Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.171
Filter
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 712-719, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38708505

ABSTRACT

OBJECTIVE: To explore the mechanism underlying the protective effect of α2-macroglobulin (A2M) against glucocorticoid-induced femoral head necrosis. METHODS: In a human umbilical vein endothelial cell (HUVEC) model with injuries induced by gradient concentrations of dexamethasone (DEX; 10-8-10-5 mol/L), the protective effects of A2M at 0.05 and 0.1 mg/mL were assessed by examining the changes in cell viability, migration, and capacity of angiogenesis using CCK-8 assay, Transwell and scratch healing assays and angiogenesis assay. The expressions of CD31 and VEGF-A proteins in the treated cells were detected using Western blotting. In BALB/c mouse models of avascular necrosis of the femoral head induced by intramuscular injections of methylprednisolone, the effects of intervention with A2M on femoral trabecular structure, histopathological characteristics, and CD31 expression were examined with Micro-CT, HE staining and immunohistochemical staining. RESULTS: In cultured HUVECs, DEX treatment significantly reduced cell viability, migration and angiogenic ability in a concentration- and time-dependent manner (P<0.05), and these changes were obviously reversed by treatment with A2M in positive correlation with A2M concentration (P<0.05). DEX significantly reduced the expression of CD31 and VEGF-A proteins in HUVECs, while treatment with A2M restored CD31 and VEGF-A expressions in the cells (P<0.05). The mouse models of femoral head necrosis showed obvious trabecular damages in the femoral head, where a large number of empty lacunae and hypertrophic fat cells could be seen and CD31 expression was significantly decreased (P<0.05). A2M treatment of the mouse models significantly improved trabecular damages, maintained normal bone tissue structures, and increased CD31 expression in the femoral head (P<0.05). CONCLUSION: A2M promotes proliferation, migration, and angiogenesis of DEX-treated HUVECs and alleviates methylprednisolone-induced femoral head necrosis by improving microcirculation damages and maintaining microcirculation stability in the femoral head.


Subject(s)
Cell Movement , Cell Proliferation , Dexamethasone , Femur Head Necrosis , Glucocorticoids , Human Umbilical Vein Endothelial Cells , Mice, Inbred BALB C , Animals , Mice , Femur Head Necrosis/chemically induced , Femur Head Necrosis/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Glucocorticoids/adverse effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Dexamethasone/adverse effects , Dexamethasone/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Cell Survival/drug effects , Femur Head/pathology , Femur Head/blood supply , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Angiogenesis
2.
PLoS One ; 19(5): e0303010, 2024.
Article in English | MEDLINE | ID: mdl-38748682

ABSTRACT

Diabetic Retinopathy (DR) is the leading cause of vision loss in working-age adults. The hallmark features of DR include vascular leakage, capillary loss, retinal ischemia, and aberrant neovascularization. Although the pathophysiology is not fully understood, accumulating evidence supports elevated reactive oxygen species associated with increased activity of NADPH oxidase 4 (Nox4) as major drivers of disease progression. Previously, we have shown that Nox4 upregulation in retinal endothelial cells by diabetes leads to increased vascular leakage by an unknown mechanism. Platelet endothelial cell adhesion molecule 1 (PECAM-1) is a cell surface molecule that is highly expressed in endothelial cells and regulates endothelial barrier function. In the present study, using endothelial cell-specific human Nox4 transgenic (TG) mice and endothelial cell-specific Nox4 conditional knockout (cKO) mice, we investigated the impact of Nox4 upregulation on PECAM-1 expression in mouse retinas and brain microvascular endothelial cells (BMECs). Additionally, cultured human retinal endothelial cells (HRECs) transduced with adenovirus overexpressing human Nox4 were used in the study. We found that overexpression of Nox4 increases PECAM-1 mRNA but has no effect on its protein expression in the mouse retina, BMECs, or HRECs. Furthermore, PECAM-1 mRNA and protein expression was unchanged in BMECs isolated from cKO mice compared to wild type (WT) mice with or without 2 months of diabetes. Together, these findings do not support a significant role of Nox4 in the regulation of PECAM-1 expression in the diabetic retina and endothelial cells. Further studies are warranted to elucidate the mechanism of Nox4-induced vascular leakage by investigating other intercellular junctional proteins in endothelial cells and their implications in the pathophysiology of diabetic retinopathy.


Subject(s)
Diabetic Retinopathy , Endothelial Cells , NADPH Oxidase 4 , Platelet Endothelial Cell Adhesion Molecule-1 , Up-Regulation , Animals , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/genetics , Diabetic Retinopathy/pathology , Mice , Humans , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Endothelial Cells/metabolism , Mice, Knockout , NADPH Oxidases/metabolism , NADPH Oxidases/genetics , Retina/metabolism , Retina/pathology , Disease Models, Animal , Mice, Transgenic
3.
Front Immunol ; 15: 1390026, 2024.
Article in English | MEDLINE | ID: mdl-38807604

ABSTRACT

Introduction: The pulmonary endothelium is the primary target of lung ischemia-reperfusion injury leading to primary graft dysfunction after lung transplantation. We hypothesized that treating damaged rat lungs by a transient heat stress during ex-vivo lung perfusion (EVLP) to elicit a pulmonary heat shock response could protect the endothelium from severe reperfusion injury. Methods: Rat lungs damaged by 1h warm ischemia were reperfused on an EVLP platform for up to 6h at a constant temperature (T°) of 37°C (EVLP37°C group), or following a transient heat stress (HS) at 41.5°C from 1 to 1.5h of EVLP (EVLPHS group). A group of lungs exposed to 1h EVLP only (pre-heating conditions) was added as control (Baseline group). In a first protocol, we measured lung heat sock protein expression (HSP70, HSP27 and Hsc70) at selected time-points (n=5/group at each time). In a second protocol, we determined (n=5/group) lung weight gain (edema), pulmonary compliance, oxygenation capacity, pulmonary artery pressure (PAP) and vascular resistance (PVR), the expression of PECAM-1 (CD31) and phosphorylation status of Src-kinase and VE-cadherin in lung tissue, as well as the release in perfusate of cytokines (TNFα, IL-1ß) and endothelial biomarkers (sPECAM, von Willebrand Factor -vWF-, sE-selectin and sICAM-1). Histological and immunofluorescent studies assessed perivascular edema and formation of 3-nitrotyrosine (a marker of peroxinitrite) in CD31 lung endothelium. Results: HS induced an early (3h) and persisting expression of HSP70 and HSP27, without influencing Hsc70. Lungs from the EVLP37°C group developed massive edema, low compliance and oxygenation, elevated PAP and PVR, substantial release of TNFα, IL-1ß, s-PECAM, vWF, E-selectin and s-ICAM, as well as significant Src-kinase activation, VE-cadherin phosphorylation, endothelial 3-NT formation and reduced CD31 expression. In marked contrast, all these alterations were either abrogated or significantly attenuated by HS treatment. Conclusion: The therapeutic application of a transient heat stress during EVLP of damaged rat lungs reduces endothelial permeability, attenuates pulmonary vasoconstriction, prevents src-kinase activation and VE-cadherin phosphorylation, while reducing endothelial peroxinitrite generation and the release of cytokines and endothelial biomarkers. Collectively, these data demonstrate that therapeutic heat stress may represent a promising strategy to protect the lung endothelium from severe reperfusion injury.


Subject(s)
Heat-Shock Response , Lung , Perfusion , Animals , Lung/pathology , Lung/metabolism , Rats , Male , Perfusion/methods , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Lung Transplantation/adverse effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Platelet Endothelial Cell Adhesion Molecule-1/metabolism
4.
J Bone Miner Metab ; 42(3): 282-289, 2024 May.
Article in English | MEDLINE | ID: mdl-38704516

ABSTRACT

INTRODUCTION: Glucocorticoids delay fracture healing and induce osteoporosis. Angiogenesis plays an important role in bone repair after bone injury. Plasminogen activator inhibitor-1 (PAI-1) is the principal inhibitor of plasminogen activators and an adipocytokine that regulates metabolism. However, the mechanisms by which glucocorticoids delay bone repair remain unclear. MATERIALS AND METHODS: Therefore, we herein investigated the roles of PAI-1 and angiogenesis in glucocorticoid-induced delays in bone repair after femoral bone injury using PAI-1-deficient female mice intraperitoneally administered dexamethasone (Dex). RESULTS: PAI-1 deficiency significantly attenuated Dex-induced decreases in the number of CD31-positive vessels at damaged sites 4 days after femoral bone injury in mice. PAI-1 deficiency also significantly ameliorated Dex-induced decreases in the number of CD31- and endomucin-positive type H vessels and CD31-positive- and endomucin-negative vessels at damaged sites 4 days after femoral bone injury. Moreover, PAI-1 deficiency significantly mitigated Dex-induced decreases in the expression of vascular endothelial growth factor as well as hypoxia inducible factor-1α, transforming growth factor-ß1, and bone morphogenetic protein-2 at damaged sites 4 days after femoral bone injury. CONCLUSION: The present results demonstrate that Dex-reduced angiogenesis at damaged sites during the early bone-repair phase after femoral bone injury partly through PAI-1 in mice.


Subject(s)
Dexamethasone , Glucocorticoids , Neovascularization, Physiologic , Plasminogen Activator Inhibitor 1 , Animals , Mice , Plasminogen Activator Inhibitor 1/metabolism , Female , Glucocorticoids/pharmacology , Neovascularization, Physiologic/drug effects , Dexamethasone/pharmacology , Femur/drug effects , Femur/metabolism , Femur/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Vascular Endothelial Growth Factor A/metabolism , Fracture Healing/drug effects , Mice, Knockout , Mice, Inbred C57BL , Bone Morphogenetic Protein 2/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Angiogenesis
5.
Zhonghua Zhong Liu Za Zhi ; 46(5): 399-408, 2024 May 23.
Article in Chinese | MEDLINE | ID: mdl-38742353

ABSTRACT

Objectives: To investigate the effect of the expression of low-density lipoprotein receptor associated protein (LDLR) on the vascular abnormalities in hepatocellular carcinoma (HCC) and its mechanisms. Methods: Based on the information of Oncomine Cancer GeneChip database, we analyzed the correlation between the expression level of LDLR and the expression level of carcinoembryonic antigen (CEA) and CD31 in hepatocellular carcinoma tissues. Lentiviral transfection of short hairpin RNA target genes was used to construct LDLR-knockdown MHCC-97H and HLE hepatocellular carcinoma cells. The differential genes and their expression level changes in LDLR-knockdown hepatocellular carcinoma cells were detected by transcriptome sequencing, real-time fluorescence quantitative polymerase chain reaction, and protein immunoblotting. The gene-related signaling pathways that involve LDLR were clarified by enrichment analysis. The effect of LDLR on CEA was assessed by the detection of CEA content in conditioned medium of hepatocellular carcinoma cells. Angiogenesis assay was used to detect the effect of LDLR on the angiogenic capacity of human umbilical vein endothelial cells, as well as the role of CEA in the regulation of angiogenesis by LDLR. Immunohistochemical staining was used to detect the expression levels of LDLR in 176 hepatocellular carcinoma tissues, and CEA and CD31 in 146 hepatocellular carcinoma tissues, and analyze the correlations between the expression levels of LDLR, CEA, and CD31 in the tissues, serum CEA, and alanine transaminase (ALT). Results: Oncomine database analysis showed that the expressions of LDLR and CEA in the tissues of hepatocellular carcinoma patients with portal vein metastasis were negatively correlated (r=-0.64, P=0.001), whereas the expressions of CEA and CD31 in these tissues were positively correlated ( r=0.46, P=0.010). The transcriptome sequencing results showed that there were a total of 1 032 differentially expressed genes in the LDLR-knockdown group and the control group of MHCC-97H cells, of which 517 genes were up-regulated and 515 genes were down-regulated. The transcript expression level of CEACAM5 was significantly up-regulated in the cells of the LDLR-knockdown group. The Gene Ontology (GO) function enrichment analysis showed that the differential genes were most obviously enriched in the angiogenesis function. The Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis showed that the relevant pathways involved mainly included the cellular adhesion patch, the extracellular matrix receptor interactions, and the interactions with the extracellular matrix receptors. The CEA content in the conditioned medium of the LDLR-knockdown group was 43.75±8.43, which was higher than that of the control group (1.15±0.14, P<0.001). The results of angiogenesis experiments showed that at 5 h, the number of main junctions, the number of main segments, and the total area of the lattice formed by HUVEC cells cultured with the conditioned medium of MHCC-97H cells in the LDLR-knockdown group were 295.3±26.4, 552.5±63.8, and 2 239 781.0±13 8211.9 square pixels, which were higher than those of the control group (113.3±23.5, 194.8±36.5, and 660 621.0±280 328.3 square pixels, respectively, all P<0.01).The number of vascular major junctions, the number of major segments, and the total area of the lattice formed by HUVEC cells cultured in conditioned medium with HLE cells in the LDLR-knockdown group were 245.3±42.4, 257.5±20.4, and 2 535 754.5±249 094.2 square pixels, respectively, which were all higher than those of the control group (113.3±23.5, 114.3±12.2, and 1 565 456.5±219 259.7 square pixels, respectively, all P<0.01). In the conditioned medium for the control group of MHCC-97H cells,the number of main junctions, the number of main segments, and the total area of the lattice formed by the addition of CEA to cultured HUVEC cells were 178.9±12.0, 286.9±12.3, and 1 966 990.0±126 249.5 spixels, which were higher than those in the control group (119.7±22.1, 202.7±33.7, and 1 421 191.0±189 837.8 square pixels, respectively). The expression of LDLR in hepatocellular carcinoma tissues was not correlated with the expression of CEA, but was negatively correlated with the expression of CD31 (r=-0.167, P=0.044), the level of serum CEA (r=-0.061, P=0.032), and the level of serum ALT(r=-0.147,P=0.05). The expression of CEA in hepatocellular carcinoma tissues was positively correlated with the expression of CD31 (r=0.192, P=0.020). The level of serum CEA was positively correlated with the level of serum ALT (r=0.164, P=0.029). Conclusion: Knocking down LDLR can promote vascular abnormalities in HCC by releasing CEA.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Neovascularization, Pathologic , Receptors, LDL , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/blood supply , Receptors, LDL/metabolism , Receptors, LDL/genetics , Cell Line, Tumor , Neovascularization, Pathologic/metabolism , Carcinoembryonic Antigen/metabolism , Carcinoembryonic Antigen/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Signal Transduction , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Transcriptome , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics
6.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(5): 486-495, 2024 May 09.
Article in Chinese | MEDLINE | ID: mdl-38637003

ABSTRACT

Objective: To observe whether endothelial cells undergo pyroptosis in the inflammatory periodontal environment by using a model in vivo and in vitro, providing an experimental basis for indepth understanding of the underlying pathogenesis of periodontitis. Methods: According to the classification of periodontal diseases of 2018, gingival tissues were collected from periodontally healthy subjects and patients with stage Ⅲ-Ⅳ, grade C periodontitis, who presented Department of Oral and Maxillofacial Surgery and Department of Periodontology, School of Stomatology, The Fourth Military Medical University from April to May 2022. Immunohistochemical staining was performed to detect the expression level and distribution of gasdermin D (GSDMD), a hallmark protein of cell pyroptosis, in gingival tissues. Periodontitis models were established in each group by ligating the maxillary second molar teeth of three mice for 2 weeks (ligation group). The alveolar bone resorption was determined by micro-CT (mice without ligation treatment were used as the control group), and the colocalization of GSDMD and CD31 were quantitatively analyzed by immunofluorescence staining in gingival tissues of healthy and inflammatory mice. Human umbilical vein endothelial cells (HUVECs) were cultured in vitro and treated with lipopolysaccharide (LPS) of Porphyromonas gingivalis (Pg) combined with adenosine triphosphate (ATP) at various concentrations of 0.5, 1.0, 2.5, 5.0, and 10.0 mg/L, respectively, and the 0 mg/L group was set as the control group at the same time. Scanning electron microscopy was used to observe the morphology of HUVECs. Western blotting was used to detect the expression of gasdermin D-N terminal domains (GSDMD-N) protein and immunofluorescence cell staining was used to detect the expression and distribution of GSDMD. Cell counting kit-8 (CCK-8) was used to detect the proliferative ability of HUVECs, and propidium iodide (PI) staining was used to detect the integrity of cell membrane of HUVECs. Results: Immunohistochemistry showed that GSDMD in gingival tissues of periodontitis was mainly distributed around blood vessels and its expression level was higher than that in healthy tissues. Micro-CT showed that alveolar bone resorption around the maxillary second molar significantly increased in ligation group mice compared with control subjects (t=8.88, P<0.001). Immunofluorescence staining showed significant colocalization of GSDMD with CD31 in the gingival vascular endothelial cells in mice of ligation group. The results of scanning electron microscopy showed that there were pores of different sizes, the typical morphology of pyroptosis, on HUVECs cell membranes in the inflammatory environment simulated by ATP combined with different concentrations of LPS, and 2.5 mg/L group showed the most dilated and fused pores on cell membranes, with the cells tended to lyse and die. Western blotting showed that the expression of GSDMD-N, the hallmark protein of cell pyroptosis, was significantly higher in 2.5 and 5.0 mg/L groups than that in the control group (F=3.86, P<0.01). Immunofluorescence cell staining showed that the average fluorescence intensity of GSDMD in 2.5 mg/L group elevated the most significantly in comparison with that in the control group (F=35.25, P<0.001). The CCK-8 proliferation assay showed that compared to the control group (1.00±0.02), 0.5 mg/L (0.52±0.07), 1.0 mg/L (0.57±0.10), 2.5 mg/L (0.58±0.04), 5.0 mg/L (0.55±0.04), 10.0 mg/L (0.61±0.03) groups inhibited cell proliferation (F=39.95, P<0.001). PI staining showed that the proportion of positive stained cells was highest [(56.07±3.22)%] in 2.5 mg/L group (F=88.24, P<0.001). Conclusions: Endothelial cells undergo significant pyroptosis in both in vivo and in vitro periodontal inflammatory environments, suggesting that endothelial cell pyroptosis may be an important pathogenic factor contributing to the pathogenesis of periodontitis.


Subject(s)
Endothelial Cells , Gingiva , Human Umbilical Vein Endothelial Cells , Periodontitis , Phosphate-Binding Proteins , Platelet Endothelial Cell Adhesion Molecule-1 , Pyroptosis , Animals , Mice , Humans , Periodontitis/metabolism , Periodontitis/pathology , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Gingiva/pathology , Gingiva/metabolism , Gingiva/cytology , Phosphate-Binding Proteins/metabolism , Endothelial Cells/metabolism , Alveolar Bone Loss/pathology , Alveolar Bone Loss/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , X-Ray Microtomography , Disease Models, Animal , Porphyromonas gingivalis
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(2): 252-259, 2024 Feb 20.
Article in Chinese | MEDLINE | ID: mdl-38501410

ABSTRACT

OBJECTIVE: To investigate the protective effect of PF-562271, a FAK inhibitor, against aging platelet-induced injury in human umbilical vein endothelial cells (HUVECs). METHODS: Cultured HUVECs were treated with vehicle, lipopolysaccharide (LPS), LPS+aging platelets, or LPS+aging platelets+PF-562271. The changes in protein expressions of FAK, pFAK and PECAM-1 in the treated cells were detected using Western blotting and immunofluorescence assay, and the level of reactive oxygen species (ROS) was detected with flow cytometry. The changes of barrier function of the cells were assessed with cell permeability test and transendothelial cell resistance test. RT-qPCR was used to analyze mRNA expressions of inflammatory factors, and pro-inflammatory cytokine levels in the culture supernatants was determined with enzyme-linked immunosorbent assay. Immunofluorescence assay was used to examine the effect of the ROS inhibitor vitamin C on PECAM-1 expression in the cells with different treatments. RESULTS: Treatment of HUVECs with LPS and aging platelets significantly increased cellular protein expressions of FAK, pFAK and PECAM-1, which were effectively lowered by addition of PF-562271 (P < 0.05). LPS and aged platelets obviously enhanced ROS production in the cells, which was inhibited by the addition of PF-562271 (P < 0.001). PF-562271 significantly alleviated the damage of endothelial cell barrier function of the cells caused by LPS and aging platelets (P < 0.01). The expressions of TNF-α, IL-6 and IL-8 in HUVECs increased significantly after exposure to LPS and aging platelets, and were obviously lowered after treatment with PF-562271 (P < 0.05). Treatment with vitamin C significantly decreased the expression of PECAM-1 protein in the cells (P < 0.01). CONCLUSION: The FAK inhibitor PF-562271 alleviates endothelial cell damage induced by LPS and aging platelets by lowering cellular oxidative stress levels and reducing inflammatory responses.


Subject(s)
Aging , Indoles , Lipopolysaccharides , Pyridines , Sulfonamides , Humans , Aged , Human Umbilical Vein Endothelial Cells/metabolism , Lipopolysaccharides/pharmacology , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/pharmacology , Reactive Oxygen Species/metabolism , Ascorbic Acid/metabolism , Ascorbic Acid/pharmacology
8.
J Cutan Pathol ; 51(6): 430-433, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38525523

ABSTRACT

The histopathologic diagnosis of poorly differentiated cutaneous angiosarcoma can be challenging. We report a case of cutaneous epithelioid angiosarcoma with numerous multinucleated giant cells (MGCs) developing pulmonary metastasis. A 79-year-old man presented with a red-purple plaque on the scalp. A skin biopsy revealed epithelioid cell proliferation, admixed with numerous MGCs, and background hemorrhage. Vascular spaces were focally present and lined by atypical endothelial cells, including MGCs. Immunohistochemically, tumor cells, including MGCs, were positive for CD31, D2-40, and ERG. The patient received radiation therapy and chemotherapy, after which a follow-up CT scan revealed symptomless pneumothorax and pulmonary metastases. The patient received palliative partial lung resection, and the specimen revealed histopathological and immunohistochemical features similar to the primary cutaneous lesion. Our report expands the morphologic spectrum of cutaneous epithelioid angiosarcoma. Cutaneous angiosarcoma is an aggressive neoplasm; thus, awareness of this rare manifestation is important.


Subject(s)
Giant Cells , Hemangiosarcoma , Lung Neoplasms , Skin Neoplasms , Humans , Male , Aged , Skin Neoplasms/pathology , Skin Neoplasms/diagnosis , Skin Neoplasms/secondary , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/secondary , Giant Cells/pathology , Hemangiosarcoma/pathology , Hemangiosarcoma/diagnosis , Scalp/pathology , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Epithelioid Cells/pathology
9.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38338969

ABSTRACT

In humans and animal models, temporal lobe epilepsy (TLE) is associated with reorganization of hippocampal neuronal networks, gliosis, neuroinflammation, and loss of integrity of the blood-brain barrier (BBB). More than 30% of epilepsies remain intractable, and characterization of the molecular mechanisms involved in BBB dysfunction is essential to the identification of new therapeutic strategies. In this work, we induced status epilepticus in rats through injection of the proconvulsant drug pilocarpine, which leads to TLE. Using RT-qPCR, double immunohistochemistry, and confocal imaging, we studied the regulation of reactive glia and vascular markers at different time points of epileptogenesis (latent phase-3, 7, and 14 days; chronic phase-1 and 3 months). In the hippocampus, increased expression of mRNA encoding the glial proteins GFAP and Iba1 confirmed neuroinflammatory status. We report for the first time the concomitant induction of the specific proteins CD31, PDGFRß, and ColIV-which peak at the same time points as inflammation-in the endothelial cells, pericytes, and basement membrane of the BBB. The altered expression of these proteins occurs early in TLE, during the latent phase, suggesting that they could be associated with the early rupture and pathogenicity of the BBB that will contribute to the chronic phase of epilepsy.


Subject(s)
Blood-Brain Barrier , Epilepsy, Temporal Lobe , Epilepsy , Receptor, Platelet-Derived Growth Factor beta , Status Epilepticus , Animals , Humans , Rats , Blood-Brain Barrier/metabolism , Collagen/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Epilepsy/metabolism , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/metabolism , Hippocampus/metabolism , Neuroglia/metabolism , Pericytes/metabolism , Pilocarpine/adverse effects , Rats, Sprague-Dawley , Status Epilepticus/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Receptors, Platelet-Derived Growth Factor/genetics , Receptors, Platelet-Derived Growth Factor/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism
10.
Cardiol Young ; 34(2): 308-313, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37385726

ABSTRACT

BACKGROUND: Metabolic syndrome leading to type 2 diabetes mellitus and cardiovascular diseases is a chronic multifactorial syndrome, associated with low-grade inflammation status. In our study, we aimed at assessing the serum levels of follistatin (FST), pregnancy-associated plasma protein-A (PAPP-A), and platelet/endothelial cell adhesion molecule-1 (PECAM-1) in adolescent patients with metabolic syndrome. METHODS: This study was performed in 43 (19 males, 24 females) metabolic syndrome adolescents and 37 lean controls matched for age and sex. The serum levels of FST, PECAM-1, and PAPP-A were measured by using ELISA method. RESULTS: Serum FST and PAPP-A levels in metabolic syndrome were significantly higher than those of controls (p < 0.005 and p < 0.05). However, there was no difference in serum PECAM-1 levels between metabolic syndrome and control groups (p = 0.927). There was a significant positive correlation between serum FST and triglyceride (r = 0.252; p < 0.05), and PAPP-A and weight, (r = 0.252; p < 0.05) in metabolic syndrome groups. Follistatin was determined statistically significant in both univariate (p = 0,008) and multivariate (p = 0,011) logistic regression analysis. CONCLUSIONS: Our findings indicated a significant relationship between FST and PAPP-A levels and metabolic syndrome. These findings offer the possibility of using these markers in diagnosis of metabolic syndrome in adolescents as the prevention of the future complications.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Metabolic Syndrome , Male , Female , Humans , Adolescent , Metabolic Syndrome/complications , Cardiovascular Diseases/etiology , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Follistatin , Diabetes Mellitus, Type 2/complications , Biomarkers , Risk Factors , Pregnancy-Associated Plasma Protein-A/analysis , Pregnancy-Associated Plasma Protein-A/metabolism , Heart Disease Risk Factors
11.
J Biosci Bioeng ; 137(1): 64-75, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37973520

ABSTRACT

The liver is one of the main organs involved in the metabolism of xenobiotics and a key organ in toxicity studies. Prior to accessing the hepatocytes, xenobiotics pass through the hepatic sinusoid formed by liver sinusoidal endothelial cells (LSECs). The LSECs barrier regulates the kinetics and concentrations of the xenobiotics before their metabolic processing by the hepatocytes. To mimic this physiological situation, we developed an in vitro model reproducing an LSECs barrier in coculture with a hepatocyte biochip, using a fluidic platform. This technology made dynamic coculture and tissue crosstalk possible. SK-HEP-1 and HepG2/C3a cells were used as LSECs and as hepatocyte models, respectively. We confirmed the LSECs phenotype by measuring PECAM-1 and stabilin-2 expression levels and the barrier's permeability/transport properties with various molecules. The tightness of the SK-HEP-1 barrier was enhanced in the dynamic coculture. The morphology, albumin secretion, and gene expression levels of markers of HepG2/C3a were not modified by coculture with the LSECs barrier. Using acetaminophen, a well-known hepatotoxic drug, to study tissue crosstalk, there was a reduction in the expression levels of the LSECs markers stabilin-2 and PECAM-1, and a modification of those of CLEC4M and KDR. No HepG2/C3a toxicity was observed. The metabolisation of acetaminophen by HepG2/C3a monocultures and cocultures was confirmed. Although primary cells are required to propose a fully relevant model, the present approach highlights the potential of our system for investigating xenobiotic metabolism and toxicity.


Subject(s)
Acetaminophen , Endothelial Cells , Coculture Techniques , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Acetaminophen/toxicity , Acetaminophen/metabolism , Hepatocytes , Liver
12.
Int J Mol Sci ; 24(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38069044

ABSTRACT

Gintonin, newly extracted from ginseng, is a glycoprotein that acts as an exogenous lysophosphatidic acid (LPA) receptor ligand. This study aimed to demonstrate the in vivo preventive effects of gintonin on gastric damage. ICR mice were randomly assigned to five groups: a normal group (received saline, 0.1 mL/10 g, p.o.); a control group (administered 0.3 M HCl/ethanol, 0.1 mL/10 g, p.o.) or indomethacin (30 mg/kg, p.o.); gintonin at two different doses (50 mg/kg or 100 mg/kg, p.o.) with either 0.3 M HCl/ethanol or indomethacin; and a positive control (Ranitidine, 40 mg/kg, p.o.). After gastric ulcer induction, the gastric tissue was examined to calculate the ulcer index. The expression of gastric damage markers, such as tumor necrosis factor (TNF)-α, cyclooxygenase 2 (COX-2), and LPA2 and LPA5 receptors, were measured by Western blotting. Interleukin-6 (IL-6) and prostaglandin E2 (PGE2) levels were measured by enzyme-linked immunosorbent assay. The platelet endothelial cell adhesion molecule (PECAM-1), Evans blue, and occludin levels in gastric tissues were measured using immunofluorescence analysis. Both HCl/ethanol- and indomethacin-induced gastric ulcers showed increased TNF-α, IL-6, Evans blue permeation, and PECAM-1, and decreased COX-2, PGE2, occludin, and LPA5 receptor expression levels. However, oral administration of gintonin alleviated the gastric ulcer index induced by HCl/ethanol and indomethacin in a dose-dependent manner. Gintonin suppressed TNF-α and IL-6 expression, but increased COX-2 expression and PGE2 levels in mouse gastric tissues. Gintonin intake also increased LPA5 receptor expression in mouse gastric tissues. These results indicate that gintonin can play a role in gastric protection against gastric damage induced by HCl/ethanol or indomethacin.


Subject(s)
Indomethacin , Stomach Ulcer , Mice , Animals , Indomethacin/pharmacology , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Cyclooxygenase 2/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ethanol/pharmacology , Interleukin-6/metabolism , Dinoprostone/metabolism , Evans Blue/metabolism , Occludin/metabolism , Mice, Inbred ICR , Gastric Mucosa/metabolism
13.
Biochem Biophys Res Commun ; 682: 180-186, 2023 11 19.
Article in English | MEDLINE | ID: mdl-37820453

ABSTRACT

Temsirolimus is a first-generation mTOR inhibitor commonly used in the clinical treatment of cancers that is associated with lung injury. However, the mechanism underlying this adverse effect remains elusive. Endothelial barrier dysfunction plays a pivotal role in the infiltration of neutrophils into the pulmonary alveoli, which eventually induces lung injury. The present study demonstrates that temsirolimus induces the aberrant expression of adhesion molecules in endothelial cells, leading to enhanced neutrophil infiltration and subsequent lung injury. Results of a mouse model revealed that temsirolimus disrupted capillary-alveolar barrier function and facilitated neutrophil transmigration across the endothelium within the alveolar space. Consistent with our in vivo observations, temsirolimus impaired intercellular barrier function within monolayers of human lung endothelial cells, resulting in increased neutrophil infiltration. Furthermore, we demonstrated that temsirolimus-induced neutrophil transendothelial migration was mediated by platelet endothelial cell adhesion molecule-1 (PECAM-1) in both in vitro and in vivo experiments. Collectively, these findings highlight that temsirolimus induces endothelial barrier dysfunction via PECAM-1-dependent pathway both in vitro and in vivo, ultimately leading to neutrophil infiltration and subsequent pulmonary injury.


Subject(s)
Lung Injury , Animals , Mice , Humans , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Lung Injury/chemically induced , Lung Injury/metabolism , Neutrophils/metabolism , Endothelial Cells/metabolism , Transendothelial and Transepithelial Migration , Cell Movement , Endothelium, Vascular/metabolism
14.
Am J Physiol Cell Physiol ; 325(4): C951-C971, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37642239

ABSTRACT

Endothelial integrity is critical in mitigating a vicious cascade of secondary injuries following acute ischemic stroke (AIS). Matrix metalloproteinase-9 (MMP-9), a contributor to endothelial integrity loss, is elevated during stroke and is associated with worsened stroke outcome. We investigated the FDA-approved selective sphingosine-1-phosphate receptor 1 (S1PR1) ligand, ozanimod, on the regulation/activity of MMP-9 as well as endothelial barrier components [platelet endothelial cell adhesion molecule 1 (PECAM-1), claudin-5, and zonula occludens 1 (ZO-1)] in human brain microvascular endothelial cells (HBMECs) following hypoxia plus glucose deprivation (HGD). We previously reported that S1PR1 activation improves HBMEC integrity; however, mechanisms underlying S1PR1 involvement in endothelial cell barrier integrity have not been clearly elucidated. We hypothesized that ozanimod would attenuate an HGD-induced increase in MMP-9 activity that would concomitantly attenuate the loss of integral barrier components. Male HBMECs were treated with ozanimod or vehicle and exposed to 3 h of normoxia (21% O2) or HGD (1% O2). Immunoblotting, zymography, qRT-PCR, and immunocytochemical labeling techniques assessed processes related to MMP-9 and barrier markers. We observed that HGD acutely increased MMP-9 activity and reduced claudin-5 and PECAM-1 levels, and ozanimod attenuated these responses. In situ analysis, via PROSPER, suggested that attenuation of MMP-9 activity may be a primary factor in maintaining these integral barrier proteins. We also observed that HGD increased intracellular mechanisms associated with augmented MMP-9 activation; however, ozanimod had no effect on these select factors. Thus, we conclude that ozanimod has the potential to attenuate HGD-mediated decreases in HBMEC integrity in part by decreasing MMP-9 activity as well as preserving barrier properties.NEW & NOTEWORTHY We have identified a potential novel mechanism by which ozanimod, a selective sphingosine-1-phosphate receptor 1 (S1PR1) agonist, attenuates hypoxia plus glucose deprivation (HGD)-induced matrix metalloproteinase-9 (MMP-9) activity and disruptions in integral human brain endothelial cell barrier proteins. Our results suggest that ischemic-like injury elicits increased MMP-9 activity and alterations of barrier integrity proteins in human brain microvascular endothelial cells (HBMECs) and that ozanimod via S1PR1 attenuates these HGD-induced responses, adding to its therapeutic potential in cerebrovascular protection during the acute phase of ischemic stroke.


Subject(s)
Ischemic Stroke , Stroke , Humans , Male , Blood-Brain Barrier/metabolism , Matrix Metalloproteinase 9/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Endothelial Cells/metabolism , Claudin-5/metabolism , Ischemic Stroke/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Stroke/drug therapy , Stroke/metabolism , Ischemia/metabolism , Hypoxia/metabolism , Glucose/metabolism
15.
Immunity ; 56(10): 2311-2324.e6, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37643615

ABSTRACT

Engagement of platelet endothelial cell adhesion molecule 1 (PECAM, PECAM-1, CD31) on the leukocyte pseudopod with PECAM at the endothelial cell border initiates transendothelial migration (TEM, diapedesis). We show, using fluorescence lifetime imaging microscopy (FLIM), that physical traction on endothelial PECAM during TEM initiated the endothelial signaling pathway. In this role, endothelial PECAM acted as part of a mechanotransduction complex with VE-cadherin and vascular endothelial growth factor receptor 2 (VEGFR2), and this predicted that VEGFR2 was required for efficient TEM. We show that TEM required both VEGFR2 and the ability of its Y1175 to be phosphorylated, but not VEGF or VEGFR2 endogenous kinase activity. Using inducible endothelial-specific VEGFR2-deficient mice, we show in three mouse models of inflammation that the absence of endothelial VEGFR2 significantly (by ≥75%) reduced neutrophil extravasation by selectively blocking diapedesis. These findings provide a more complete understanding of the process of transmigration and identify several potential anti-inflammatory targets.


Subject(s)
Transendothelial and Transepithelial Migration , Vascular Endothelial Growth Factor Receptor-2 , Animals , Mice , Cell Adhesion , Cell Movement , Endothelium, Vascular , Mechanotransduction, Cellular , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
16.
Elife ; 122023 08 07.
Article in English | MEDLINE | ID: mdl-37549051

ABSTRACT

Effective neutrophil migration to sites of inflammation is crucial for host immunity. A coordinated cascade of steps allows intravascular leukocytes to counteract the shear stress, transmigrate through the endothelial layer, and move toward the extravascular, static environment. Those events are tightly orchestrated by integrins, but, while the molecular mechanisms leading to their activation have been characterized, the regulatory pathways promoting their detachment remain elusive. In light of this, it has long been known that platelet-endothelial cell adhesion molecule (Pecam1, also known as CD31) deficiency blocks leukocyte transmigration at the level of the outer vessel wall, yet the associated cellular defects are controversial. In this study, we combined an unbiased proteomic study with in vitro and in vivo single-cell tracking in mice to study the dynamics and role of CD31 during neutrophil migration. We found that CD31 localizes to the uropod of migrating neutrophils along with closed ß2-integrin and is required for essential neutrophil actin/integrin polarization. Accordingly, the uropod of Pecam1-/- neutrophils is unable to detach from the extracellular matrix, while antagonizing integrin binding to extracellular matrix components rescues this in vivo migratory defect. Conversely, we showed that sustaining CD31 co-signaling actively favors uropod detachment and effective migration of extravasated neutrophils to sites of inflammation in vivo. Altogether, our results suggest that CD31 acts as a molecular rheostat controlling integrin-mediated adhesion at the uropod of egressed neutrophils, thereby triggering their detachment from the outer vessel wall to reach the inflammatory sites.


Subject(s)
Neutrophils , Platelet Endothelial Cell Adhesion Molecule-1 , Animals , Mice , CD18 Antigens/metabolism , Cell Adhesion/physiology , Inflammation/metabolism , Integrins/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Proteomics , Signal Transduction , Cell Movement
17.
Cell Commun Signal ; 21(1): 203, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37580771

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) is considered to be a risk factor in carcinogenesis and progression, although the biological mechanisms are not well understood. Here we demonstrate that platelet-endothelial cell adhesion molecule 1 (PECAM-1) internalization drives ß-catenin-mediated endothelial-mesenchymal transition (EndMT) to link DM to cancer. METHODS: The tumor microenvironment (TME) was investigated for differences between colon cancer with and without DM by mRNA-microarray analysis. The effect of DM on colon cancer was determined in clinical patients and animal models. Furthermore, EndMT, PECAM-1 and Akt/GSK-3ß/ß-catenin signaling were analyzed under high glucose (HG) and human colon cancer cell (HCCC) supernatant (SN) or coculture conditions by western and immunofluorescence tests. RESULTS: DM promoted the progression and EndMT occurrence of colon cancer (CC). Regarding the mechanism, DM induced PECAM-1 defection from the cytomembrane, internalization and subsequent accumulation around the cell nucleus in endothelial cells, which promoted ß-catenin entry into the nucleus, leading to EndMT occurrence in CC with DM. Additionally, Akt/GSK-3ß signaling was enhanced to inhibit the degradation of ß-catenin, which regulates the process of EndMT. CONCLUSIONS: PECAM-1 defects and/or internalization are key events for ß-catenin-mediated EndMT, which is significantly boosted by enhanced Akt/GSK-3ß signaling in the DM-associated TME. This contributes to the mechanism by which DM promotes the carcinogenesis and progression of CC. Video Abstract.


Subject(s)
Colonic Neoplasms , Diabetes Mellitus , Platelet Endothelial Cell Adhesion Molecule-1 , beta Catenin , Animals , Humans , beta Catenin/metabolism , Colonic Neoplasms/metabolism , Endothelial Cells/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tumor Microenvironment
18.
Br J Haematol ; 202(4): 840-855, 2023 08.
Article in English | MEDLINE | ID: mdl-37365680

ABSTRACT

Multiple myeloma (MM) is the second most common haematological malignancy. Despite the development of new drugs and treatments in recent years, the therapeutic outcomes of patients are not satisfactory. It is necessary to further investigate the molecular mechanism underlying MM progression. Herein, we found that high E2F2 expression was correlated with poor overall survival and advanced clinical stages in MM patients. Gain- and loss-of-function studies showed that E2F2 inhibited cell adhesion and consequently activated cell epithelial-to-mesenchymal transition (EMT) and migration. Further experiments revealed that E2F2 interacted with the PECAM1 promoter to suppress its transcriptional activity. The E2F2-knockdown-mediated promotion of cell adhesion was significantly reversed by the repression of PECAM1 expression. Finally, we observed that silencing E2F2 significantly inhibited viability and tumour progression in MM cell models and xenograft mouse models respectively. This study demonstrates that E2F2 plays a vital role as a tumour accelerator by inhibiting PECAM1-dependent cell adhesion and accelerating MM cell proliferation. Therefore, E2F2 may serve as a potential independent prognostic marker and therapeutic target for MM.


Subject(s)
Multiple Myeloma , Humans , Animals , Mice , Multiple Myeloma/genetics , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Cell Adhesion/genetics , Cell Line, Tumor , Gene Expression Regulation , Cell Proliferation , E2F2 Transcription Factor/genetics , E2F2 Transcription Factor/metabolism
19.
Microbiol Spectr ; 11(3): e0476922, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37199607

ABSTRACT

Porphyromonas gingivalis is an important periodontal pathogen that can cause vascular injury and invade local tissues through the blood circulation, and its ability to evade leukocyte killing is critical to its distal colonization and survival. Transendothelial migration (TEM) is a series of that enable leukocytes to squeeze through endothelial barriers and migrate into local tissues to perform immune functions. Several studies have shown that P. gingivalis-mediated endothelial damage initiates a series of proinflammatory signals that promote leukocyte adhesion. However, whether P. gingivalis is involved in TEM and thus influences immune cell recruitment remains unknown. In our study, we found that P. gingivalis gingipains could increase vascular permeability and promote Escherichia coli penetration by downregulating platelet/endothelial cell adhesion molecule 1 (PECAM-1) expression in vitro. Furthermore, we demonstrated that although P. gingivalis infection promoted monocyte adhesion, the TEM capacity of monocytes was substantially impaired, which might be due to the reduced CD99 and CD99L2 expression on gingipain-stimulated endothelial cells and leukocytes. Mechanistically, gingipains mediate CD99 and CD99L2 downregulation, possibly through the inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway. In addition, our in vivo model confirmed the role of P. gingivalis in promoting vascular permeability and bacterial colonization in the liver, kidney, spleen, and lung and in downregulating PECAM-1, CD99, and CD99L2 expression in endothelial cells and leukocytes. IMPORTANCE P. gingivalis is associated with a variety of systemic diseases and colonizes in distal locations in the body. Here, we found that P. gingivalis gingipains degrade PECAM-1 to promote bacterial penetration while simultaneously reducing leukocyte TEM capacity. A similar phenomenon was also observed in a mouse model. These findings established P. gingivalis gingipains as the key virulence factor in modulating the permeability of the vascular barrier and TEM processes, which may provide a new rationale for the distal colonization of P. gingivalis and its associated systemic diseases.


Subject(s)
Porphyromonas gingivalis , Transendothelial and Transepithelial Migration , Mice , Animals , Gingipain Cysteine Endopeptidases/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Endothelial Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Adhesins, Bacterial/metabolism
20.
J Cereb Blood Flow Metab ; 43(7): 1027-1041, 2023 07.
Article in English | MEDLINE | ID: mdl-37051650

ABSTRACT

Several studies have shown that an abnormal vascular-immunity link could increase Alzheimer's disease (AD) risk; however, the mechanism is unclear. CD31, also named platelet endothelial cell adhesion molecule (PECAM), is a surface membrane protein of both endothelial and immune cells and plays important roles in the interaction between the vascular and immune systems. In this review, we focus on research regarding CD31 biological actions in the pathological process that may contribute to AD based on the following rationales. First, endothelial, leukocyte and soluble forms of CD31 play multi-roles in regulating transendothelial migration, increasing blood-brain barrier (BBB) permeability and resulting in neuroinflammation. Second, CD31 expressed by endothelial and immune cells dynamically modulates numbers of signaling pathways, including Src family kinases, selected G proteins, and ß-catenin which in turn affect cell-matrix and cell-cell attachment, activation, permeability, survival, and ultimately neuronal cell injury. In endothelia and immune cells, these diverse CD31-mediated pathways act as a critical regulator in the immunity-endothelia-brain axis, thereby mediating AD pathogenesis in ApoE4 carriers, which is the major genetic risk factor for AD. This evidence suggests a novel mechanism and potential drug target for CD31 in the background of genetic vulnerabilities and peripheral inflammation for AD development and progression.


Subject(s)
Alzheimer Disease , Blood-Brain Barrier , Humans , Alzheimer Disease/metabolism , Blood-Brain Barrier/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Signal Transduction , Transendothelial and Transepithelial Migration
SELECTION OF CITATIONS
SEARCH DETAIL
...