Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 777
Filter
1.
PLoS One ; 19(5): e0303010, 2024.
Article in English | MEDLINE | ID: mdl-38748682

ABSTRACT

Diabetic Retinopathy (DR) is the leading cause of vision loss in working-age adults. The hallmark features of DR include vascular leakage, capillary loss, retinal ischemia, and aberrant neovascularization. Although the pathophysiology is not fully understood, accumulating evidence supports elevated reactive oxygen species associated with increased activity of NADPH oxidase 4 (Nox4) as major drivers of disease progression. Previously, we have shown that Nox4 upregulation in retinal endothelial cells by diabetes leads to increased vascular leakage by an unknown mechanism. Platelet endothelial cell adhesion molecule 1 (PECAM-1) is a cell surface molecule that is highly expressed in endothelial cells and regulates endothelial barrier function. In the present study, using endothelial cell-specific human Nox4 transgenic (TG) mice and endothelial cell-specific Nox4 conditional knockout (cKO) mice, we investigated the impact of Nox4 upregulation on PECAM-1 expression in mouse retinas and brain microvascular endothelial cells (BMECs). Additionally, cultured human retinal endothelial cells (HRECs) transduced with adenovirus overexpressing human Nox4 were used in the study. We found that overexpression of Nox4 increases PECAM-1 mRNA but has no effect on its protein expression in the mouse retina, BMECs, or HRECs. Furthermore, PECAM-1 mRNA and protein expression was unchanged in BMECs isolated from cKO mice compared to wild type (WT) mice with or without 2 months of diabetes. Together, these findings do not support a significant role of Nox4 in the regulation of PECAM-1 expression in the diabetic retina and endothelial cells. Further studies are warranted to elucidate the mechanism of Nox4-induced vascular leakage by investigating other intercellular junctional proteins in endothelial cells and their implications in the pathophysiology of diabetic retinopathy.


Subject(s)
Diabetic Retinopathy , Endothelial Cells , NADPH Oxidase 4 , Platelet Endothelial Cell Adhesion Molecule-1 , Up-Regulation , Animals , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/genetics , Diabetic Retinopathy/pathology , Mice , Humans , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Endothelial Cells/metabolism , Mice, Knockout , NADPH Oxidases/metabolism , NADPH Oxidases/genetics , Retina/metabolism , Retina/pathology , Disease Models, Animal , Mice, Transgenic
2.
Zhonghua Zhong Liu Za Zhi ; 46(5): 399-408, 2024 May 23.
Article in Chinese | MEDLINE | ID: mdl-38742353

ABSTRACT

Objectives: To investigate the effect of the expression of low-density lipoprotein receptor associated protein (LDLR) on the vascular abnormalities in hepatocellular carcinoma (HCC) and its mechanisms. Methods: Based on the information of Oncomine Cancer GeneChip database, we analyzed the correlation between the expression level of LDLR and the expression level of carcinoembryonic antigen (CEA) and CD31 in hepatocellular carcinoma tissues. Lentiviral transfection of short hairpin RNA target genes was used to construct LDLR-knockdown MHCC-97H and HLE hepatocellular carcinoma cells. The differential genes and their expression level changes in LDLR-knockdown hepatocellular carcinoma cells were detected by transcriptome sequencing, real-time fluorescence quantitative polymerase chain reaction, and protein immunoblotting. The gene-related signaling pathways that involve LDLR were clarified by enrichment analysis. The effect of LDLR on CEA was assessed by the detection of CEA content in conditioned medium of hepatocellular carcinoma cells. Angiogenesis assay was used to detect the effect of LDLR on the angiogenic capacity of human umbilical vein endothelial cells, as well as the role of CEA in the regulation of angiogenesis by LDLR. Immunohistochemical staining was used to detect the expression levels of LDLR in 176 hepatocellular carcinoma tissues, and CEA and CD31 in 146 hepatocellular carcinoma tissues, and analyze the correlations between the expression levels of LDLR, CEA, and CD31 in the tissues, serum CEA, and alanine transaminase (ALT). Results: Oncomine database analysis showed that the expressions of LDLR and CEA in the tissues of hepatocellular carcinoma patients with portal vein metastasis were negatively correlated (r=-0.64, P=0.001), whereas the expressions of CEA and CD31 in these tissues were positively correlated ( r=0.46, P=0.010). The transcriptome sequencing results showed that there were a total of 1 032 differentially expressed genes in the LDLR-knockdown group and the control group of MHCC-97H cells, of which 517 genes were up-regulated and 515 genes were down-regulated. The transcript expression level of CEACAM5 was significantly up-regulated in the cells of the LDLR-knockdown group. The Gene Ontology (GO) function enrichment analysis showed that the differential genes were most obviously enriched in the angiogenesis function. The Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis showed that the relevant pathways involved mainly included the cellular adhesion patch, the extracellular matrix receptor interactions, and the interactions with the extracellular matrix receptors. The CEA content in the conditioned medium of the LDLR-knockdown group was 43.75±8.43, which was higher than that of the control group (1.15±0.14, P<0.001). The results of angiogenesis experiments showed that at 5 h, the number of main junctions, the number of main segments, and the total area of the lattice formed by HUVEC cells cultured with the conditioned medium of MHCC-97H cells in the LDLR-knockdown group were 295.3±26.4, 552.5±63.8, and 2 239 781.0±13 8211.9 square pixels, which were higher than those of the control group (113.3±23.5, 194.8±36.5, and 660 621.0±280 328.3 square pixels, respectively, all P<0.01).The number of vascular major junctions, the number of major segments, and the total area of the lattice formed by HUVEC cells cultured in conditioned medium with HLE cells in the LDLR-knockdown group were 245.3±42.4, 257.5±20.4, and 2 535 754.5±249 094.2 square pixels, respectively, which were all higher than those of the control group (113.3±23.5, 114.3±12.2, and 1 565 456.5±219 259.7 square pixels, respectively, all P<0.01). In the conditioned medium for the control group of MHCC-97H cells,the number of main junctions, the number of main segments, and the total area of the lattice formed by the addition of CEA to cultured HUVEC cells were 178.9±12.0, 286.9±12.3, and 1 966 990.0±126 249.5 spixels, which were higher than those in the control group (119.7±22.1, 202.7±33.7, and 1 421 191.0±189 837.8 square pixels, respectively). The expression of LDLR in hepatocellular carcinoma tissues was not correlated with the expression of CEA, but was negatively correlated with the expression of CD31 (r=-0.167, P=0.044), the level of serum CEA (r=-0.061, P=0.032), and the level of serum ALT(r=-0.147,P=0.05). The expression of CEA in hepatocellular carcinoma tissues was positively correlated with the expression of CD31 (r=0.192, P=0.020). The level of serum CEA was positively correlated with the level of serum ALT (r=0.164, P=0.029). Conclusion: Knocking down LDLR can promote vascular abnormalities in HCC by releasing CEA.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Neovascularization, Pathologic , Receptors, LDL , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/blood supply , Receptors, LDL/metabolism , Receptors, LDL/genetics , Cell Line, Tumor , Neovascularization, Pathologic/metabolism , Carcinoembryonic Antigen/metabolism , Carcinoembryonic Antigen/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Signal Transduction , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Transcriptome , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics
3.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38338969

ABSTRACT

In humans and animal models, temporal lobe epilepsy (TLE) is associated with reorganization of hippocampal neuronal networks, gliosis, neuroinflammation, and loss of integrity of the blood-brain barrier (BBB). More than 30% of epilepsies remain intractable, and characterization of the molecular mechanisms involved in BBB dysfunction is essential to the identification of new therapeutic strategies. In this work, we induced status epilepticus in rats through injection of the proconvulsant drug pilocarpine, which leads to TLE. Using RT-qPCR, double immunohistochemistry, and confocal imaging, we studied the regulation of reactive glia and vascular markers at different time points of epileptogenesis (latent phase-3, 7, and 14 days; chronic phase-1 and 3 months). In the hippocampus, increased expression of mRNA encoding the glial proteins GFAP and Iba1 confirmed neuroinflammatory status. We report for the first time the concomitant induction of the specific proteins CD31, PDGFRß, and ColIV-which peak at the same time points as inflammation-in the endothelial cells, pericytes, and basement membrane of the BBB. The altered expression of these proteins occurs early in TLE, during the latent phase, suggesting that they could be associated with the early rupture and pathogenicity of the BBB that will contribute to the chronic phase of epilepsy.


Subject(s)
Blood-Brain Barrier , Epilepsy, Temporal Lobe , Epilepsy , Receptor, Platelet-Derived Growth Factor beta , Status Epilepticus , Animals , Humans , Rats , Blood-Brain Barrier/metabolism , Collagen/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Epilepsy/metabolism , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/metabolism , Hippocampus/metabolism , Neuroglia/metabolism , Pericytes/metabolism , Pilocarpine/adverse effects , Rats, Sprague-Dawley , Status Epilepticus/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Receptors, Platelet-Derived Growth Factor/genetics , Receptors, Platelet-Derived Growth Factor/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism
4.
J Biosci Bioeng ; 137(1): 64-75, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37973520

ABSTRACT

The liver is one of the main organs involved in the metabolism of xenobiotics and a key organ in toxicity studies. Prior to accessing the hepatocytes, xenobiotics pass through the hepatic sinusoid formed by liver sinusoidal endothelial cells (LSECs). The LSECs barrier regulates the kinetics and concentrations of the xenobiotics before their metabolic processing by the hepatocytes. To mimic this physiological situation, we developed an in vitro model reproducing an LSECs barrier in coculture with a hepatocyte biochip, using a fluidic platform. This technology made dynamic coculture and tissue crosstalk possible. SK-HEP-1 and HepG2/C3a cells were used as LSECs and as hepatocyte models, respectively. We confirmed the LSECs phenotype by measuring PECAM-1 and stabilin-2 expression levels and the barrier's permeability/transport properties with various molecules. The tightness of the SK-HEP-1 barrier was enhanced in the dynamic coculture. The morphology, albumin secretion, and gene expression levels of markers of HepG2/C3a were not modified by coculture with the LSECs barrier. Using acetaminophen, a well-known hepatotoxic drug, to study tissue crosstalk, there was a reduction in the expression levels of the LSECs markers stabilin-2 and PECAM-1, and a modification of those of CLEC4M and KDR. No HepG2/C3a toxicity was observed. The metabolisation of acetaminophen by HepG2/C3a monocultures and cocultures was confirmed. Although primary cells are required to propose a fully relevant model, the present approach highlights the potential of our system for investigating xenobiotic metabolism and toxicity.


Subject(s)
Acetaminophen , Endothelial Cells , Coculture Techniques , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Acetaminophen/toxicity , Acetaminophen/metabolism , Hepatocytes , Liver
5.
Elife ; 122023 08 07.
Article in English | MEDLINE | ID: mdl-37549051

ABSTRACT

Effective neutrophil migration to sites of inflammation is crucial for host immunity. A coordinated cascade of steps allows intravascular leukocytes to counteract the shear stress, transmigrate through the endothelial layer, and move toward the extravascular, static environment. Those events are tightly orchestrated by integrins, but, while the molecular mechanisms leading to their activation have been characterized, the regulatory pathways promoting their detachment remain elusive. In light of this, it has long been known that platelet-endothelial cell adhesion molecule (Pecam1, also known as CD31) deficiency blocks leukocyte transmigration at the level of the outer vessel wall, yet the associated cellular defects are controversial. In this study, we combined an unbiased proteomic study with in vitro and in vivo single-cell tracking in mice to study the dynamics and role of CD31 during neutrophil migration. We found that CD31 localizes to the uropod of migrating neutrophils along with closed ß2-integrin and is required for essential neutrophil actin/integrin polarization. Accordingly, the uropod of Pecam1-/- neutrophils is unable to detach from the extracellular matrix, while antagonizing integrin binding to extracellular matrix components rescues this in vivo migratory defect. Conversely, we showed that sustaining CD31 co-signaling actively favors uropod detachment and effective migration of extravasated neutrophils to sites of inflammation in vivo. Altogether, our results suggest that CD31 acts as a molecular rheostat controlling integrin-mediated adhesion at the uropod of egressed neutrophils, thereby triggering their detachment from the outer vessel wall to reach the inflammatory sites.


Subject(s)
Neutrophils , Platelet Endothelial Cell Adhesion Molecule-1 , Animals , Mice , CD18 Antigens/metabolism , Cell Adhesion/physiology , Inflammation/metabolism , Integrins/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Proteomics , Signal Transduction , Cell Movement
6.
Br J Haematol ; 202(4): 840-855, 2023 08.
Article in English | MEDLINE | ID: mdl-37365680

ABSTRACT

Multiple myeloma (MM) is the second most common haematological malignancy. Despite the development of new drugs and treatments in recent years, the therapeutic outcomes of patients are not satisfactory. It is necessary to further investigate the molecular mechanism underlying MM progression. Herein, we found that high E2F2 expression was correlated with poor overall survival and advanced clinical stages in MM patients. Gain- and loss-of-function studies showed that E2F2 inhibited cell adhesion and consequently activated cell epithelial-to-mesenchymal transition (EMT) and migration. Further experiments revealed that E2F2 interacted with the PECAM1 promoter to suppress its transcriptional activity. The E2F2-knockdown-mediated promotion of cell adhesion was significantly reversed by the repression of PECAM1 expression. Finally, we observed that silencing E2F2 significantly inhibited viability and tumour progression in MM cell models and xenograft mouse models respectively. This study demonstrates that E2F2 plays a vital role as a tumour accelerator by inhibiting PECAM1-dependent cell adhesion and accelerating MM cell proliferation. Therefore, E2F2 may serve as a potential independent prognostic marker and therapeutic target for MM.


Subject(s)
Multiple Myeloma , Humans , Animals , Mice , Multiple Myeloma/genetics , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Cell Adhesion/genetics , Cell Line, Tumor , Gene Expression Regulation , Cell Proliferation , E2F2 Transcription Factor/genetics , E2F2 Transcription Factor/metabolism
7.
J Cereb Blood Flow Metab ; 43(7): 1027-1041, 2023 07.
Article in English | MEDLINE | ID: mdl-37051650

ABSTRACT

Several studies have shown that an abnormal vascular-immunity link could increase Alzheimer's disease (AD) risk; however, the mechanism is unclear. CD31, also named platelet endothelial cell adhesion molecule (PECAM), is a surface membrane protein of both endothelial and immune cells and plays important roles in the interaction between the vascular and immune systems. In this review, we focus on research regarding CD31 biological actions in the pathological process that may contribute to AD based on the following rationales. First, endothelial, leukocyte and soluble forms of CD31 play multi-roles in regulating transendothelial migration, increasing blood-brain barrier (BBB) permeability and resulting in neuroinflammation. Second, CD31 expressed by endothelial and immune cells dynamically modulates numbers of signaling pathways, including Src family kinases, selected G proteins, and ß-catenin which in turn affect cell-matrix and cell-cell attachment, activation, permeability, survival, and ultimately neuronal cell injury. In endothelia and immune cells, these diverse CD31-mediated pathways act as a critical regulator in the immunity-endothelia-brain axis, thereby mediating AD pathogenesis in ApoE4 carriers, which is the major genetic risk factor for AD. This evidence suggests a novel mechanism and potential drug target for CD31 in the background of genetic vulnerabilities and peripheral inflammation for AD development and progression.


Subject(s)
Alzheimer Disease , Blood-Brain Barrier , Humans , Alzheimer Disease/metabolism , Blood-Brain Barrier/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Signal Transduction , Transendothelial and Transepithelial Migration
8.
Commun Biol ; 6(1): 358, 2023 04 01.
Article in English | MEDLINE | ID: mdl-37005489

ABSTRACT

Two prominent concepts for the sensing of shear stress by endothelium are the PIEZO1 channel as a mediator of mechanically activated calcium ion entry and the PECAM1 cell adhesion molecule as the apex of a triad with CDH5 and VGFR2. Here, we investigated if there is a relationship. By inserting a non-disruptive tag in native PIEZO1 of mice, we reveal in situ overlap of PIEZO1 with PECAM1. Through reconstitution and high resolution microscopy studies we show that PECAM1 interacts with PIEZO1 and directs it to cell-cell junctions. PECAM1 extracellular N-terminus is critical in this, but a C-terminal intracellular domain linked to shear stress also contributes. CDH5 similarly drives PIEZO1 to junctions but unlike PECAM1 its interaction with PIEZO1 is dynamic, increasing with shear stress. PIEZO1 does not interact with VGFR2. PIEZO1 is required in Ca2+-dependent formation of adherens junctions and associated cytoskeleton, consistent with it conferring force-dependent Ca2+ entry for junctional remodelling. The data suggest a pool of PIEZO1 at cell junctions, the coming together of PIEZO1 and PECAM1 mechanisms and intimate cooperation of PIEZO1 and adhesion molecules in tailoring junctional structure to mechanical requirement.


Subject(s)
Endothelial Cells , Ion Channels , Mice , Animals , Ion Channels/genetics , Ion Channels/metabolism , Endothelial Cells/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Mechanotransduction, Cellular , Intercellular Junctions/metabolism , Endothelium/metabolism
9.
Med Mol Morphol ; 56(2): 128-137, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36622466

ABSTRACT

Gemcitabine (GEM) is an anticancer drug inhibiting DNA synthesis. Glomerular thrombotic microangiopathy (TMA) has been reported as an adverse effect. However, the precise mechanism of GEM-induced endothelial injury remains unknown. Cultured human umbilical vein endothelial cells (HUVECs) in the confluent phase were exposed to GEM (5-100 µM) for 48 h and evaluated cell viability and morphology, lectin binding concerning sialic acid of endothelial glycocalyx (GCX), and immunofluorescent staining of platelet-endothelial cell adhesion molecule (PECAM) and vascular endothelial growth factor receptor 2 (VEGFR2). The mRNA expression of α2,6-sialyltransferase (ST6Gal1), sialidase (neuraminidase-1: NEU-1), and interleukin (IL)-1ß and IL-6 was also evaluated. GEM exposure at 5 µM induced cellular shrinkage and intercellular dissociation, accompanied by slight attenuation of PECAM and VEGFR2 immunostaining, although cell viability was still preserved. At this concentration, lectin binding showed a reduction of terminal sialic acids in endothelial GCX, probably associated with reduced ST6Gal1 mRNA expression. IL-1ß and IL-6 mRNA expression was significantly increased after GEM exposure. GEM reduced terminal sialic acids in endothelial GCX through mRNA suppression of ST6Gal1 and induced inflammatory cytokine production in HUVECs. This phenomenon could be associated with the mechanism of GEM-induced TMA.


Subject(s)
Gemcitabine , Glycocalyx , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Vascular Endothelial Growth Factor A/metabolism , Cells, Cultured , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Sialic Acids/metabolism , Lectins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
Vascular ; 31(1): 152-162, 2023 Feb.
Article in English | MEDLINE | ID: mdl-34816786

ABSTRACT

OBJECTIVES: Based on the angiogenetic, transcriptional profile of non-diseased and arteriosclerotic vessels, we aim to identify the leucocytic markers as a potential, minimal invasive tool supporting diagnosis of vascular pathology. METHODS: Transcriptional profiling was performed with Angiogenesis RT2 Profiler PCR (Polymerase Chain Reaction) array on three non-pathological and three arteriosclerotic vessels, followed by immunohistochemical staining. Based on these screening results, selected transcripts were employed for qPCR with specific primers and investigated on the blood RNA (RiboNucleic Acid) obtained from nine healthy controls and 29 patients with cardiovascular disorders. Thereafter, expression of these transcripts was investigated in vitro in human monocytes under calcification-mimicking conditions. RESULTS AND CONCLUSIONS: Transcriptional profiling on the vessels revealed that out of 84 targets investigated two were up-regulated more than 100-fold, 18 more than 30 and 15 more than 10, while the most noticeable down-regulation was observed by ephrin-A3 and platelet-derived growth factor alpha (PDGFA) genes. Based on the vessel results, investigations of the selected blood transcripts revealed that thrombospondin 1 (THBS1), thrombospondin 3 (THBS3), transforming growth factor, beta receptor 1 (TGFBR1), platelet-derived growth factor alpha, plasminogen activator, urokinase (PLAU) and platelet/endothelial cell adhesion molecule 1 (PECAM-1) were significantly elevated in cardiovascular blood as compared to corresponding controls. Induction of calcification-related conditions in vitro to human THP-1 monocytes led to noticeable modulation of these transcripts. Taken together, these data demonstrate that leucocytic THBS1, THBS3, TGFBR1, platelet-derived growth factor alpha, PLAU and PECAM-1 have a correlation with cardiovascular disorders and could be used as a supportive tool predicting development of this pathological condition.


Subject(s)
Platelet-Derived Growth Factor , Urokinase-Type Plasminogen Activator , Humans , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Platelet-Derived Growth Factor/genetics , Platelet-Derived Growth Factor/metabolism , Down-Regulation
11.
Arkh Patol ; 84(5): 5-10, 2022.
Article in Russian | MEDLINE | ID: mdl-36178216

ABSTRACT

OBJECTIVE: Reveal the involvement of platelet-endothelial cell adhesion molecules PECAM-1 in the transplanted heart rejection pathogenesis and determine the CD31 marker significance for biopsy diagnostics of the process form and degree. MATERIAL AND METHODS: Sections from endomyocardial biopsies of 56 heart transplant recipients were stained with hematoxylin and eosin. The streptavidin-biotin method was used to determine the expression of T-lymphocytes (CD3), B-lymphocytes (CD20), macrophages (CD68) and the C4d component of complement to determine the form and degree of graft rejection. Additionally, the expression of platelet-endothelial cell adhesion molecules PECAM-1 (CD31) was detected. Using computer morphometry in digital images, the area of pathological changes and the area of CD31 expression was measured with the calculation of the staining area coefficient. RESULTS: The highest levels of PECAM-1 expression were found in the absence of a heart transplant rejection. The degree of rejection of 1R is characterized by a decrease in expression by 1.3 times, when there are no significant signs of necrosis in the myocardium, the area of which increases sharply at degree 2R by 163.7 times, and at 3R by 570.7 times compared with 1R. The process proceeds in parallel with a further decrease in the level of CD31 expression and is accompanied by the development of hemorrhagic manifestations. The intensity of hemorrhages in the myocardium increases by 7.3 times with grade 3R compared with 1R. CONCLUSION: Expression of PECAM-1 reflects the state of the vascular bed of the heart transplant. Its decrease can be considered as an early pathomorphological marker of transplanted heart rejection. The expression of CD31 continues to decrease with increasing severity of rejection and is accompanied by the progressive development of necrosis and hemorrhages in the graft heart muscle.


Subject(s)
Graft Rejection , Heart Transplantation , Platelet Endothelial Cell Adhesion Molecule-1 , Biomarkers/metabolism , Biopsy , Graft Rejection/diagnosis , Graft Rejection/genetics , Heart Transplantation/adverse effects , Humans , Myocardium/pathology , Necrosis , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism
12.
Thromb Haemost ; 122(6): 961-973, 2022 06.
Article in English | MEDLINE | ID: mdl-34619794

ABSTRACT

The Ig-ITIM bearing receptors, PECAM-1 and CEACAM1, have been shown net negative regulators of platelet-collagen interactions and hemiITAM signaling pathways. In this study, a double knockout (DKO) mouse was developed with deleted PECAM-1 and CEACAM1 to study their combined contribution in platelet activation by glycoprotein VI, C-type lectin-like receptor 2, protease activated receptor (PAR4), ADP purinergic receptors, and thromboxane receptor (TP) A2 pathways. In addition, their collective contribution was examined in thrombus formation under high shear and microvascular thrombosis using in vivo models. DKO platelets responded normally to ADP purinergic receptors and the TP A2 pathway. However, DKO platelets released significantly higher amounts of P-selectin compared with hyper-responsive Pecam-1-/- or Ceacam1-/- versus wild-type (WT) upon stimulation with collagen-related peptide or rhodocytin. In contrast, DKO platelets showed increased amounts of P-selectin exposure upon stimulation with PAR4 agonist peptide or thrombin but not Pecam-1-/- , Ceacam1-/- , or WT platelets. Blockade of phospholipase C (PLC) or Rho A kinase revealed that DKO platelets enhanced α-granule release via PAR4/Gαq/PLC signaling without crosstalk with Src/Syk or G12/13 signaling pathways. Severely delayed clot retraction in vitro was observed in DKO phenotype. The DKO model revealed a significant increase in thrombus formation compared with the hyper-responsive Ceacam1-/- or Pecam-1-/- versus WT phenotype. DKO platelets have similar glycoprotein surface expression compared with Pecam-1-/- , Ceacam1-/- , and WT platelets. This study demonstrates that PECAM-1 and CEACAM1 work in concert to negatively regulate hemiITAM signaling, platelet-collagen interactions, and PAR4 Gαq protein- coupled signaling pathways. Both PECAM-1 and CEACAM1 are required for negative regulation of platelet activation and microvascular thrombosis in vivo.


Subject(s)
P-Selectin , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Thrombosis , Adenosine Diphosphate/metabolism , Animals , Antigens, CD , Blood Platelets/metabolism , Carcinoembryonic Antigen/metabolism , Cell Adhesion Molecules , Collagen/metabolism , Mice , P-Selectin/metabolism , Platelet Activation , Platelet Aggregation , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Receptors, Proteinase-Activated/metabolism , Receptors, Purinergic/metabolism , Thrombosis/genetics , Thrombosis/metabolism
13.
Development ; 149(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-34931661

ABSTRACT

Endothelial cell migration and proliferation are essential for the establishment of a hierarchical organization of blood vessels and optimal distribution of blood. However, how these cellular processes are quantitatively coordinated to drive vascular network morphogenesis remains unknown. Here, using the zebrafish vasculature as a model system, we demonstrate that the balanced distribution of endothelial cells, as well as the resulting regularity of vessel calibre, is a result of cell migration from veins towards arteries and cell proliferation in veins. We identify the Wiskott-Aldrich Syndrome protein (WASp) as an important molecular regulator of this process and show that loss of coordinated migration from veins to arteries upon wasb depletion results in aberrant vessel morphology and the formation of persistent arteriovenous shunts. We demonstrate that WASp achieves its function through the coordination of junctional actin assembly and PECAM1 recruitment and provide evidence that this is conserved in humans. Overall, we demonstrate that functional vascular patterning in the zebrafish trunk is established through differential cell migration regulated by junctional actin, and that interruption of differential migration may represent a pathomechanism in vascular malformations.


Subject(s)
Blood Vessels/growth & development , Morphogenesis/genetics , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Wiskott-Aldrich Syndrome Protein/genetics , Actins/genetics , Animals , Arteries/growth & development , Arteries/metabolism , Cell Movement/genetics , Cell Proliferation/genetics , Endothelial Cells/metabolism , Gene Expression Regulation, Developmental/genetics , Humans , Intercellular Junctions/genetics , Veins/growth & development , Veins/metabolism , Zebrafish/genetics , Zebrafish/growth & development
14.
Toxins (Basel) ; 13(11)2021 11 15.
Article in English | MEDLINE | ID: mdl-34822587

ABSTRACT

Snake venom metalloproteinases (SVMP) are involved in local inflammatory reactions observed after snakebites. Based on domain composition, they are classified as PI (pro-domain + proteolytic domain), PII (PI + disintegrin-like domains), or PIII (PII + cysteine-rich domains). Here, we studied the role of different SVMPs domains in inducing the expression of adhesion molecules at the microcirculation of the cremaster muscle of mice. We used Jararhagin (Jar)-a PIII SVMP with intense hemorrhagic activity, and Jar-C-a Jar devoid of the catalytic domain, with no hemorrhagic activity, both isolated from B. jararaca venom and BnP-1-a weakly hemorrhagic P1 SVMP from B. neuwiedi venom. Toxins (0.5 µg) or PBS (100 µL) were injected into the scrotum of mice, and 2, 4, or 24 h later, the protein and gene expression of CD54 and CD31 in the endothelium, and integrins (CD11a and CD11b), expressed in leukocytes were evaluated. Toxins induced significant increases in CD54, CD11a, and CD11b at the initial time and a time-related increase in CD31 expression. In conclusion, our results suggest that, despite differences in hemorrhagic activities and domain composition of the SVMPs used in this study, they behave similarly to the induction of expression of adhesion molecules that promote leukocyte recruitment.


Subject(s)
Bothrops , Crotalid Venoms/toxicity , Metalloendopeptidases/toxicity , Abdominal Muscles/drug effects , Animals , Cell Adhesion Molecules/metabolism , Crotalid Venoms/isolation & purification , Gene Expression Regulation/drug effects , Leukocytes/metabolism , Male , Metalloendopeptidases/isolation & purification , Mice , Microcirculation/drug effects , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Time Factors , Bothrops jararaca Venom
15.
Int J Biol Sci ; 17(15): 4093-4107, 2021.
Article in English | MEDLINE | ID: mdl-34803485

ABSTRACT

Diabetic nephropathy (DN) has become the common and principal microvascular complication of diabetes that could lead to end-stage renal disease. It was reported endothelial-to-mesenchymal transition (EndMT) in glomeruli plays an important role in DN. Enolase1 (ENO1) and Lysine Methyltransferase 5A (KMT5A) were found to modulate epithelial-to-mesenchymal transition in some situations. In the present study, we speculated KMT5A regulates ENO1 transcript, thus participating in hyperglycemia-induced EndMT in glomeruli of DN. Our study represented vimentin, αSMA and ENO1 expression elevated, and CD31 expression decreased in glomeruli of DN participants and rats. In vitro, high glucose induced EndMT by increase of ENO1 levels. Moreover, high glucose downregulated KMT5A levels and increased regulatory factor X1 (RFX1) levels. KMT5A upregulation or si-RFX1 decreased high glucose-induced ENO1 expression and EndMT. RFX1 overexpression- or sh-KMT5A-induced EndMT was attenuated by si-ENO1. Further, the association between KMT5A and RFX1 was verified. Furthermore, histone H4 lysine20 methylation (the direct target of KMT5A) and RFX1 positioned on ENO1 promoter region. sh-KMT5A enhanced positive action of RFX1 on ENO1 promoter activity. KMT5A reduction and RFX1 upregulation were verified in glomeruli of DN patients and rats. KMT5A associated with RFX1 to modulate ENO1, thus involved in hyperglycemia-mediated EndMT in glomeruli of DN.


Subject(s)
Diabetic Nephropathies/metabolism , Gene Expression Regulation/drug effects , Glucose/toxicity , Histone-Lysine N-Methyltransferase/metabolism , Adult , Animals , Biomarkers, Tumor , Blood Glucose , DNA-Binding Proteins , Epithelial-Mesenchymal Transition , Female , Histone-Lysine N-Methyltransferase/genetics , Human Umbilical Vein Endothelial Cells , Humans , Hyperglycemia/metabolism , Kidney Glomerulus , Male , Middle Aged , Phosphopyruvate Hydratase , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , RNA, Messenger/genetics , Rats , Regulatory Factor X1/genetics , Regulatory Factor X1/metabolism , Tumor Suppressor Proteins , Up-Regulation
16.
Int J Mol Sci ; 22(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34830345

ABSTRACT

Menisci play an essential role in shock absorption, joint stability, load resistance and its transmission thanks to their conformation. Adult menisci can be divided in three zones based on the vascularization: an avascular inner zone with no blood supply, a fully vascularized outer zone, and an intermediate zone. This organization, in addition to the incomplete knowledge about meniscal biology, composition, and gene expression, makes meniscal regeneration still one of the major challenges both in orthopedics and in tissue engineering. To overcome this issue, we aimed to investigate the role of hypoxia in the differentiation of the three anatomical areas of newborn piglet menisci (anterior horn (A), central body (C), and posterior horn (P)) and its effects on vascular factors. After sample collection, menisci were divided in A, C, P, and they were cultured in vitro under hypoxic (1% O2) and normoxic (21% O2) conditions at four different experimental time points (T0 = day of explant; T7 = day 7; T10 = day 10; T14 = day 14); samples were then evaluated through immune, histological, and molecular analyses, cell morpho-functional characteristics; with particular focus on matrix composition and expression of vascular factors. It was observed that hypoxia retained the initial phenotype of cells and induced extracellular matrix production resembling a mature tissue. Hypoxia also modulated the expression of angiogenic factors, especially in the early phase of the study. Thus, we observed that hypoxia contributes to the fibro-chondrogenic differentiation with the involvement of angiogenic factors, especially in the posterior horn, which corresponds to the predominant weight-bearing portion.


Subject(s)
Chondrocytes/drug effects , Fibroblasts/drug effects , Hypoxia/metabolism , Menisci, Tibial/drug effects , Oxygen/pharmacology , Animals , Animals, Newborn , Biomarkers/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Cell Differentiation/drug effects , Chondrocytes/cytology , Chondrocytes/metabolism , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type II/genetics , Collagen Type II/metabolism , Endostatins/genetics , Endostatins/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression , Hypoxia/genetics , Menisci, Tibial/cytology , Menisci, Tibial/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Swine , Tissue Culture Techniques
17.
Aging Cell ; 20(11): e13501, 2021 11.
Article in English | MEDLINE | ID: mdl-34687487

ABSTRACT

In chronic peripheral inflammation, endothelia in brain capillary beds could play a role for the apolipoprotein E4 (ApoE4)-mediated risk for Alzheimer's disease (AD) risk. Using human brain tissues, here we demonstrate that the interactions of endothelial CD31 with monomeric C-reactive protein (mCRP) versus ApoE were linked with shortened neurovasculature for AD pathology and cognition. Using ApoE knock-in mice, we discovered that intraperitoneal injection of mCRP, via binding to CD31 on endothelial surface and increased CD31 phosphorylation (pCD31), leading to cerebrovascular damage and the extravasation of T lymphocytes into the ApoE4 brain. While mCRP was bound to endothelial CD31 in a dose- and time-dependent manner, knockdown of CD31 significantly decreased mCRP binding and altered the expressions of vascular-inflammatory factors including vWF, NF-κB and p-eNOS. RNAseq revealed endothelial pathways related to oxidative phosphorylation and AD pathogenesis were enhanced, but endothelial pathways involving in epigenetics and vasculogenesis were inhibited in ApoE4. This is the first report providing some evidence on the ApoE4-mCRP-CD31 pathway for the cross talk between peripheral inflammation and cerebrovasculature leading to AD risk.


Subject(s)
Alzheimer Disease/metabolism , Apolipoproteins E/metabolism , C-Reactive Protein/metabolism , Endothelial Cells/metabolism , Genotype , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Signal Transduction/genetics , Adult , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Apolipoprotein E4/metabolism , Apolipoproteins E/genetics , Brain/metabolism , C-Reactive Protein/administration & dosage , Case-Control Studies , Cells, Cultured , Female , Gene Knock-In Techniques , Gene Knockdown Techniques , Humans , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Middle Aged , Oxidative Phosphorylation/drug effects , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Risk Factors , Signal Transduction/drug effects
18.
Adv Mater ; 33(36): e2102624, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34286875

ABSTRACT

The construction of an in vitro 3D cellular model to mimic the human liver is highly desired for drug discovery and clinical applications, such as patient-specific treatment and cell-based therapy in regenerative medicine. However, current bioprinting strategies are limited in their ability to generate multiple cell-laden microtissues with biomimetic structures. This study presents a method for producing hepatic-lobule-like microtissue spheroids using a bioprinting system incorporating a precursor cartridge and microfluidic emulsification system. The multiple cell-laden microtissue spheroids can be successfully generated at a speed of approximately 45 spheroids min-1 and with a uniform diameter. Hepatic and endothelial cells are patterned in a microtissue spheroid with the biomimetic structure of a liver lobule. The spheroids allow long-term culture with high cell viability, and the structural integrity is maintained longer than that of non-structured spheroids. Furthermore, structured spheroids show high MRP2, albumin, and CD31 expression levels. In addition, the in vivo study reveals that structured microtissue spheroids are stably engrafted. These results demonstrate that the method provides a valuable 3D structured microtissue spheroid model with lobule-like constructs and liver functions.


Subject(s)
Biomimetic Materials/chemistry , Albumins/genetics , Albumins/metabolism , Animals , Biomimetic Materials/metabolism , Bioprinting , Cell Survival , Cells, Cultured , Endothelial Cells/metabolism , Humans , Lab-On-A-Chip Devices , Liver , Mice, Inbred BALB C , Mice, Nude , Multidrug Resistance-Associated Protein 2/genetics , Multidrug Resistance-Associated Protein 2/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Spheroids, Cellular/metabolism , Tissue Engineering
19.
Environ Toxicol Pharmacol ; 87: 103701, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34237468

ABSTRACT

Gallic acid (GA) is an abundant natural polyphenolic compound found in vegetable and fruits that reduces the cardiac disease risk factor. This study aims to evaluate GA's role on cadmium (Cd) induced cardiac remodelling in experimental rats. Male Wistar rats were exposed to Cd (15 ppm) in drinking water and administered with GA orally (15 mg/kg/d) for 60 days. The results showed that GA regulated the lipid profile and reduced the LDL to 57 % compared with Cd treated rats. GA inhibited cardiac marker enzymes activity of CK-NAC (to 72.7 %) and CK-MB (to 100.3 %). Moreover, GA attenuated lipid peroxidation and enhanced the cardiac glutathione S transferase (GST) activity (89.2 %), glutathione peroxidase (GPx) (87 %), superoxide dismutase (SOD) (88.4 %) and catalase (CAT) activity (86.5 %). Histopathological examination showed that GA impaired the ventricular hypertrophy and fibrotic proliferation induced by Cd in rats. The combination of GA + Cd, decreased the gene expression of ANP (1-fold), BNP (0.5-fold) and ß- MHC (0.9-fold). Furthermore, GA significantly reduced the expression of profibrotic (TGF-ß) and proinflammatory (MCP-1) gene in Cd intoxicated rats. GA upregulated the expression of Nrf2 (2-fold), HO-1 (3-fold), and PECAM-1 (0.6-fold), which augments the detoxifying enzyme activity and cellular immunity in Cd intoxicated rats. The increased protein expression of Nrf2, PECAM-1 and decreased AKT-1 levels confirmed the mechanical action of GA during the hypertrophic condition. Thus, our results suggest that GA could act as a potential therapeutic agent regulating Nrf2 and PECAM-1 signalling pathways, thereby ameliorating Cd-induced pathological cardiac remodelling.


Subject(s)
Cadmium/toxicity , Cardiomegaly/chemically induced , Cardiomegaly/drug therapy , Cardiomegaly/pathology , Gallic Acid/therapeutic use , Myocardium/pathology , Animals , Cardiomegaly/metabolism , Gallic Acid/pharmacology , Lipid Peroxidation/drug effects , Male , Myocardium/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidoreductases/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Wistar , Signal Transduction/drug effects
20.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Article in English | MEDLINE | ID: mdl-34330825

ABSTRACT

A network of molecular factors drives the development, differentiation, and maintenance of endothelial cells. Friend leukemia integration 1 transcription factor (FLI1) is a bona fide marker of endothelial cells during early development. In zebrafish Tg(fli1:EGFP)y1 , we identified two endothelial cell populations, high-fli1+ and low-fli1+, by the intensity of green fluorescent protein signal. By comparing RNA-sequencing analysis of non-fli1 expressing cells (fli1-) with these two (fli1+) cell populations, we identified several up-regulated genes, not previously recognized as important, during endothelial development. Compared with fli1- and low-fli1+ cells, high-fli1+ cells showed up-regulated expression of the zinc finger transcription factor PRDI-BF1 and RIZ homology domain containing 16 (prdm16). Prdm16 knockdown (KD) by morpholino in the zebrafish larva was associated with impaired angiogenesis and increased number of low-fli1+ cells at the expense of high-fli1+ cells. In addition, PRDM16 KD in endothelial cells derived from human-induced pluripotent stem cells impaired their differentiation and migration in vitro. Moreover, zebrafish mutants (mut) with loss of function for the oncogene LIM domain only 2 (lmo2) also showed reduced prdm16 gene expression combined with impaired angiogenesis. Prdm16 expression was reduced further in endothelial (CD31+) cells compared with CD31- cells isolated from lmo2-mutants (lmo2-mut) embryos. Chromatin immunoprecipitation-PCR demonstrated that Lmo2 binds to the promoter and directly regulates the transcription of prdm16 This work unveils a mechanism by which prdm16 expression is activated in endothelial cells by Lmo2 and highlights a possible therapeutic pathway by which to modulate endothelial cell growth and repair.


Subject(s)
DNA-Binding Proteins/metabolism , Endothelial Cells/physiology , Induced Pluripotent Stem Cells/physiology , Neovascularization, Physiologic/physiology , Proto-Oncogene Protein c-fli-1/physiology , Zebrafish Proteins/metabolism , Animals , Animals, Genetically Modified , Cell Differentiation , DNA-Binding Proteins/genetics , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , RNA-Seq , Transcriptome , Up-Regulation , Zebrafish , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...