and phospholipid (PL) compositions (relative proportions of PL classes and subclasses and their respective fatty acid (FA) compositions) of hemocyte membranes were investigated in two bivalve mollusks: the Pacific oyster Crassostrea gigas and the Manila clam Ruditapes philippinarum. Hemocyte membrane lipids of both species revealed similar general composition: i) their free sterol/PL ratio was above 0.4 and ii) their PL were predominated by the diacyl+alkyl forms of glycerophosphatidylcholine (PC), the plasmalogen form of glycerophosphatidylethanolamine (PE) and ceramide aminoethylphosphonate (CAEP). Free sterols were predominated by cholesterol in both species. Plasmalogen forms of PE and glycerophosphatidylserine (PS) represented 82-83% and 46-55% of total PE and PS, respectively. When compared to their respective diacyl+alkyl forms, plasmalogen forms of PE and PS were specifically enriched in non-methylene-interrupted (NMI) FA and 20:1n-11, suggesting a functional significance of these PL molecular species in bivalve hemocytes. Lysoglycerophosphatidylcholine (LysoPC) levels were found to be fairly high in hemocytes, accounting for about 8% of the PL. Some species-specific features were also found. LysoPC and glycerophosphatidylinositol (PI) FA compositions differed between Ruditapes philippinarum and Crassostrea gigas. CAEP proportion was higher in R. philippinarum than in C. gigas (14.5% and 27.9% of the PL, respectively). Hemolymph cell monolayer observations and flow-cytometric analyses revealed species-specific hemocyte morphology and sub-populations which could account for some of the observed species-specific membrane lipid compositions.


Subject(s)
Bivalvia/metabolism , Cell Membrane/chemistry , Fatty Acids/analysis , Hemocytes/chemistry , Ostreidae/metabolism , Phospholipids/analysis , Aminoethylphosphonic Acid/analogs & derivatives , Aminoethylphosphonic Acid/analysis , Animals , Bivalvia/chemistry , Cell Membrane/metabolism , Ceramides/analysis , Cholesterol/analysis , Crassostrea/metabolism , Fatty Acids/classification , Hemocytes/metabolism , Hemolymph/chemistry , Hemolymph/metabolism , Phospholipids/classification , Plasmalogens/analysis , Plasmalogens/classification , Species Specificity , Sterols/analysis , Sterols/classification
2.
J Chromatogr B Analyt Technol Biomed Life Sci ; 852(1-2): 367-73, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17383243

ABSTRACT

Changes in the molecular species of lipids associated with Pex2 gene-mutation were investigated to elucidate the pathogeneses of peroxisome biogenesis disorders. Although no differences were observed in the concentrations of cholesterol and phosphatidyl choline between mutated Z65 and control CHO-K1 cells, the amounts of cholesterol esters and glycolipids in Z65 cells were twice those in CHO-K1 cells, but phosphatidyl ethanolamine (PE), particularly 1-O-octadec-1'-enyl-2-oleoyl PE, was absent in Z65 cells by FABMS. Enhanced synthesis of glycolipids in Z65 cells was associated with an abundance of lignoceric acid-containing ones, suggesting a role of glycolipids in the retention of longer saturated fatty acids.


Subject(s)
Glycolipids/metabolism , Peroxisomes/physiology , Plasmalogens/metabolism , Spectrometry, Mass, Fast Atom Bombardment/methods , Animals , CHO Cells , Chromatography, Thin Layer , Cricetinae , Cricetulus , Glycolipids/classification , Plasmalogens/classification
3.
Lipids ; 39(1): 59-66, 2004 Jan.
Article in English | MEDLINE | ID: mdl-15055236

ABSTRACT

The FA composition of glycerophospholipid (GPL) classes and subclasses was investigated in whole animals of three marine bivalve mollusks: the Japanese oyster Crassostrea gigas, the blue mussel Mytilus edulis, and the Manila clam Ruditapes philippinarum. Individual organs (gills, mantle, foot, siphon, and muscle) of the Manila clam also were examined. The PS plasmalogen (PSplsm), PE plasmalogen (PEplsm), and PC plasmalogen (PCplsm) subclasses were isolated by HPLC, and their individual FA compositions were examined using GC. Plasmalogen forms of PS and PE, when compared to their respective diacyl forms, were found to be specifically enriched with non-methylene-interrupted (NMI) FA (7,15-22:2, 7,13-22:2, and their precursors) and 20:1 n-11 FA. Such a clear specific association was not found for PCplsm. Interestingly, this trend was most apparent in PSplsm, and the above FA were found to be, respectively, the predominant PUFA and monounsaturated FA in the PSplsm isolated from the three species. This specificity was maintained in all the analyzed organs of the Manila clam but varied in proportions: The highest level of plasmalogens, NMI FA, and 20:1 n-11 was measured in gills and the lowest was in muscle. These results represent the first comprehensive report on a FA composition of the PSplsm subclass isolated from mollusks. The fact that NMI FA and 20:1 n-11, which are thought to be biosynthesized FA, were mainly associated with aminophospholipid plasmalogens (PE and PS) is likely to have a functional significance in bivalve membranes.


Subject(s)
Bivalvia/chemistry , Fatty Acids/analysis , Ostreidae/chemistry , Plasmalogens/chemistry , Shellfish/analysis , Animals , Phosphatidylcholines/chemistry , Phosphatidylcholines/classification , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/classification , Phosphatidylserines/chemistry , Phosphatidylserines/classification , Plasmalogens/classification
4.
Arch Toxicol ; 74(11): 695-701, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11218046

ABSTRACT

Astrocytes are known to play a key role in buffering extracellular pH variations and, in addition, they are particularly resistant to oxidative stress and subsequent lipid peroxidation. This great resistance may be ascribed to the presence of high concentrations of certain antioxidants, but another explanation may be the presence of a high quantity of plasmalogens, which are a special group of glycerophospholipids characterized by a vinyl ether bond instead of an ester bond in the sn-1 position of the glycerol backbone. Plasmalogens are sensitive to free radical attack and acidity, and numerous works have supported the hypothesis that they may be antioxidant molecules that protect cells from oxidative stress. The aim of this work was to investigate, on astrocytes in lactic acid-induced oxidative stress (pH 5.5), the behavior of phospholipids and, in particular, plasmalogens. Two main techniques, based on the susceptibility of the vinyl ether bond to hydrolysis, were employed in this study to measure plasmalogen levels. In both cases, the sn-1 vinyl ether linkage was cleaved using mercuric chloride, producing a lysophospholipid that was assessed by phosphorus measurement or using HCl treatment, producing a long-chain fatty aldehyde assayed by gas chromatography/mass spectrometry. On astrocytes in culture, only plasmenylethanolamine (PlmEtn) was evidenced, representing 40% of glycerophosphoethanolamine lipids. When astrocytes were incubated with lactic acid, no modification in the amount of PlmEtn was seen. Furthermore, free aldehydes and aldehydes corresponding to the quantity of intact plasmalogens were similar to those observed on controls. In addition, the constancy of two lipid peroxidation markers, thiobarbituric acid reactive substances and polyunsaturated fatty acids, was clear evidence of the resistance of these cells in lactic acid conditions. In conclusion, our results fail to demonstrate a major role of plasmalogens in the resistance of astrocytes in lactic acid-induced oxidative stress.


Subject(s)
Acidosis, Lactic/metabolism , Antioxidants/metabolism , Astrocytes/metabolism , Oxidative Stress/physiology , Plasmalogens/physiology , Acidosis, Lactic/chemically induced , Animals , Animals, Newborn , Astrocytes/drug effects , Cells, Cultured , Cerebral Cortex/cytology , Fatty Acids/analysis , Gas Chromatography-Mass Spectrometry , Lactic Acid/pharmacology , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Plasmalogens/analysis , Plasmalogens/classification , Rats , Rats, Sprague-Dawley , Thiobarbituric Acid Reactive Substances/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...