Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 298
Filter
1.
Signal Transduct Target Ther ; 9(1): 110, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724491

ABSTRACT

Previous studies have shown that low platelet count combined with high plasma total homocysteine (tHcy) increased stroke risk and can be lowered by 73% with folic acid. However, the combined role of other platelet activation parameters and the methylenetetrahydrofolate reductase (MTHFR) C677T genotypes on stroke risk and folic acid treatment benefit remain to be examined. This study aimed to investigate if platelet activation parameters and MTHFR genotypes jointly impact folic acid treatment efficacy in first stroke prevention. Data were derived from the China Stroke Primary Prevention Trial. This study includes a total of 11,185 adult hypertensive patients with relevant platelet activation parameters and MTHFR genotype data. When simultaneously considering both platelet activation parameters (plateletcrit, platelet count, mean platelet volume, platelet distribution width) and MTHFR genotypes, patients with both low plateletcrit (Q1) and the TT genotype had the highest stroke incidence rate (5.6%) in the enalapril group. This subgroup significantly benefited from folic acid treatment, with a 66% reduction in first stroke (HR: 0.34; 95% CI: 0.14-0.82; p = 0.016). Consistently, the subgroup with low plateletcrit (Q1) and the CC/CT genotype also benefited from folic acid treatment (HR: 0.40; 95% CI: 0.23-0.70; p = 0.001). In Chinese hypertensive adults, low plateletcrit can identify those who may greatly benefit from folic acid treatment, in particular, those with the TT genotype, a subpopulation known to have the highest stroke risk.


Subject(s)
Folic Acid , Genotype , Methylenetetrahydrofolate Reductase (NADPH2) , Stroke , Humans , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Folic Acid/administration & dosage , Folic Acid/genetics , Stroke/genetics , Stroke/prevention & control , Male , Female , Middle Aged , Aged , Hypertension/genetics , Platelet Activation/genetics , Platelet Activation/drug effects , China/epidemiology , Blood Platelets/metabolism , Blood Platelets/drug effects , Platelet Count , Adult
2.
BMC Vet Res ; 19(1): 271, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38087280

ABSTRACT

BACKGROUND: Peripheral blood carries a reservoir of mRNAs that regulate cardiac structure and function potential. Although it is well recognized that the typical symptoms of Myxomatous Mitral Valve Disease (MMVD) stage B2 are long-standing hemodynamic disorder and cardiac structure remodeling caused by mitral regurgitation, the transcriptomic alterations in blood from such dogs are not understood. RESULTS: In the present study, comparative high-throughput transcriptomic profiling of blood was performed from normal control (NC) and naturally-occurring MMVD stage B2 (MMVD) dogs. Using Weighted Gene Co-expression Network Analyses (WGCNA), Gene Ontology (GO), and Kyoto Encyclopedia of Gene and Genomes (KEGG), we identified that the turquoise module was the most highly correlated with echocardiographic features and found 64 differentially expressed genes (DEGs) that were significantly enriched in platelet activation related pathways. Therefore, from the turquoise module, we selected five DEGs (MDM2, ROCK1, RIPK1, SNAP23, and ARHGAP35) that, according to real-time qPCR, exhibited significant enrichment in platelet activation related pathways for validation. The results showed that the blood transcriptional abundance of MDM2, ROCK1, RIPK1, and SNAP23 differed significantly (P < 0.01) between NC and MMVD dogs. On the other hand, Correlation Analysis revealed that MDM2, ROCK1, RIPK1, and SNAP23 genes negatively regulated the heart structure parameters, and followed the same trend as observed in WGCNA. CONCLUSION: We screened four platelet activation related genes, MDM2, ROCK1, RIPK1, and SNAP23, which may be considered as the candidate biomarkers for the diagnosis of MMVD stage B2. These findings provided new insights into MMVD pathogenesis.


Subject(s)
Dog Diseases , Heart Valve Diseases , Mitral Valve Insufficiency , Dogs , Animals , Mitral Valve/pathology , Heart Valve Diseases/genetics , Heart Valve Diseases/veterinary , Mitral Valve Insufficiency/genetics , Mitral Valve Insufficiency/veterinary , Platelet Activation/genetics , Echocardiography/veterinary
3.
Int J Mol Sci ; 24(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37108819

ABSTRACT

It is currently believed that plaque complication, with the consequent superimposed thrombosis, is a key factor in the clinical occurrence of acute coronary syndromes (ACSs). Platelets are major players in this process. Despite the considerable progress made by the new antithrombotic strategies (P2Y12 receptor inhibitors, new oral anticoagulants, thrombin direct inhibitors, etc.) in terms of a reduction in major cardiovascular events, a significant number of patients with previous ACSs treated with these drugs continue to experience events, indicating that the mechanisms of platelet remain largely unknown. In the last decade, our knowledge of platelet pathophysiology has improved. It has been reported that, in response to physiological and pathological stimuli, platelet activation is accompanied by de novo protein synthesis, through a rapid and particularly well-regulated translation of resident mRNAs of megakaryocytic derivation. Although the platelets are anucleate, they indeed contain an important fraction of mRNAs that can be quickly used for protein synthesis following their activation. A better understanding of the pathophysiology of platelet activation and the interaction with the main cellular components of the vascular wall will open up new perspectives in the treatment of the majority of thrombotic disorders, such as ACSs, stroke, and peripheral artery diseases before and after the acute event. In the present review, we will discuss the novel role of noncoding RNAs in modulating platelet function, highlighting the possible implications in activation and aggregation.


Subject(s)
Acute Coronary Syndrome , Thrombosis , Humans , Blood Platelets/metabolism , Anticoagulants/pharmacology , Platelet Activation/genetics , Hemostasis , Thrombosis/metabolism , RNA, Untranslated/metabolism , Acute Coronary Syndrome/metabolism , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation
4.
Sci Rep ; 12(1): 6851, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35477940

ABSTRACT

COVID-19 is associated with an increased risk of thrombotic events. However, the pathogenesis of these complications is unclear and reports on platelet infection and activation by the virus are conflicting. Here, we integrated single-cell transcriptomic data to elucidate whether platelet activation is a specific response to SARS-CoV-2 infection or a consequence of a generalized inflammatory state. Although platelets from patients infected with SARS-CoV-2 over expressed genes involved in activation and aggregation when compared to healthy controls; those differences disappeared when the comparison was made with patients with generalized inflammatory conditions of other etiology than COVID-19. The membrane receptor for the virus, ACE-2, was not expressed by infected or control platelets. Our results suggest that platelet activation in patients with severe COVID-19 is mainly a consequence of a systemic inflammatory state than direct invasion and activation.


Subject(s)
Blood Platelets , COVID-19 , COVID-19/genetics , Humans , Platelet Activation/genetics , SARS-CoV-2 , Transcriptome
5.
Platelets ; 33(4): 512-519, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35264060

ABSTRACT

Platelets are essential mediators of physiological hemostasis and pathological thrombosis. Currently available tests and markers of platelet activation did not prove successful in guiding treatment decisions for patients with cardiovascular disease, justifying further research into novel markers of platelet reactivity. Platelets contain a variety of microRNAs (miRNAs) and are a major contributor to the extracellular circulating miRNA pool. Levels of platelet-derived miRNAs in the circulation have been associated with different measures of platelet activation as well as antiplatelet therapy and have therefore been implied as potential new markers of platelet reactivity. In contrast to the ex vivo assessment of platelet reactivity by current platelet function tests, miRNA measurements may enable assessment of platelet reactivity in vivo. It remains to be seen however, whether miRNAs may aid clinical diagnostics. Major limitations in the platelet miRNA research field remain the susceptibility to preanalytical variation, non-standardized sample preparation and data normalization that hampers inter-study comparisons. In this review, we provide an overview of the literature on circulating miRNAs as biomarkers of platelet activation, highlighting the underlying biology, the application in patients with cardiovascular disease and antiplatelet therapy and elaborating on technical limitations regarding their quantification in the circulation.


Subject(s)
Cardiovascular Diseases , Circulating MicroRNA , MicroRNAs , Biomarkers , Blood Platelets , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/drug therapy , Circulating MicroRNA/genetics , Humans , MicroRNAs/genetics , Platelet Activation/genetics , Platelet Aggregation Inhibitors/therapeutic use
6.
Int J Mol Sci ; 23(2)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35054930

ABSTRACT

Inhalation of particulate matter in polluted air causes direct, size-restricted passage in the circulation and pronounced lung inflammation, provoking platelet activation and (non)-fatal cardiovascular complications. To determine potency and mechanism of platelet sensitization via neutrophil enzymes, we performed in vitro aggregation studies in washed human platelets and in murine and human blood, in the presence of elastase, cathepsin G and regular platelet agonists, present in damaged arteries. The impact of both enzymes on in vivo thrombogenicity was studied in the same thrombosis mouse model, previously having demonstrated that neutrophil activation enhances peripheral thrombogenicity. At 0.05 U/mL, cathepsin G activated washed human platelets via PAR1, whereas at 0.35 U/mL, aggregation occurred via PAR4. In Swiss mouse platelet-rich plasma no aggregation occurred by cathepsin G at 0.4 U/mL. In human and murine blood, aggregations by 0.05-0.1 U/mL cathepsin G were similar and not PAR-mediated, but platelet aggregation was inhibited by ADP antagonists, advocating cathepsin G-released ADP in blood as the true agonist of sustained platelet activation. In the mouse thrombosis model, cathepsin G and elastase amplified mild thrombogenicity at blood concentrations that activated platelets in vitro. This study shows that cathepsin G and elastase secreted in the circulation during mild air pollution-induced lung inflammation lyse red blood cell membrane proteins, leading to ADP-leakage into plasma, sensitizing platelets and amplifying their contribution to cardiovascular complications of ambient particle inhalation.


Subject(s)
Arteries/metabolism , Blood Platelets/metabolism , Cathepsin G/metabolism , Neutrophils/metabolism , Platelet Activation , Thrombosis/etiology , Thrombosis/metabolism , Adenosine Diphosphate/metabolism , Animals , Arteries/pathology , Biomarkers , Cathepsin G/genetics , Disease Susceptibility , Humans , Mice , Mice, Knockout , Neutrophil Activation , Pancreatic Elastase/metabolism , Platelet Activation/genetics , Platelet Aggregation/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Thrombosis/pathology
7.
Cytometry A ; 101(4): 290-297, 2022 04.
Article in English | MEDLINE | ID: mdl-34997669

ABSTRACT

Platelets are small anucleate blood cells that contribute to hemostasis, immunity, and inflammation. Circulating platelets are heterogeneous in size, age, receptor expression, and reactivity. They inherit many features from megakaryocytes and are further modified on exposure to bioactive substances in the bloodstream. Among these substances, prothrombotic agonists, vasodilators, and bloodborne pathogens modulate platelet phenotypes via distinct signaling cascades. The ability of platelets to respond to (patho)physiologic signals is incompletely understood but likely depends on their repertoire of surface receptors, which may partition them into discrete subsets with specialized functions and divergent abilities. The single-cell resolution of flow and mass cytometry is ideal for immunophenotyping and allows the identification of platelet subsets in remarkable detail. In this report, we describe the surface markers and gating strategies needed for the comprehensive characterization of platelets.


Subject(s)
Blood Platelets , Megakaryocytes , Biomarkers/metabolism , Flow Cytometry , Hemostasis , Humans , Immunophenotyping , Platelet Activation/genetics
8.
PLoS One ; 17(1): e0260222, 2022.
Article in English | MEDLINE | ID: mdl-35085240

ABSTRACT

BACKGROUND: Sepsis is associated with high platelet turnover and elevated levels of immature platelets. Changes in the platelet transcriptome and the specific impact of immature platelets on the platelet transcriptome remain unclear. Thus, this study sought to address whether and how elevated levels of immature platelets affect the platelet transcriptome in patients with sepsis. METHODS: Blood samples were obtained from patients with sepsis requiring vasopressor therapy (n = 8) and from a control group of patients with stable coronary artery disease and otherwise similar demographic characteristics (n = 8). Immature platelet fraction (IPF) was determined on a Sysmex XE 2100 analyser and platelet function was tested by impedance aggregometry. RNA from leukocyte-depleted platelets was used for transcriptome analysis by Next Generation Sequencing integrating the use of unique molecular identifiers. RESULTS: IPF (median [interquartile range]) was significantly elevated in sepsis patients (6.4 [5.3-8.7] % vs. 3.6 [2.6-4.6] %, p = 0.005). Platelet function testing revealed no differences in adenosine diphosphate- or thrombin receptor activating peptide-induced platelet aggregation between control and sepsis patients. Putative circular RNA transcripts were decreased in platelets from septic patients. Leukocyte contamination defined by CD45 abundance levels in RNA-sequencing was absent in both groups. Principal component analysis of transcripts showed only partial overlap of clustering with IPF levels. RNA sequencing showed up-regulation of 524 and down-regulation of 118 genes in platelets from sepsis patients compared to controls. Upregulated genes were mostly related to catabolic processes and protein translation. Comparison to published platelet transcriptomes showed a large overlap of changes observed in sepsis and COVID-19 but not with reticulated platelets from healthy donors. CONCLUSIONS: Patients with sepsis appear to have a less degraded platelet transcriptome as indicated by increased levels of immature platelets and decreased levels of putative circular RNA transcripts. The present data suggests that increased protein translation is a characteristic mechanism of systemic inflammation.


Subject(s)
Blood Platelets/metabolism , Sepsis/genetics , Transcriptome/genetics , Aged , Base Sequence/genetics , Blood Platelets/pathology , Cell Fractionation/methods , Gene Expression/genetics , Gene Expression Profiling/methods , Humans , Male , Platelet Activation/genetics , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Platelet Count , Platelet Function Tests , RNA, Circular/analysis , RNA, Circular/genetics , Sepsis/blood , Sequence Analysis, RNA/methods
9.
Genome Biol ; 22(1): 327, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857024

ABSTRACT

Alternative splicing (AS) is an important aspect of gene regulation. Nevertheless, its role in molecular processes and pathobiology is far from understood. A roadblock is that tools for the functional analysis of AS-set events are lacking. To mitigate this, we developed NEASE, a tool integrating pathways with structural annotations of protein-protein interactions to functionally characterize AS events. We show in four application cases how NEASE can identify pathways contributing to tissue identity and cell type development, and how it highlights splicing-related biomarkers. With a unique view on AS, NEASE generates unique and meaningful biological insights complementary to classical pathways analysis.


Subject(s)
Alternative Splicing , RNA Splicing , Biomarkers , Cardiomyopathies , Cardiomyopathy, Dilated/genetics , Humans , Multiple Sclerosis/genetics , Platelet Activation/genetics , Protein Interaction Maps/genetics , Systems Biology
10.
PLoS One ; 16(12): e0261429, 2021.
Article in English | MEDLINE | ID: mdl-34910783

ABSTRACT

BACKGROUND: Coagulation system is heavily involved into the process of infective endocarditis (IE) vegetation formation and can facilitate further embolization. In this study we aimed to assess the coagulation and platelet state in IE implementing a wide range of standard and global laboratory assays. We also aim to determine whether prothrombotic genetic polymorphisms play any role in embolization and mortality in IE patients. METHODS: 37 patients with IE were enrolled into the study. Coagulation was assessed using standard coagulation assays (activated partial thromboplastin time (APTT), prothrombin, fibrinogen, D-dimer concentrations) and integral assays (thromboelastography (TEG) and thrombodynamics (TD)). Platelet functional activity was estimated by flow cytometry. Single nuclear polymorphisms of coagulation system genes were studied. RESULTS: Fibrinogen concentration and fibrinogen-dependent parameters of TEG and TD were increased in patients indicating systemic inflammation. In majority of patients clot growth rate in thrombodynamics was significantly shifted towards hypercoagulation in consistency with D-dimers elevation. However, in some patients prothrombin, thromboelastography and thrombodynamics were shifted towards hypocoagulation. Resting platelets were characterized by glycoprotein IIb-IIIa activation and degranulation. In patients with fatal IE, we observed a significant decrease in fibrinogen and thrombodynamics. In patients with embolism, we observed a significant decrease in the TEG R parameter. No association of embolism or mortality with genetic polymorphisms was found in our cohort. CONCLUSIONS: Our findings suggest that coagulation in patients with infective endocarditis is characterized by general hypercoagulability and platelet pre-activation. Some patients, however, have hypocoagulant coagulation profile, which presumably can indicate progressing of hypercoagulation into consumption coagulopathy.


Subject(s)
Endocarditis/pathology , Platelet Activation/genetics , Platelet Activation/physiology , Thrombophilia/genetics , Thrombophilia/pathology , Adult , Aged , Blood Platelets/physiology , Female , Fibrin Fibrinogen Degradation Products/analysis , Fibrinogen/analysis , Hemostasis/physiology , Humans , Male , Middle Aged , Partial Thromboplastin Time/methods , Polymorphism, Single Nucleotide/genetics , Prothrombin/analysis , Thrombelastography/methods
11.
Int J Mol Sci ; 22(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34638997

ABSTRACT

One of the mechanisms by which PI3 kinase can regulate platelet function is through phosphorylation of downstream substrates, including glycogen synthase kinase-3 (GSK3)α and GSK3ß. Platelet activation results in the phosphorylation of an N-terminal serine residue in GSK3α (Ser21) and GSK3ß (Ser9), which competitively inhibits substrate phosphorylation. However, the role of phosphorylation of these paralogs is still largely unknown. Here, we employed GSK3α/ß phosphorylation-resistant mouse models to explore the role of this inhibitory phosphorylation in regulating platelet activation. Expression of phosphorylation-resistant GSK3α/ß reduced thrombin-mediated platelet aggregation, integrin αIIbß3 activation, and α-granule secretion, whereas platelet responses to the GPVI agonist collagen-related peptide (CRP-XL) were significantly enhanced. GSK3 single knock-in lines revealed that this divergence is due to differential roles of GSK3α and GSK3ß phosphorylation in regulating platelet function. Expression of phosphorylation-resistant GSK3α resulted in enhanced GPVI-mediated platelet activation, whereas expression of phosphorylation-resistant GSK3ß resulted in a reduction in PAR-mediated platelet activation and impaired in vitro thrombus formation under flow. Interestingly, the latter was normalised in double GSK3α/ß KI mice, indicating that GSK3α KI can compensate for the impairment in thrombosis caused by GSK3ß KI. In conclusion, our data indicate that GSK3α and GSK3ß have differential roles in regulating platelet function.


Subject(s)
Blood Platelets/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3/metabolism , Platelet Activation/genetics , Platelet Aggregation/genetics , Signal Transduction/genetics , Thrombosis/metabolism , Animals , Blood Donors , Cells, Cultured , Disease Models, Animal , Gene Knock-In Techniques , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3 beta/genetics , Humans , Integrins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/genetics , Proto-Oncogene Proteins c-akt/metabolism , Thrombin/metabolism , Thrombosis/genetics
12.
Int J Mol Sci ; 22(18)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34576024

ABSTRACT

Platelets are small anucleate blood cells that play vital roles in haemostasis and thrombosis, besides other physiological and pathophysiological processes. These roles are tightly regulated by a complex network of signalling pathways. Mass spectrometry-based proteomic techniques are contributing not only to the identification and quantification of new platelet proteins, but also reveal post-translational modifications of these molecules, such as acetylation, glycosylation and phosphorylation. Moreover, target proteomic analysis of platelets can provide molecular biomarkers for genetic aberrations with established or non-established links to platelet dysfunctions. In this report, we review 67 reports regarding platelet proteomic analysis and signalling on a molecular base. Collectively, these provide detailed insight into the: (i) technical developments and limitations of the assessment of platelet (sub)proteomes; (ii) molecular protein changes upon ageing of platelets; (iii) complexity of platelet signalling pathways and functions in response to collagen, rhodocytin, thrombin, thromboxane A2 and ADP; (iv) proteomic effects of endothelial-derived mediators such as prostacyclin and the anti-platelet drug aspirin; and (v) molecular protein changes in platelets from patients with congenital disorders or cardiovascular disease. However, sample sizes are still low and the roles of differentially expressed proteins are often unknown. Based on the practical and technical possibilities and limitations, we provide a perspective for further improvements of the platelet proteomic field.


Subject(s)
Blood Platelet Disorders/genetics , Blood Platelets/metabolism , Proteome/genetics , Proteomics , Blood Platelet Disorders/blood , Blood Platelet Disorders/pathology , Humans , Platelet Activation/genetics , Protein Processing, Post-Translational/genetics , Signal Transduction/genetics
13.
Int J Mol Sci ; 22(18)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34576036

ABSTRACT

Procoagulant extracellular vesicles (EV) and platelet activation have been associated with gestational vascular complications. EV-induced platelet-mediated placental inflammasome activation has been shown to cause preeclampsia-like symptoms in mice. However, the effect of EV-mediated placental thrombo-inflammation on trophoblast differentiation remains unknown. Here, we identify that the EV-induced thrombo-inflammatory pathway modulates trophoblast morphology and differentiation. EVs and platelets reduce syncytiotrophoblast differentiation while increasing giant trophoblast and spongiotrophoblast including the glycogen-rich cells. These effects are platelet-dependent and mediated by the NLRP3 inflammasome. In humans, inflammasome activation was negatively correlated with trophoblast differentiation marker GCM1 and positively correlated with blood pressure. These data identify a crucial role of EV-induced placental thrombo-inflammation on altering trophoblast differentiation and suggest platelet activation or inflammasome activation as a therapeutic target in order to achieve successful placentation.


Subject(s)
Extracellular Vesicles/genetics , Inflammation/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pregnancy Complications, Cardiovascular/genetics , Animals , Blood Platelets/metabolism , Blood Platelets/pathology , Cell Differentiation/genetics , DNA-Binding Proteins/genetics , Disease Models, Animal , Extracellular Vesicles/metabolism , Female , Humans , Inflammasomes/genetics , Inflammation/metabolism , Inflammation/pathology , Mice , Platelet Activation/genetics , Pregnancy , Pregnancy Complications, Cardiovascular/pathology , Transcription Factors/genetics , Trophoblasts/metabolism , Trophoblasts/pathology
14.
PLoS One ; 16(8): e0254067, 2021.
Article in English | MEDLINE | ID: mdl-34351918

ABSTRACT

BACKGROUND AND PURPOSE: The impact of the paraoxonase-1 (PON1) polymorphism, Q192R, on platelet inhibition in response to clopidogrel remains controversial. We aimed to investigate the association between carrier status of PON1 Q192R and high platelet reactivity (HPR) with clopidogrel in patients undergoing elective neurointervention. METHODS: Post-clopidogrel platelet reactivity was measured using a VerifyNow® P2Y12 assay in P2Y12 reaction units (PRU) for consecutive patients before the treatment. Genotype testing was performed for PON1 Q192R and CYP2C19*2 and *3 (no function alleles), and *17. PRU was corrected on the basis of hematocrit. We investigated associations between factors including carrying ≥1 PON1 192R allele and HPR defined as original and corrected PRU ≥208. RESULTS: Of 475 patients (232 men, median age, 68 years), HPR by original and corrected PRU was observed in 259 and 199 patients (54.5% and 41.9%), respectively. Carriers of ≥1 PON1 192R allele more frequently had HPR by original and corrected PRU compared with non-carriers (91.5% vs 85.2%, P = 0.031 and 92.5% vs 85.9%, P = 0.026, respectively). In multivariate analyses, carrying ≥1 PON1 192R allele was associated with HPR by original (odds ratio [OR] 1.96, 95% confidence interval [CI] 1.03-3.76) and corrected PRU (OR 2.34, 95% CI 1.21-4.74) after adjustment for age, sex, treatment with antihypertensive medications, hematocrit, platelet count, total cholesterol, and carrying ≥1 CYP2C19 no function allele. CONCLUSIONS: Carrying ≥1 PON1 192R allele is associated with HPR by original and corrected PRU with clopidogrel in patients undergoing elective neurointervention, although alternative results related to other genetic polymorphisms cannot be excluded.


Subject(s)
Alleles , Aryldialkylphosphatase/genetics , Blood Platelets/metabolism , Clopidogrel/administration & dosage , Mutation, Missense , Neurosurgical Procedures , Platelet Activation/genetics , Aged , Amino Acid Substitution , Female , Humans , Male , Middle Aged , Platelet Activation/drug effects , Prospective Studies
15.
Mol Biol Rep ; 48(5): 4573-4580, 2021 May.
Article in English | MEDLINE | ID: mdl-34146200

ABSTRACT

Leukocyte and platelet rich fibrin (L-PRF) is one of the platelet concentrates used to support regeneration and healing process. Many studies showed possible immunological and antibacterial properties of L-PRF. We perform an in vitro study to analyze the effect of L-PRF on platelet activation, platelet-leukocytes interactions and antimicrobial activity, important components in the healing process. Molecular biomarkers related with platelet activation and platelet-leukocyte interactions were analyzed by means of flow cytometry when L-PRF exudate was added to whole blood platelets. L-PRF membrane was used to evaluate antimicrobial activity using Enterococcus faecalis (ATCC 29212), Pseudomonas aeruginosa (ATCC 27853) and Candida albicans (ATCC 90028). Our experimental design allows to evaluate platelet activation and analyze molecular biomarkers of other immune cells and platelet-leukocyte interactions. From the results obtained we can conclude that L-PRF can be a valuable tool in healing process, efficient in activating platelets of whole blood and inhibiting microbial growth. In our opinion, the use of L-PRF exudate, in addition to L-PRF membrane, presents some advantages that have to be considered in clinical trials. Additional research on the characterization and quantification of cells and its products present in the L-PRF exudate, as well as on the temporal factor released. Also, further studies using strains isolated from clinical cases are needed.


Subject(s)
Anti-Infective Agents/pharmacology , Blood Platelets/metabolism , Platelet Activation/genetics , Platelet-Rich Fibrin/chemistry , Wound Healing/genetics , Anti-Infective Agents/blood , Anti-Infective Agents/chemistry , Candida albicans/drug effects , Enterococcus faecalis/drug effects , Humans , Leukocytes/chemistry , Platelet-Rich Plasma/metabolism , Pseudomonas aeruginosa/drug effects
16.
Hamostaseologie ; 41(3): 206-216, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34192779

ABSTRACT

Comprehensive proteomic analyses of human and murine platelets established an extraordinary intracellular repertoire of signaling components, which control crucial functions. The spectrum of platelet serine/threonine protein kinases (more than 100) includes the AGC family (protein kinase A, G, C [PKA, PKG, PKC]), the mitogen-activated protein kinases (MAPKs), and others. PKA and PKG have multiple significantly overlapping substrates in human platelets, which possibly affect functions with clear "signaling nodes" of regulation by multiple protein kinases/phosphatases. Signaling nodes are intracellular Ca2+ stores, the contractile system (myosin light chains), and other signaling components such as G-proteins, protein kinases, and protein phosphatases. An example for this fine-tuning is the tyrosine kinase Syk, a crucial component of platelet activation, which is controlled by several serine/threonine and tyrosine protein kinases as well as phosphatases. Other protein kinases including PKA/PKG modulate protein phosphatase 2A, which may be a master regulator of MAPK signaling in human platelets. Protein kinases and in particular MAPKs are targeted by an increasing number of clinically used inhibitors. However, the precise regulation and fine-tuning of these protein kinases and their effects on other signaling components in platelets are only superficially understood-just the beginning. However, promising future approaches are in sight.


Subject(s)
Blood Platelets/drug effects , Phosphoprotein Phosphatases/pharmacology , Protein Kinases/pharmacology , Serine/metabolism , Threonine/metabolism , Animals , Blood Platelets/metabolism , Humans , Mice , Mitogen-Activated Protein Kinases/metabolism , Models, Animal , Myosin Light Chains/metabolism , Platelet Activation/drug effects , Platelet Activation/genetics , Proteomics , Signal Transduction , Syk Kinase/metabolism
17.
Clin Immunol ; 228: 108755, 2021 07.
Article in English | MEDLINE | ID: mdl-33984497

ABSTRACT

Platelet-bound complement activation products (PC4d) are associated with thrombosis in Systemic Lupus Erythematosus (SLE). This study investigated the effect of PC4d on platelet function, as a mechanistic link to arterial thrombosis. In a cohort of 150 SLE patients, 13 events had occurred within five years of enrollment. Patients with arterial events had higher PC4d levels (13.6 [4.4-24.0] vs. 4.0 [2.5-8.3] net MFI), with PC4d 10 being the optimal cutoff for event detection. The association of arterial events with PC4d remained significant after adjusting for antiphospholipid status, smoking, and prednisone use (p = 0.045). PC4d levels correlated with lower platelet counts (r = -0.26, p = 0.002), larger platelet volumes (r = 0.22, p = 0.009) and increased platelet aggregation: the adenosine diphosphate (ADP) concentration to achieve 50% maximal aggregation (EC50) was lower in patients with PC4d 10 compared with PC4d < 10 (1.6 vs. 3.7, p = 0.038, respectively). These results suggest that PC4d may be a mechanistic marker for vascular disease in SLE.


Subject(s)
Blood Platelets/metabolism , Complement Activation/immunology , Complement C4/immunology , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/metabolism , Platelet Activation/genetics , Vascular Diseases/etiology , Adenosine Diphosphate/metabolism , Autoantibodies/immunology , Autoimmunity , Biomarkers , Blood Platelets/immunology , Complement C4/metabolism , Disease Susceptibility , Humans , Lupus Erythematosus, Systemic/immunology , Platelet Activation/immunology , Platelet Aggregation , Platelet Count , Thrombosis/etiology , Thrombosis/metabolism , Vascular Diseases/metabolism
18.
Int J Mol Sci ; 22(6)2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33799528

ABSTRACT

Obstructive sleep apnoea (OSA) is a common disease which is characterised by repetitive collapse of the upper airways during sleep resulting in chronic intermittent hypoxaemia and frequent microarousals, consequently leading to sympathetic overflow, enhanced oxidative stress, systemic inflammation, and metabolic disturbances. OSA is associated with increased risk for cardiovascular morbidity and mortality, and accelerated coagulation, platelet activation, and impaired fibrinolysis serve the link between OSA and cardiovascular disease. In this article we briefly describe physiological coagulation and fibrinolysis focusing on processes which could be altered in OSA. Then, we discuss how OSA-associated disturbances, such as hypoxaemia, sympathetic system activation, and systemic inflammation, affect these processes. Finally, we critically review the literature on OSA-related changes in markers of coagulation and fibrinolysis, discuss potential reasons for discrepancies, and comment on the clinical implications and future research needs.


Subject(s)
Acute Coronary Syndrome/metabolism , Fibrinolysis/genetics , Hypoxia/metabolism , Sleep Apnea, Obstructive/metabolism , Stroke/metabolism , Venous Thrombosis/metabolism , Acute Coronary Syndrome/complications , Acute Coronary Syndrome/genetics , Acute Coronary Syndrome/physiopathology , Blood Coagulation Factors/genetics , Blood Coagulation Factors/metabolism , Blood Platelets/metabolism , Blood Platelets/pathology , Fibrinogen/genetics , Fibrinogen/metabolism , Gene Expression Regulation , Humans , Hypoxia/complications , Hypoxia/genetics , Hypoxia/physiopathology , Inflammation , Oxidative Stress , Platelet Activation/genetics , Platelet Aggregation/genetics , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/genetics , Sleep Apnea, Obstructive/physiopathology , Stroke/complications , Stroke/genetics , Stroke/physiopathology , Venous Thrombosis/complications , Venous Thrombosis/genetics , Venous Thrombosis/physiopathology
19.
Mol Med Rep ; 23(5)2021 05.
Article in English | MEDLINE | ID: mdl-33760146

ABSTRACT

Platelet mitophagy is a major pathway involved in the clearance of injured mitochondria during hemostasis and thrombosis. Prohibitin 2 (PHB2) has recently emerged as an inner mitochondrial membrane receptor involved in mitophagy. However, the mechanisms underlying PHB2­mediated platelet mitophagy and activation are not completely understood. PHB2 is a highly conserved inner mitochondrial membrane protein that regulates mitochondrial assembly and function due to its unique localization on the mitochondrial membrane. The present study aimed to investigate the role and mechanism underlying PHB2 in platelet mitophagy and activation. Phorbol­12­myristate­13­acetate (PMA) was used to induce MEG­01 cells maturation and differentiate into platelets following PHB2 knockdown. Cell Counting Kit­8 assays were performed to examine platelet viability. Flow cytometry was performed to assess platelet mitochondrial membrane potential. RT­qPCR and western blotting were conducted to measure mRNA and protein expression levels, respectively. Subsequently, platelets were exposed to CCCP and the role of PHB2 was assessed. The results of the present study identified a crucial role for PHB2 in platelet mitophagy and activation, suggesting that PHB2­mediated regulation of mitophagy may serve as a novel strategy for downregulating the expression of platelet activation genes. Although further research into mitophagy is required, the present study suggested that PHB2 may serve as a novel therapeutic target for thrombosis­related diseases due to its unique localization on the mitochondrial membrane.


Subject(s)
Blood Platelets/drug effects , Mitophagy/genetics , Platelet Activation/drug effects , Repressor Proteins/genetics , Carbonyl Cyanide m-Chlorophenyl Hydrazone/analogs & derivatives , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Cell Differentiation/drug effects , Flow Cytometry , Humans , Membrane Potential, Mitochondrial , Mitochondria/drug effects , Mitochondria/genetics , Mitophagy/drug effects , Phorbol Esters/pharmacology , Platelet Activation/genetics , Prohibitins , Signal Transduction/drug effects , Thrombosis/genetics , Thrombosis/pathology
20.
Platelets ; 32(6): 761-769, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-33646086

ABSTRACT

While current oral antiplatelet therapies benefit many patients, they deregulate the hemostatic balance leaving patients at risk of systemic side-effects such as hemorrhage. Dual antiplatelet treatment is the standard approach, combining aspirin with P2Y12 blockers. These therapies mainly target autocrine activation mechanisms (TxA2, ADP) and, more recently, the use of thrombin or thrombin receptor antagonists have been added to the available approaches. Recent efforts to develop new classes of anti-platelet drugs have begun to focus on primary platelet activation pathways such as through the immunoreceptor tyrosine-based activation motif (ITAM)-containing collagen receptor GPVI/FcRγ-chain complex. There are already encouraging results from targeting GPVI, with reduced aggregation and smaller arterial thrombi, without major bleeding complications, likely due to overlapping activation signaling pathways with other receptors such as the GPIb-V-IX complex. An alternative approach to reduce platelet activation could be to inhibit this signaling pathway by targeting the inhibitory pathways intrinsic to platelets. Stimulation of endogenous negative modulators could provide more specific inhibition of platelet function, but is this feasible? In this review, we explore the potential of the two major platelet immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing inhibitory receptors, G6b-B and PECAM-1, as antithrombotic targets.


Subject(s)
Blood Platelets/metabolism , Platelet Activation/genetics , Receptors, Immunologic/metabolism , Animals , Humans , Ligands , Mice , Mice, Knockout , Platelet Endothelial Cell Adhesion Molecule-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...