Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
1.
Parasit Vectors ; 17(1): 290, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971776

ABSTRACT

BACKGROUND: Aedes and Anopheles mosquitoes are responsible for tremendous global health burdens from their transmission of pathogens causing malaria, lymphatic filariasis, dengue, and yellow fever. Innovative vector control strategies will help to reduce the prevalence of these diseases. Mass rearing of mosquitoes for research and support of these strategies presently depends on meals of vertebrate blood, which is subject to acquisition, handling, and storage issues. Various blood-free replacements have been formulated for these mosquitoes, but none of these replacements are in wide use, and little is known about their potential impact on competence of the mosquitoes for Plasmodium infection. METHODS: Colonies of Aedes aegypti and Anopheles stephensi were continuously maintained on a blood-free replacement (SkitoSnack; SS) or bovine blood (BB) and monitored for engorgement and hatch rates. Infections of Ae. aegypti and An. stephensi were assessed with Plasmodium gallinaceum and P. falciparum, respectively. RESULTS: Replicate colonies of mosquitoes were maintained on BB or SS for 10 generations of Ae. aegypti and more than 63 generations of An. stephensi. The odds of engorgement by SS- relative to BB-maintained mosquitoes were higher for both Ae. aegypti (OR = 2.6, 95% CI 1.3-5.2) and An. stephensi (OR 2.7, 95% CI 1.4-5.5), while lower odds of hatching were found for eggs from the SS-maintained mosquitoes of both species (Ae. aegypti OR = 0.40, 95% CI 0.26-0.62; An. stephensi OR = 0.59, 95% CI 0.36-0.96). Oocyst counts were similar for P. gallinaceum infections of Ae. aegypti mosquitoes maintained on SS or BB (mean ratio = [mean on SS]/[mean on BB] = 1.11, 95% CI 0.85-1.49). Similar oocyst counts were also observed from the P. falciparum infections of SS- or BB-maintained An. stephensi (mean ratio = 0.76, 95% CI 0.44-1.37). The average counts of sporozoites/mosquito showed no evidence of reductions in the SS-maintained relative to BB-maintained mosquitoes of both species. CONCLUSIONS: Aedes aegypti and An. stephensi can be reliably maintained on SS over multiple generations and are as competent for Plasmodium infection as mosquitoes maintained on BB. Use of SS alleviates the need to acquire and preserve blood for mosquito husbandry and may support new initiatives in fundamental and applied research, including novel manipulations of midgut microbiota and factors important to the mosquito life cycle and pathogen susceptibility.


Subject(s)
Aedes , Anopheles , Mosquito Vectors , Animals , Aedes/parasitology , Aedes/physiology , Anopheles/parasitology , Anopheles/physiology , Mosquito Vectors/parasitology , Mosquito Vectors/physiology , Plasmodium gallinaceum/physiology , Plasmodium falciparum/physiology , Cattle , Female , Blood/parasitology , Feeding Behavior
2.
Sci Rep ; 11(1): 16919, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34413434

ABSTRACT

The infection of an avian malaria parasite (Plasmodium gallinaceum) in domestic chickens presents a major threat to the poultry industry because it causes economic loss in both the quality and quantity of meat and egg production. Computer-aided diagnosis has been developed to automatically identify avian malaria infections and classify the blood infection stage development. In this study, four types of deep convolutional neural networks, namely Darknet, Darknet19, Darknet19-448 and Densenet201 are used to classify P. gallinaceum blood stages. We randomly collected a dataset of 12,761 single-cell images consisting of three parasite stages from ten-infected blood films stained by Giemsa. All images were confirmed by three well-trained examiners. The study mainly compared several image classification models and used both qualitative and quantitative data for the evaluation of the proposed models. In the model-wise comparison, the four neural network models gave us high values with a mean average accuracy of at least 97%. The Darknet can reproduce a superior performance in the classification of the P. gallinaceum development stages across any other model architectures. Furthermore, the Darknet has the best performance in multiple class-wise classification, with average values of greater than 99% in accuracy, specificity, and sensitivity. It also has a low misclassification rate (< 1%) than the other three models. Therefore, the model is more suitable in the classification of P. gallinaceum blood stages. The findings could help us create a fast-screening method to help non-experts in field studies where there is a lack of specialized instruments for avian malaria diagnostics.


Subject(s)
Life Cycle Stages , Malaria, Avian/blood , Malaria, Avian/parasitology , Neural Networks, Computer , Parasites/growth & development , Plasmodium gallinaceum/growth & development , Animals , Area Under Curve , Models, Biological , ROC Curve
3.
Malar J ; 20(1): 11, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407511

ABSTRACT

BACKGROUND: The invasion of the mosquito salivary glands by Plasmodium sporozoites is a critical step that defines the success of malaria transmission and a detailed understanding of the molecules responsible for salivary gland invasion could be leveraged towards control of vector-borne pathogens. Antibodies directed against the mosquito salivary gland protein SGS1 have been shown to reduce Plasmodium gallinaceum sporozoite invasion of Aedes aegypti salivary glands, but the specific role of this protein in sporozoite invasion and in other stages of the Plasmodium life cycle remains unknown. METHODS: RNA interference and CRISPR/Cas9 were used to evaluate the role of A. aegypti SGS1 in the P. gallinaceum life cycle. RESULTS: Knockdown and knockout of SGS1 disrupted sporozoite invasion of the salivary gland. Interestingly, mosquitoes lacking SGS1 also displayed fewer oocysts. Proteomic analyses confirmed the abolishment of SGS1 in the salivary gland of SGS1 knockout mosquitoes and revealed that the C-terminus of the protein is absent in the salivary gland of control mosquitoes. In silico analyses indicated that SGS1 contains two potential internal cleavage sites and thus might generate three proteins. CONCLUSION: SGS1 facilitates, but is not essential for, invasion of A. aegypti salivary glands by P. gallinaceum and has a dual role as a facilitator of parasite development in the mosquito midgut. SGS1 could, therefore, be part of a strategy to decrease malaria transmission by the mosquito vector, for example in a transgenic mosquito that blocks its interaction with the parasite.


Subject(s)
Aedes/genetics , Insect Proteins/genetics , Plasmodium gallinaceum/physiology , Salivary Proteins and Peptides/genetics , Aedes/parasitology , Amino Acid Sequence , Animals , Female , Gastrointestinal Tract/parasitology , Insect Proteins/chemistry , Insect Proteins/metabolism , Mosquito Vectors/genetics , Mosquito Vectors/parasitology , Salivary Glands/parasitology , Salivary Proteins and Peptides/chemistry , Salivary Proteins and Peptides/metabolism , Sequence Alignment , Sporozoites/physiology
4.
J Pept Sci ; 27(4): e3296, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33442881

ABSTRACT

VmCT1, a linear helical antimicrobial peptide isolated from the venom of the scorpion Vaejovis mexicanus, displays broad spectrum antimicrobial activity against bacteria, fungi, and protozoa. Analogs derived from this peptide containing single Arg-substitutions have been shown to increase antimicrobial and antiparasitic activities against Trypanossoma cruzi. Here, we tested these analogs against malaria, an infectious disease caused by Plasmodium protozoa, and assessed their antitumoral properties. Specifically, we tested VmCT1 synthetic variants [Arg]3 -VmCT1-NH2 , [Arg]7 -VmCT1-NH2 , and [Arg]11 -VmCT1-NH2 , against Plasmodium gallinaceum sporozoites and MCF-7 mammary cancer cells. Our screen identified peptides [Arg]3 -VmCT1-NH2 and [Arg]7 -VmCT1-NH2 as potent antiplasmodial agents (IC50 of 0.57 and 0.51 µmol L-1 , respectively), whereas [Arg]11 -VmCT1-NH2 did not show activity against P. gallinaceum sporozoites. Interestingly, all peptides presented activity against MCF-7 and displayed lower cytotoxicity toward healthy cells. We demonstrate that increasing the net positive charge of VmCT1, through arginine substitutions, modulates the biological properties of this peptide family yielding novel antiplasmodial and antitumoral molecules.


Subject(s)
Antimalarials/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Antineoplastic Agents/pharmacology , Malaria/drug therapy , Plasmodium gallinaceum/drug effects , Scorpion Venoms/pharmacology , Animals , Antimalarials/chemistry , Antimalarials/isolation & purification , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/isolation & purification , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Parasitic Sensitivity Tests , Scorpion Venoms/chemistry , Scorpion Venoms/isolation & purification , Scorpions
5.
Front Cell Infect Microbiol ; 10: 615343, 2020.
Article in English | MEDLINE | ID: mdl-33489941

ABSTRACT

Malaria parasites are transmitted by Anopheles mosquitoes. During its life cycle in the mosquito vector the Plasmodium ookinete escapes the proteolytic milieu of the post-blood meal midgut by traversing the midgut wall. This process requires penetration of the chitin-containing peritrophic matrix lining the midgut epithelium, which depends in part on ookinete-secreted chitinases. Plasmodium falciparum ookinetes have one chitinase (PfCHT1), whereas ookinetes of the avian-infecting parasite, P. gallinaceum, have two, a long and a short form, PgCHT1 and PgCHT2, respectively. Published data indicates that PgCHT2 forms a high molecular weight (HMW) reduction-sensitive complex; and one binding partner is the ookinete-produced von Willebrand A-domain-containing protein, WARP. Size exclusion chromatography data reported here show that P. gallinaceum PgCHT2 and its ortholog, P. falciparum PfCHT1 are covalently-linked components of a HMW chitinase-containing complex (> 1,300 kDa). Mass spectrometry of ookinete-secreted proteins isolated using a new chitin bead pull-down method identified chitinase-associated proteins in P. falciparum and P. gallinaceum ookinete-conditioned culture media. Mass spectrometry of this complex showed the presence of several micronemal proteins including von Willebrand factor A domain-related protein (WARP), ookinete surface enolase, and secreted ookinete adhesive protein (SOAP). To test the hypothesis that ookinete-produced PfCHT1 can form a high molecular homo-multimer or, alternatively, interacts with P. berghei ookinete-produced proteins to produce an HMW hetero-multimer, we created chimeric P. berghei parasites expressing PfCHT1 to replace PbCHT1, enabling the production of large numbers of PfCHT1-expressing ookinetes. We show that chimeric P. berghei ookinetes express monomeric PfCHT1, but a HMW complex containing PfCHT1 is not present. A better understanding of the chitinase-containing HMW complex may enhance development of next-generation vaccines or drugs that target malaria transmission stages.


Subject(s)
Anopheles , Chitinases , Plasmodium gallinaceum , Plasmodium , Animals , Chitinases/genetics , Plasmodium falciparum/genetics
6.
Microb Genom ; 4(2)2018 02.
Article in English | MEDLINE | ID: mdl-29360019

ABSTRACT

The genomic architecture of organisms, including nucleotide composition, can be highly variable, even among closely-related species. To better understand the causes leading to structural variation in genomes, information on distinct and diverse genomic features is needed. Malaria parasites are known for encompassing a wide range of genomic GC-content and it has long been thought that Plasmodium falciparum, the virulent malaria parasite of humans, has the most AT-biased eukaryotic genome. Here, I perform comparative genomic analyses of the most AT-rich eukaryotes sequenced to date, and show that the avian malaria parasites Plasmodium gallinaceum, P. ashfordi, and P. relictum have the most extreme coding sequences in terms of AT-bias. Their mean GC-content is 21.21, 21.22 and 21.60 %, respectively, which is considerably lower than the transcriptome of P. falciparum (23.79 %) and other eukaryotes. This information enables a better understanding of genome evolution and raises the question of how certain organisms are able to prosper despite severe compositional constraints.


Subject(s)
Base Composition , Birds/parasitology , Eukaryota/genetics , Genome, Protozoan , Plasmodium/genetics , Animals , Base Sequence , Evolution, Molecular , Humans , Malaria, Avian , Malaria, Falciparum/veterinary , Plasmodium/classification , Plasmodium falciparum/genetics , Plasmodium gallinaceum
7.
Am J Trop Med Hyg ; 98(1): 88-94, 2018 01.
Article in English | MEDLINE | ID: mdl-29141762

ABSTRACT

We evaluated the therapeutic efficacy of artemether-lumefantrine (AL) fixed-dose combination to treat uncomplicated Plasmodium falciparum malaria in Cruzeiro do Sul, Acre State, in the Amazon region of Brazil. Between December 2015 and May 2016, we enrolled 79 patients, 5-79 years old with fever or history of fever in the previous 48 hours and P. falciparum monoinfection confirmed by microscopy. Attempts were made to provide direct observation or phone reminders for all six doses of AL, and patients were followed-up for 28 days. AL was well tolerated, with no adverse events causing treatment interruption. All but one of the 74 patients who completed the 28-day follow-up had an adequate clinical and parasitologic response = 98.6% (95% CI: 93.2-100%). We could not amplify the one isolate of the case with recurrent infection to differentiate between recrudescence and reinfection. Five (6.3%) patients demonstrated persistent asexual parasitemia on Day 3, but none met definition for early treatment failure. We found no mutations in selected kelch13 gene domains, known to be associated with artemisinin resistance in P. falciparum isolates from Day 0. These results strongly support the continued use of AL as a first-line therapy for uncomplicated P. falciparum malaria in Acre. Routine monitoring of in vivo drug efficacy coupled with molecular surveillance of drug resistance markers remains critical.


Subject(s)
Artemether, Lumefantrine Drug Combination/therapeutic use , Malaria, Falciparum/drug therapy , Plasmodium gallinaceum/drug effects , Adolescent , Adult , Aged , Brazil/epidemiology , Child , Child, Preschool , Female , Humans , Malaria, Falciparum/epidemiology , Male , Middle Aged , Treatment Outcome , Young Adult
8.
Sci Rep ; 7(1): 14326, 2017 10 30.
Article in English | MEDLINE | ID: mdl-29085013

ABSTRACT

Angiotensin II (Ang II) is a natural mammalian hormone that has been described to exhibit antiplasmodial activity therefore constituting a promising alternative for the treatment of malaria. Despite its promise, the development of Ang II as an antimalarial is limited by its potent induction of vasoconstriction and its rapid degradation within minutes. Here, we used peptide design to perform targeted chemical modifications to Ang II to generate conformationally restricted (disulfide-crosslinked) peptide derivatives with suppressed vasoconstrictor activity and increased stability. Designed constrained peptides were synthesized chemically and then tested for antiplasmodial activity. Two lead constrained peptides were identified (i.e., peptides 1 and 2), each composed of 10 amino acid residues. These peptides exhibited very promising activity in both our Plasmodium gallinaceum (>80%) and Plasmodium falciparum (>40%) models, an activity that was equivalent to that of Ang II, and led to complete suppression of vasoconstriction. In addition, peptide 5 exhibited selective activity towards the pre-erythrocytic stage (98% of activity against P. gallinaceum), thus suggesting that it may be possible to design peptides that target specific stages of the malaria life cycle. The Ang II derived stable scaffolds presented here may provide the basis for development of a new generation of peptide-based drugs for the treatment of malaria.


Subject(s)
Angiotensin II/metabolism , Antimalarials/metabolism , Erythrocytes/physiology , Malaria, Falciparum/metabolism , Peptides/metabolism , Plasmodium falciparum/physiology , Plasmodium gallinaceum/physiology , Vasodilator Agents/metabolism , Angiotensin II/therapeutic use , Animals , Antimalarials/therapeutic use , Chemical Engineering , Drug Design , Erythrocytes/drug effects , Humans , Life Cycle Stages , Malaria, Falciparum/drug therapy , Peptides/chemical synthesis , Peptides/therapeutic use , Vasoconstriction/drug effects , Vasodilator Agents/chemical synthesis , Vasodilator Agents/therapeutic use
9.
Vet Parasitol ; 241: 20-25, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28579025

ABSTRACT

Avian malaria caused by Plasmodium gallinaceum is an important mosquito-borne disease. Eradication of this disease remains problematic since its competent vectors are diverse and widely distributed across the globe. Several mosquito species were implicated as competent vectors for this parasite. However, studies on vector competence for P. gallinaceum remain limited. In this study, vector competence in the two most predominant mosquito vectors in tropical countries, Aedes albopictus and Ae. aegypti, was compared. In order to determine their infection rates, Ae. albopictus (>F10), Ae. aegypti (>F10), and Ae. aegypti ( F10) and Ae. aegypti (> F10) and 40-60% by infected Ae. aegypti (F10) and Ae. aegypti (>F10) were highly competent vectors for P. gallinaceum infections. These mosquitoes play a crucial role in the transmission cycle of this parasite in nature.


Subject(s)
Aedes/parasitology , Insect Vectors/parasitology , Plasmodium gallinaceum/physiology , Animals , Female , Host-Parasite Interactions
10.
Malar J ; 16(1): 110, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28279180

ABSTRACT

BACKGROUND: Primaquine is an anti-malarial used to prevent Plasmodium vivax relapses and malaria transmission. However, PQ metabolites cause haemolysis in patients deficient in the enzyme glucose-6-phosphate dehydrogenase (G6PD). Fifteen PQ-thiazolidinone derivatives, synthesized through one-post reactions from primaquine, arenealdehydes and mercaptoacetic acid, were evaluated in parallel in several biological assays, including ability to block malaria transmission to mosquitoes. RESULTS: All primaquine derivatives (PQ-TZs) exhibited lower cell toxicity than primaquine; none caused haemolysis to normal or G6PD-deficient human erythrocytes in vitro. Sera from mice pretreated with the test compounds thus assumed to have drug metabolites, caused no in vitro haemolysis of human erythrocytes, whereas sera from mice pretreated with primaquine did cause haemolysis. The ability of the PQ-TZs to block malaria transmission was evaluated based on the oocyst production and percentage of mosquitoes infected after a blood meal in drug pre-treated animals with experimental malaria caused by either Plasmodium gallinaceum or Plasmodium berghei; four and five PQ-TZs significantly inhibited sporogony in avian and in rodent malaria, respectively. Selected PQ-TZs were tested for their inhibitory activity on P. berghei liver stage development, in mice and in vitro, one compound (4m) caused a 3-day delay in the malaria pre-patent period. CONCLUSIONS: The compound 4m was the most promising, blocking malaria transmissions and reducing the number of exoerythrocytic forms of P. berghei (EEFs) in hepatoma cells in vitro and in mice in vivo. The same compound also caused a 3-day delay in the malaria pre-patent period.


Subject(s)
Erythrocytes/parasitology , Glucosephosphate Dehydrogenase/metabolism , Malaria/drug therapy , Plasmodium berghei/drug effects , Plasmodium gallinaceum/drug effects , Primaquine/analogs & derivatives , Primaquine/pharmacology , Animals , Cell Line, Tumor , Chickens , Chlorocebus aethiops , Erythrocytes/drug effects , Hemolysis/drug effects , Hep G2 Cells , Humans , Malaria/transmission , Malaria, Avian/drug therapy , Malaria, Avian/transmission , Mice , Plasmodium berghei/growth & development , Plasmodium gallinaceum/growth & development
11.
Vet Parasitol ; 233: 97-106, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-28043395

ABSTRACT

Clinical manifestations of malaria infection in vertebrate hosts arise from the multiplication of the asexual stage parasites in the blood, while the gametocytes are responsible for the transmission of the disease. Antimalarial drugs that target the blood stage parasites and transmissible gametocytes are rare, but are essentially needed for the effective control of malaria and for limiting the spread of resistance. Artemisinin and its derivatives are the current first-line antimalarials that are effective against the blood stage parasites and gametocytes, but resistance to artemisinin has now emerged and spread in various malaria endemic areas. Therefore, a novel antimalarial drug, or a new drug combination, is critically needed to overcome this problem. The objectives of this study were to evaluate the efficacy of a relatively new antimalarial compound, tafenoquine (TQ), and a combination of TQ and a low dose of artesunate (ATN) on the in vivo blood stage multiplication, gametocyte development and transmission of the avian malaria parasite Plasmodium gallinaceum to the vector Aedes aegypti. The results showed that a 5-d treatment with TQ alone was unable to clear the blood stage parasites, but was capable of reducing the mortality rate, while TQ monotherapy at a high dose of 30mg/kg was highly effective against the gametocytes and completely blocked the transmission of P. gallinaceum. In addition, the combination therapy of TQ+ATN completely cleared P. gallinaceum blood stages and sped up the gametocyte clearance from chickens, suggesting the synergistic effect of the two drugs. In conclusion, TQ is demonstrated to be effective for limiting avian malaria transmission and may be used in combination with a low dose of ATN for safe and effective treatment.


Subject(s)
Aminoquinolines/therapeutic use , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Malaria, Avian/drug therapy , Aminoquinolines/pharmacology , Animals , Antimalarials/pharmacology , Artemisinins/pharmacology , Artesunate , Drug Combinations , Drug Resistance , Drug Synergism , Insect Vectors/parasitology , Life Cycle Stages/drug effects , Malaria, Avian/transmission , Plasmodium gallinaceum/drug effects , Plasmodium gallinaceum/growth & development , Plasmodium gallinaceum/parasitology
12.
PLoS Negl Trop Dis ; 10(11): e0005158, 2016 11.
Article in English | MEDLINE | ID: mdl-27893736

ABSTRACT

The pathogen interference phenotype greatly restricts infection with dengue virus (DENV) and other pathogens in Wolbachia-infected Aedes aegypti, and is a vital component of Wolbachia-based mosquito control. Critically, the phenotype's causal mechanism is complex and poorly understood, with recent evidence suggesting that the cause may be species specific. To better understand this important phenotype, we investigated the role of diet-induced nutritional stress on interference against DENV and the avian malarial parasite Plasmodium gallinaceum in Wolbachia-infected Ae. aegypti, and on physiological processes linked to the phenotype. Wolbachia-infected mosquitoes were fed one of four different concentrations of sucrose, and then challenged with either P. gallinaceum or DENV. Interference against P. gallinaceum was significantly weakened by the change in diet however there was no effect on DENV interference. Immune gene expression and H2O2 levels have previously been linked to pathogen interference. These traits were assayed for mosquitoes on each diet using RT-qPCR and the Amplex Red Hydrogen Peroxide/Peroxidase Assay Kit, and it was observed that the change in diet did not significantly affect immune expression, but low carbohydrate levels led to a loss of ROS induction in Wolbachia-infected mosquitoes. Our data suggest that host nutrition may not influence DENV interference for Wolbachia-infected mosquitoes, but Plasmodium interference may be linked to both nutrition and oxidative stress. This pathogen-specific response to nutritional change highlights the complex nature of interactions between Wolbachia and pathogens in mosquitoes.


Subject(s)
Aedes/microbiology , Aedes/physiology , Insect Vectors/microbiology , Insect Vectors/physiology , Wolbachia/physiology , Aedes/parasitology , Aedes/virology , Animals , Dengue Virus/physiology , Feeding Behavior , Female , Insect Vectors/parasitology , Insect Vectors/virology , Male , Pest Control, Biological , Plasmodium gallinaceum/physiology , Stress, Physiological
13.
Malar J ; 15: 153, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26964736

ABSTRACT

BACKGROUND: The circumsporozoite protein is the most abundant polypeptide expressed by sporozoites, the malaria parasite stage capable of infecting humans. Sporozoite invasion of mosquito salivary glands prior to transmission is likely mediated by a receptor/ligand-like interaction of the parasites with the target tissues, and the amino (NH2)-terminal portion of CSP is involved in this interaction but not the TSR region on the carboxyl (C)-terminus. Peptides based on the NH2-terminal domain could compete with the parasites for the salivary gland receptors and thus inhibit penetration. METHODS: Peptides based on the NH2-terminus and TSR domains of the CSP from avian or human malaria parasites, Plasmodium gallinaceum and Plasmodium falciparum, respectively, were expressed endogenously in mosquito haemolymph using a transient (Sindbis virus-mediated) or stable (piggyBac-mediated transgenesis) system. RESULTS: Transient endogenous expression of partial NH2-terminus peptide from P. falciparum CSP in P. gallinaceum-infected Aedes aegypti resulted in a reduced number of sporozoites in the salivary glands. When a transgenic approach was used to express a partial CSP NH2-terminal domain from P. gallinaceum the number of sporozoites in the salivary glands did not show a difference when compared to controls. However, a significant difference could be observed when mosquitoes with a lower infection were analysed. The same result could not be observed with mosquitoes endogenously expressing peptides based on the TSR domain from either P. gallinaceum or P. falciparum. CONCLUSION: These results support the conclusion that CSP partial NH2-terminal domain can be endogenously expressed to promote a competition for the receptor used by sporozoites to invade salivary glands, and they could be used to block this interaction and reduce parasite transmission. The same effect cannot be obtained with peptides based on the TSR domain.


Subject(s)
Aedes/parasitology , Cell Adhesion , Plasmodium falciparum/physiology , Plasmodium gallinaceum/physiology , Protozoan Proteins/metabolism , Sporozoites/physiology , Aedes/genetics , Animals , Female , Gene Expression , Protozoan Proteins/genetics , Salivary Glands/parasitology , Transgenes
14.
J Pept Sci ; 22(3): 132-42, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26856687

ABSTRACT

Malaria is an infectious disease responsible for approximately one million deaths annually. Oligopeptides such as angiotensin II (AII) and its analogs are known to have antimalarial effects against Plasmodium gallinaceum and Plasmodium falciparum. However, their mechanism of action is still not fully understood at the molecular level. In the work reported here, we investigated this issue by comparing the antimalarial activity of AII with that of (i) its diastereomer formed by only d-amino acids; (ii) its isomer with reversed sequence; and (iii) its analogs restricted by lactam bridges, the so-called VC5 peptides. Data from fluorescence spectroscopy indicated that the antiplasmodial activities of both all-D-AII and all-D-VC5 were as high as those of the related peptides AII and VC5, respectively. In contrast, retro-AII had no significant effect against P. gallinaceum. Conformational analysis by circular dichroism suggested that AII and its active analogs usually adopted a ß-turn conformation in different solutions. In the presence of membrane-mimetic micelles, AII had also a ß-turn conformation, while retro-AII was random. Molecular dynamics simulations demonstrated that the AII chains were slightly more bent than retro-AII at the surface of a model membrane. At the hydrophobic membrane interior, however, the retro-AII chain was severely coiled and rigid. AII was much more flexible and able to experience both straight and coiled conformations. We took it as an indication of the stronger ability of AII to interact with membrane headgroups and promote pore formation.


Subject(s)
Angiotensin II/pharmacology , Antimalarials/pharmacology , Cell Membrane/drug effects , Peptides/pharmacology , Plasmodium gallinaceum/drug effects , Sporozoites/drug effects , Aedes/parasitology , Amino Acid Sequence , Angiotensin II/analogs & derivatives , Angiotensin II/chemical synthesis , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Chickens , Malaria, Avian/drug therapy , Malaria, Avian/parasitology , Mice , Micelles , Models, Molecular , Molecular Dynamics Simulation , Molecular Sequence Data , Muscle Contraction/drug effects , Peptides/chemical synthesis , Peptides/chemistry , Plasmodium gallinaceum/growth & development , Plasmodium gallinaceum/metabolism , Salivary Glands/parasitology , Solid-Phase Synthesis Techniques , Stereoisomerism , Structure-Activity Relationship
15.
Malar J ; 14: 433, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26537730

ABSTRACT

BACKGROUND: Antiplasmodial activities of angiotensin II and its analogues have been extensively investigated in Plasmodium gallinaceum and Plasmodium falciparum parasite species. Due to its vasoconstrictor property angiotensin II cannot be used as an anti-malarial drug. METHODS: This work presents the solid-phase syntheses and liquid chromatography and mass spectrometry characterization of ten linear peptides related to angiotensin II against mature P. gallinaceum sporozoites and erythrocyte invasion by P. falciparum. Conformational analyses were performed by circular dichroism. IC50 assays were performed to identify the ideal concentration used on the biological tests and haemolytical erythrocytic assays were made to verify the viability of the biological experiments. The contractile responses of the analogues were made to evaluate if they are promising candidates to be applied as antiplasmodial drugs. RESULTS: The results indicate two short-peptides constituted by hydrophobic residues (5 and 6) with antiplasmodial activity in these models, 89 and 94 % of biological activity against P. gallinaceum sporozoite, respectively, and around 50 % of activity against P. falciparum. Circular dichroism spectra suggested that all the peptides adopted ß-turn conformation in different solutions, except peptide 3. Besides the biological assays IC50, the haemolysis assays and contractile response activities were applied for peptides 5 and 6, which did not present expressive results. CONCLUSIONS: The hydrophobic portion and the arginine, tyrosine, proline, and phenylalanine, when present on peptide primary sequence, tend to increase the antiplasmodial activity. This class of peptides can be explored, as anti-malarial drugs, after in vivo model tests. Graphical abstract: The most active peptide presented 94 % activity on P. gallinaceum sporozoites and 53 % inhibited P. falciparum ring forms invasion.


Subject(s)
Angiotensin II/analogs & derivatives , Angiotensin II/pharmacology , Antimalarials/pharmacology , Biological Products/pharmacology , Peptides/pharmacology , Plasmodium falciparum/drug effects , Plasmodium gallinaceum/drug effects , Aedes/parasitology , Angiotensin II/adverse effects , Animals , Antimalarials/adverse effects , Antimalarials/chemical synthesis , Biological Products/chemical synthesis , Chickens/parasitology , Chromatography, Liquid , Erythrocytes/parasitology , Hemolysis , Inhibitory Concentration 50 , Mass Spectrometry , Mice, Inbred C57BL , Microbial Sensitivity Tests , Muscle Contraction/drug effects , Peptides/chemical synthesis , Stomach/drug effects
16.
Malar J ; 14: 296, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26243218

ABSTRACT

BACKGROUND: Malaria parasites that infect birds can have narrow or broad host-tropisms. These differences in host specificity make avian malaria a useful model for studying the evolution and transmission of parasite assemblages across geographic ranges. The molecular mechanisms involved in host-specificity and the biology of avian malaria parasites in general are important aspects of malaria pathogenesis that warrant further examination. Here, the transcriptome of the malaria parasite Plasmodium gallinaceum was characterized to investigate the biology and the conservation of genes across various malaria parasite species. METHODS: The P. gallinaceum transcriptome was annotated and KEGG pathway mapping was performed. The ripr gene and orthologous genes that play critical roles in the purine salvage pathway were identified and characterized using bioinformatics and phylogenetic methods. RESULTS: Analysis of the transcriptome sequence database identified essential genes of the purine salvage pathway in P. gallinaceum that shared high sequence similarity to Plasmodium falciparum when compared to other mammalian Plasmodium spp. However, based on the current sequence data, there was a lack of orthologous genes that belonged to the erythrocyte-binding-like (EBL) and reticulocyte-binding-like homologue (RH) family in P. gallinaceum. In addition, an orthologue of the Rh5 interacting protein (ripr) was identified. CONCLUSIONS: These findings suggest that the pathways involved in parasite red blood cell invasion are significantly different in avian Plasmodium parasites, but critical metabolic pathways are conserved throughout divergent Plasmodium taxa.


Subject(s)
Malaria, Avian/parasitology , Plasmodium gallinaceum/genetics , Plasmodium gallinaceum/metabolism , Protozoan Proteins/genetics , Transcriptome/genetics , Amino Acid Sequence , Animals , Chickens , Erythrocytes/parasitology , Gene Expression Profiling , Molecular Sequence Data , Phylogeny , Protozoan Proteins/analysis , Protozoan Proteins/metabolism , Sequence Alignment
17.
Bioorg Med Chem Lett ; 25(16): 3311-3, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26077496

ABSTRACT

To find effective new candidate antimalarial drugs, bradykinin and its analogs were synthesized and tested for effectiveness against Plasmodium gallinaceum sporozoites and Plasmodium falciparum on erythrocytes. Among them, bradykinin and its P2 analog presented high activity against Plasmodium gallinaceum, but they degrade in plasma. On the other hand, RI-BbKI did not degrade and reached high activity. No analog was active against Plasmodium falciparum.


Subject(s)
Antimalarials/pharmacology , Bradykinin/pharmacology , Peptides/pharmacology , Plasmodium falciparum/drug effects , Plasmodium gallinaceum/drug effects , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Bradykinin/chemistry , Bradykinin/genetics , Humans , Peptides/chemical synthesis , Peptides/chemistry , Peptides/genetics , Sporozoites/drug effects
18.
Vet Parasitol ; 210(1-2): 1-9, 2015 May 30.
Article in English | MEDLINE | ID: mdl-25868848

ABSTRACT

Avian malaria is one of the most common veterinary problems in Southeast Asia. The standard molecular method for detection of the avian malaria parasite involves the phenol-chloroform extraction of parasite genomic (g)DNA followed by the amplification of parasite gDNA using polymerase chain reaction (PCR). However, the phenol-chloroform extraction method is time-consuming and requires large amounts of samples and toxic organic solvents, thereby limiting its applications for parasite detection in the field. This study aimed to compare the performance of chelex-100 resin and phenol/chloroform extraction methods for the extraction of Plasmodium gallinaceum gDNA from whole avian blood that had been dried on filter papers (a common field sampling method). The specificity and sensitivity of PCR assays for P. gallinaceum cytochrome B (cytb) and cytochrome oxidase subunit I (coxI) gene fragments (544 and 588bp, respectively) were determined, and found to be more sensitive with gDNA extracted by the chelex-100 resin method than with the phenol/chloroform method. These PCR assays were also performed to detect P. gallinaceum in 29 blood samples dried on filter papers from domestic chickens in a malaria endemic area, where the reliable identification of seven field isolates of P. gallinaceum was obtained with an accuracy of 100%. The analysis of cytb and coxI gene nucleotide sequences revealed the existence of at least two genetically distinct populations of P. gallinaceum in Thailand, both of which differed from the reference strain 8A of P. gallinaceum. In conclusion, the chelex-100 resin extraction method is a simple and sensitive method for isolating gDNA from whole avian blood dried on filter paper. Genomic DNA extracted by the chelex method could subsequently be applied for the PCR-based detection of P. gallinaceum and DNA sequencing. Our PCR assays provide a reliable diagnostic tool for molecular epidemiological studies of P. gallinaceum infections in domestic chickens and wild birds.


Subject(s)
DNA, Protozoan/genetics , Malaria, Avian/parasitology , Plasmodium gallinaceum/isolation & purification , Amino Acid Sequence , Animals , Animals, Wild , Birds , Chickens , Female , Gene Expression Regulation , Malaria, Avian/diagnosis , Malaria, Avian/epidemiology , Molecular Sequence Data , Plasmodium gallinaceum/genetics , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/veterinary , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Protozoan Proteins/metabolism , Thailand/epidemiology
19.
Exp Parasitol ; 153: 1-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25720804

ABSTRACT

The anti-plasmodium activity of angiotensin II and its analogs have been described in different plasmodium species. Here we synthesized angiotensin II Ala-scan analogs to verify peptide-parasite invasion preservation with residue replacements. The analogs were synthesized by 9-fluorenylmethoxycarbonyl (Fmoc) and tert-butyloxycarbonyl (t-Boc) solid phase methods, purified by liquid chromatography and characterized by mass spectrometry. The results obtained in Plasmodium falciparum assays indicated that all analogs presented some influence in parasite invasion, except [Ala(4)]-Ang II (18% of anti-plasmodium activity) that was not statistically different from control. Although [Ala(8)]-Ang II presented a lower biological activity (20%), it was statistically different from control. The most relevant finding was that [Ala(5)]-Ang II preserved activity (45%) relative to Ang II (47%). In the results of Plasmodium gallinaceum assays all analogs were not statistically different from control, except [Ala(6)]-Ang II, which was able to reduce the parasitemia about 49%. This approach provides insight for understanding the importance of each amino acid on the native Ang II sequence and provides a new direction for the design of potential chemotherapeutic agents without pressor activity.


Subject(s)
Angiotensin II/pharmacology , Antimalarials/pharmacology , Erythrocytes/parasitology , Malaria/parasitology , Plasmodium falciparum/drug effects , Plasmodium gallinaceum/drug effects , Angiotensin II/analogs & derivatives , Angiotensin II/chemical synthesis , Antimalarials/chemical synthesis , Antimalarials/chemistry , Humans , Malaria/drug therapy , Peptides/chemical synthesis , Peptides/chemistry , Peptides/pharmacology , Plasmodium falciparum/physiology , Plasmodium gallinaceum/physiology
20.
Vet Parasitol ; 207(1-2): 161-5, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25466617

ABSTRACT

In the absence of vaccines, chemotherapy is an effective and economical way for controlling malaria. Development of anti-malarial drugs that target pathogenic blood stage parasites and gametocytes is preferable for the treatment as it can alleviate the host's morbidity and mortality and block transmission of the Plasmodium parasite. Recently, our laboratory has developed an in vivo transmission blocking assay that involves administration of 7 consecutive daily doses of a test compound into domestic chickens (Gallus gallus domesticus) infected with the avian malaria parasite Plasmodium gallinaceum with 10% parasitaemia and 1% gametocytaemia. To compromise the cost and time for artesunate (ATN) treatment, this study aimed to investigate effects of a 5-day consecutive administration of 10 milligrams per kilogram (mg/kg) ATN on P. gallinaceum infection in chickens and transmission to two natural vectors, Aedes aegypti and Culex quinquefasciatus. Our study showed that the treatment with 10 mg/kg ATN for 7 days, but not 5 days, completely eliminated blood stage infections, prevented recrudescence and blocked gametocyte production and transmission of P. gallinaceum to its vectors, thereby confirming the potent schizontocidal and gametocytocidal activities of ATN. This regimen should be further evaluated in field trials.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Chickens/parasitology , Insect Vectors/parasitology , Malaria, Avian/transmission , Plasmodium gallinaceum/drug effects , Aedes/parasitology , Animals , Antimalarials/administration & dosage , Antimalarials/pharmacology , Artemisinins/administration & dosage , Artemisinins/pharmacology , Artesunate , Culex/parasitology , Female , Malaria, Avian/drug therapy , Parasitemia/veterinary , Plasmodium gallinaceum/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...