Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 721
Filter
1.
Int J Med Mushrooms ; 26(6): 25-38, 2024.
Article in English | MEDLINE | ID: mdl-38808753

ABSTRACT

Colored oyster mushrooms species of genus Pleurotus are a variety of edible mushrooms that attract a lot of interest among the consumers and scientists due to its scientific evidence that they have promising health benefits. However, information on their characteristics and properties is still scarce. Consequently, it is important to determine the potential health benefits of the mushrooms. This review paper presents an overview of functional properties and nutritional values of colored oyster mushrooms (Pleurotus spp.). It particularly discusses the types of pigments present in Pleurotus spp., their characteristics, and potential nutritional values. Pigments such as melanin, carotenoids, and flavonoids are reported to be present in colored oyster mushrooms. Moreover, the antioxidant compounds of these mushrooms have been unveiled, demonstrating their potential to counteract oxidative stress and improve general health. In addition, the investigation into the nutritional characteristics of the mushrooms reveals encouraging aspects for their incorporation into dietary considerations. Thus, it can be concluded that colored Pleurotus species have an immense amount of potential for use as natural colorants, as well as nutritious and antioxidant-rich compounds. These mushrooms represent an important advancement in the search for functional foods due to their significant nutrients such as proteins, amino acids, carbohydrates, and fibers.


Subject(s)
Antioxidants , Nutritive Value , Pigments, Biological , Pleurotus , Pleurotus/chemistry , Pleurotus/classification , Antioxidants/chemistry , Antioxidants/analysis , Pigments, Biological/analysis , Pigments, Biological/chemistry , Carotenoids/analysis , Carotenoids/chemistry , Functional Food
2.
Int J Med Sci ; 21(6): 1016-1026, 2024.
Article in English | MEDLINE | ID: mdl-38774755

ABSTRACT

Introduction: Breast cancer results from tissue degradation caused by environmental and genetic factors that affect cells in the body. Matrix metalloproteinases, such as MMP-2 and MMP-9, are considered potential putative markers for tumor diagnosis in clinical validation due to their easy detection in body fluids. In addition, recent reports have suggested multiple roles for MMPs, rather than simply degeneration of the extracellular matrix, which comprises mobilizing growth factors and processing surface molecules. Methods: In this study, the chemotherapeutic effects of anthraquinone (AQ) extracted from edible mushrooms (Pleurotus ostreatus Jacq. ex Fr.) cells was examined in MCF-7 breast cancer cells. The cytotoxic potential and oxidative stress induced by purified anthraquinone were assessed in MCF-7 cells using MTT and ROS estimation assays. Gelatin Zymography, and DNA fragmentation assays were performed to examine MMP expression and apoptotic induction in the MCF-7 cells treated with AQ. The genes crucial for mutations were examined, and the mutated RNA knockout plausibility was analyzed using the CRISPR spcas9 genome editing software. Results: MCF-7 cells were attenuated in a concentration-dependent manner by the administration of AQ purified from P. ostreatus compared with the standard anticancer drug paclitaxel. AQ supplementation decreased oxidative stress and mitochondrial impairment in MCF-7 cells. Treatment with AQ and AQ with paclitaxel consistently decreased the expression of crucial marker genes such as MMP2 and MMP9. The mutated genes MMP2, MMP7, and MMP9 were assessed and observed to reveal four putative gene knockdown potentials for breast cancer treatment. Conclusions: The synergistic application of AQ and paclitaxel exerted a strong inhibitory effect on the MCF-7 breast cancer cells. Extensive studies are imperative to better understand the action of bioactive mixes on the edible oyster fungus P. ostreatus. The gene knockout potential detected by CRISPR SpCas9 will aid in elite research into anticancer treatments.


Subject(s)
Anthraquinones , Apoptosis , Breast Neoplasms , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Pleurotus , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Anthraquinones/pharmacology , MCF-7 Cells , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Female , Apoptosis/drug effects , Apoptosis/genetics , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Pleurotus/chemistry , Gene Expression Regulation, Neoplastic/drug effects , Oxidative Stress/drug effects
3.
Molecules ; 29(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38731604

ABSTRACT

Edible grey oyster mushroom, Pleurotus sajor-caju, ß (1,3), (1,6) glucan possesses a wide range of biological activities, including anti-inflammation, anti-microorganism and antioxidant. However, its biological activity is limited by low water solubility resulting from its high molecular weight. Our previous study demonstrated that enzymatic hydrolysis of grey oyster mushroom ß-glucan using Hevea ß-1,3-glucanase isozymes obtains a lower molecular weight and higher water solubility, Pleurotus sajor-caju glucanoligosaccharide (Ps-GOS). Additionally, Ps-GOS potentially reduces osteoporosis by enhancing osteoblast-bone formation, whereas its effect on osteoclast-bone resorption remains unknown. Therefore, our study investigated the modulatory activities and underlying mechanism of Ps-GOS on Receptor activator of nuclear factor kappa-Β ligand (RANKL) -induced osteoclastogenesis in pre-osteoclastic RAW 264.7 cells. Cell cytotoxicity of Ps-GOS on RAW 264.7 cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and its effect on osteoclast differentiation was determined by tartrate-resistant acid phosphatase (TRAP) staining. Additionally, its effect on osteoclast bone-resorptive ability was detected by pit formation assay. The osteoclastogenic-related factors were assessed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), Western blot and immunofluorescence. The results revealed that Ps-GOS was non-toxic and significantly suppressed the formation of mature osteoclast multinucleated cells and their resorption activity by reducing the number of TRAP-positive cells and pit formation areas in a dose-dependent manner. Additionally, Ps-GOS attenuated the nuclear factor kappa light chain-enhancer of activated B cells' P65 (NFκB-P65) expression and their subsequent master osteoclast modulators, including nuclear factor of activated T cell c1 (NFATc1) and Fos proto-oncogene (cFOS) via the NF-κB pathway. Furthermore, Ps-GOS markedly inhibited RANK expression, which serves as an initial transmitter of many osteoclastogenesis-related cascades and inhibited proteolytic enzymes, including TRAP, matrix metallopeptidase 9 (MMP-9) and cathepsin K (CTK). These findings indicate that Ps-GOS could potentially be beneficial as an effective natural agent for bone metabolic disease.


Subject(s)
Cell Differentiation , NF-kappa B , NFATC Transcription Factors , Osteoclasts , Pleurotus , RANK Ligand , Receptor Activator of Nuclear Factor-kappa B , Signal Transduction , Animals , Mice , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoclasts/cytology , RAW 264.7 Cells , RANK Ligand/metabolism , Cell Differentiation/drug effects , Signal Transduction/drug effects , NF-kappa B/metabolism , Pleurotus/chemistry , Receptor Activator of Nuclear Factor-kappa B/metabolism , NFATC Transcription Factors/metabolism , Proto-Oncogene Proteins c-fos/metabolism , beta-Glucans/pharmacology , beta-Glucans/chemistry , Oligosaccharides/pharmacology , Oligosaccharides/chemistry , Osteogenesis/drug effects
4.
ACS Appl Bio Mater ; 7(5): 2982-2992, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38587496

ABSTRACT

Mycelium is the root-like network of fungi. Mycelium biocomposites prepared by template replication (molding) can function as environmentally friendly alternatives to conventional polystyrene foams, which are energy- and carbon-intensive to manufacture. Recently, several studies have shown that 3D bioprinting technologies can be used to produce high value functional mycelium products with intricate geometries that are otherwise difficult or impossible to achieve via template replication. A diverse range of nutrients, thickeners, and gelling agents can be combined to produce hydrogels suitable for 3D bioprinting. 3D bioprinting with hydrogel formulations infused with living fungi produces engineered living materials that continue to grow after bioprinting is complete. However, a hydrogel formulation optimized for intricate 3D bioprinting of Pleurotus ostreatus mycelium, which is among the strains most commonly used in mycelium biocomposite fabrication, has yet to be described. Here, we design and evaluate a versatile hydrogel formulation consisting of malt extract (nutrient), carboxymethylcellulose and cornstarch (thickeners), and agar (gelling agent), all of which are easily sourced food grade reagents. We also outline a reproducible workflow to infuse this hydrogel with P. ostreatus liquid culture for 3D bioprinting of intricate structures comprised of living P. ostreatus mycelium and characterize the changes in height and mass as well as hardness of the prints during mycelium growth. Finally, we demonstrate that the workflow does not require a sterile bioprinting environment to achieve successful prints and that the same mycelium-infused hydrogel can be supplemented with additives such as sawdust to produce mycelium biocomposite objects. These findings demonstrate that 3D bioprinting using mycelium-based feedstocks could be a promising biofabrication technique to produce engineered living materials for applications such as mushroom cultivation, food preparation, or construction of the built environment.


Subject(s)
Biocompatible Materials , Bioprinting , Hydrogels , Mycelium , Pleurotus , Printing, Three-Dimensional , Pleurotus/metabolism , Pleurotus/chemistry , Hydrogels/chemistry , Biocompatible Materials/chemistry , Materials Testing , Particle Size
5.
Fish Shellfish Immunol ; 149: 109551, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599363

ABSTRACT

The present study aimed to evaluate the effect of king oyster mushroom (Pleurotus eryngii) root waste and soybean meal co-fermented protein (CFP) on growth performance, feed utilization, immune status, hepatic and intestinal health of largemouth bass (Micropterus salmoides). Largemouth bass (12.33 ± 0.18 g) were divided into five groups, fed with diets containing 0 %, 5 %, 10 %, 15 % and 20 % CFP respectively for 7 weeks. The growth performance and dietary utilization were slightly improved by the supplementation of CFP. In addition, improved immunoglobulin M (IgM) content and lysozyme activity in treatments confirm the enhancement of immunity in fish by the addition of CFP, especially in fish fed 20 % CFP (P < 0.05). Furthermore, CFP significantly improved liver GSH (glutathione) content in groups D10 and D15 (P < 0.05), and slightly improved total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity while slightly reduced malondialdehyde (MDA) content. Simultaneously, the upregulation of lipolysis-related genes (PPARα, CPT1 and ACO) expression and downregulation of lipid synthesis-related genes (ACC and DGAT1) expression was recorded in the group D20 compared with the control (P < 0.05), which were consistent with the decreased liver lipid contents, suggests that lipid metabolism was improved by CFP. In terms of intestinal structural integrity, ameliorated intestinal morphology in treatments were consistent with the upregulated Occludin, Claudin-1 and ZO-1 genes expression. The intestinal pro-inflammatory cytokines (TNF-α and IL-8) expression were suppressed while the anti-inflammatory cytokines (IL-10 and TGF-ß) were activated in treatments. The expression of antimicrobial peptides (Hepcidin-1, Piscidin-2 and Piscidin-3) and intestinal immune effectors (IgM and LYZ) were slightly up-regulated in treatments. Additionally, the relative abundance of intestinal beneficial bacteria (Firmicutes) increased while the relative abundance of potential pathogenic bacteria (Fusobacterium and Proteobacteria) decreased, which indicated that the intestinal microbial community was well-reorganized by CFP. In conclusion, dietary CFP improves growth, immunity, hepatic and intestinal health of largemouth bass, these data provided a theoretical basis for the application of this novel functional protein ingredient in fish.


Subject(s)
Animal Feed , Bass , Diet , Dietary Supplements , Glycine max , Liver , Pleurotus , Animals , Bass/immunology , Bass/growth & development , Animal Feed/analysis , Diet/veterinary , Pleurotus/chemistry , Glycine max/chemistry , Liver/immunology , Liver/drug effects , Liver/metabolism , Dietary Supplements/analysis , Intestines/immunology , Intestines/drug effects , Fermentation , Immunity, Innate/drug effects , Random Allocation , Plant Roots/chemistry , Dose-Response Relationship, Drug
6.
Int J Biol Macromol ; 267(Pt 1): 131419, 2024 May.
Article in English | MEDLINE | ID: mdl-38583831

ABSTRACT

The booming mushroom industry envisages economic merits, and massive unutilized waste production (∼ 20 %) creates an opportunity for valorization. Chitosan, a bioactive polysaccharide, has drawn immense attention for its invaluable therapeutic potential. Thus, the present study was conducted to extract chitosan from mushroom waste (MCH) for its prebiotic potential. The structural characterization of MCH was carried out using NMR, FTIR, and XRD. The CP/MAS-13CNMR spectrum of MCH appeared at δ 57.67 (C2), 61.19 (C6), 75.39 (C3/C5), 83.53 (C4), 105.13 (C1), 23.69 (CH3), and 174.19 (C = O) ppm. The FTIR showed characteristic peaks at 3361 cm-1, 1582 cm-1, and 1262 cm-1 attributed to -NH stretching, amide II, and amide III bands of MCH. XRD interpretation of MCH exhibited a single strong reflection at 2θ =20.19, which may correspond to the "form-II" polymorph. The extracted MCH (∼ 47 kDa) exhibited varying degrees of deacetylation from 79 to 84 %. The prebiotic activity score of 0.73 to 0.82 was observed for MCH (1 %) when supplemented with probiotic strains (Lactobacillus casei, L. helveticus, L. plantarum, and L. rhamnosus). MCH enhanced the growth of Lactobacillus strains and SCFA's levels, particularly in L. rhamnosus. The MCH also inhibited the growth of pathogenic strains (MIC of 0.125 and 0.25 mg/mL against E. coli and S. aureus, respectively) and enhanced the adhesion efficiency of probiotics (3 to 8 % at 1 % MCH supplementation). L. rhamnosus efficiency was higher against pathogens in the presence of MCH, as indicated by anti-adhesion assays. These findings suggested that extracted polysaccharides from mushroom waste can be used as a prebiotic for ameliorating intestinal dysbiosis.


Subject(s)
Chitosan , Molecular Weight , Pleurotus , Prebiotics , Pleurotus/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Waste Products/analysis
7.
J Zhejiang Univ Sci B ; 25(4): 293-306, 2024 Apr 15.
Article in English, Chinese | MEDLINE | ID: mdl-38584092

ABSTRACT

The oyster mushroom (Pleurotus spp.) is one of the most widely cultivated mushroom species globally. The present study investigated the effect of synbiotics on the growth and quality of Pleurotus ostreatus and Pleurotus pulmonarius. Different synbiotics formulations were applied by spraying mushroom samples daily and measuring their growth parameters, yield, biological efficiency, proximate composition, mineral content, total phenolic content (TPC), and diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity. Results demonstrated that the most significant yield of oyster mushrooms was harvested from synbiotics sprayed with inulin and Lactobacillus casei (56.92 g). Likewise, the highest biological efficiency obtained with a similar synbiotic was 12.65%. Combining inulin and L. casei was the most effective method of improving the mushrooms' growth performance and nutrient content in both samples. Furthermore, synbiotics that combined inulin and L. casei resulted in the highest TPC (20.550 mg gallic acid equivalent (GAE)/g dry extract (DE)) in white oyster mushrooms (P. ostreatus). In comparison, in grey mushroom (P. pulmonarius) the highest TPC was yielded by L. casei (1.098 mg GAE/g DE) followed by inulin and L. casei (1.079 mg GAE/g DE). The DPPH results indicated that the oyster mushroom could be an efficient antioxidant. The results revealed that applying synbiotics improved the mushrooms' quality by increasing their antioxidant capacity with higher amounts of phenolic compounds and offering better health benefits with the increased levels of mineral elements. Together, these studies demonstrated the potential of using synbiotics as a biofertilizer, which is helpful for mushroom cultivation; therefore, it might solve the challenge of inconsistent quality mushroom growers face.


Subject(s)
Pleurotus , Synbiotics , Pleurotus/chemistry , Antioxidants , Inulin , Phenols , Gallic Acid , Minerals
8.
Mycologia ; 116(3): 370-380, 2024.
Article in English | MEDLINE | ID: mdl-38551373

ABSTRACT

This research investigated the antioxidant responses of Pleurotus florida at different concentrations of gas oil [0% (control), 2.5%, 5%, and 10% (v:v)] for 30 days. The activities of superoxide dismutase and catalase enzymes decreased in responses to the gas oil presence by an average of 83% and 49%, respectively. In contrast, the activities of the ascorbate peroxidase and glutathione peroxidase enzymes displayed an upward trend in the groups cultured in oil-contaminated media. The gas oil contaminant increased total phenol and flavonoid accumulation, reflecting the variation in secondary metabolism. According to the 1,2-diphenyl-2-picrylhydrazyl radical scavenging, the 2.5% gas oil treatment resulted in the highest antioxidant activity (48 µg mL-1). The highest scavenging activity of nitric oxide radicals (IC50 = 272 µg mL-1) was observed in the treatment with the highest gas oil concentration (10%). Also, this treatment showed an excellent ability to chelate Fe+2 ions (IC50 = 205 µg mL-1). The IC50 values of methanolic extract for nitric oxide scavenging activity and metal chelating ability were significantly reduced by increasing gas oil concentration in the treatments. With increasing the gas oil concentration, malondialdehyde content as a criterion measure of lipid peroxidation level showed significant reduction. These results show that P. florida is resistant to and a compatible mushroom with oil pollutants. Also, the activity of glutathione peroxidase and the ascorbate-glutathione cycle detoxify nitric oxide radicals and products of reactive oxygen species-induced lipid peroxidation in the gas oil treatments.


Subject(s)
Antioxidants , Pleurotus , Pleurotus/chemistry , Pleurotus/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Superoxide Dismutase/metabolism , Nitric Oxide/metabolism , Glutathione Peroxidase/metabolism , Catalase/metabolism , Petroleum/metabolism , Flavonoids/pharmacology
9.
Int J Med Mushrooms ; 26(1): 67-78, 2024.
Article in English | MEDLINE | ID: mdl-38305263

ABSTRACT

This study presents a comprehensive analysis of the methanolic extracts of nine species of wild edible mushrooms (WEM) native to the Darma Valley in the Kumaun Himalaya region. The investigation encompasses the assessment of various biochemical attributes, including total phenolics (TP), total flavonoids (TF), total tannins (TT) contents, the ABTS assay, and the DPPH radical scavenging assay. Among the nine WEM species examined, Clavatia craniiformis stands out for displaying the highest antioxidant capacities, indicated by exceptional TP (54.94 ± 0.54 mg gallic acid equivalenta/g dry weight) and TT (4.23 ± 0.17 mg tannic acid equivalents/g dry weight) contents, along with noteworthy ABTS (10.44 ± 0.34 mg abscorbic acid equivalents/g dw) and DPPH activity (0.335 ± 0.001 mg abscorbic acid equivalents/g dry weight). Subsequent antioxidant potential are mushrooms Ramaria fennica, Ramaria botrytis, Ramaria sanguinea, Ramaria flava, Gomphus. clavatus, Clavaria zollingeri, Pleurotus ostreatus, and Kuehneromyces mutabilis. Variations in antioxidant capacities align with distinct phenolic content. This study underscores as a remarkable source of antioxidants, suggesting its potential suitability for nutraceutical applications. The findings contribute to a deeper understanding of the antioxidant properties inherent in wild edible mushrooms, particularly emphasizing the prominence of C. craniiformis.


Subject(s)
Agaricales , Basidiomycota , Benzothiazoles , Pleurotus , Polyphenols , Sulfonic Acids , Antioxidants/chemistry , Methanol , Himalayas , Agaricales/chemistry , Phenols/analysis , Pleurotus/chemistry , Plant Extracts/chemistry
10.
J Trace Elem Med Biol ; 82: 127365, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38171269

ABSTRACT

BACKGROUND: Pleurotus has a remarkable nutritional and nutraceutical profile due to mineral mobilization and accumulation abilities from the substrate. The present study aimed to observe the effect of single and dual supplementations Se and Zn on biochemical parameters of P. florida, P. sajor caju and P. djamor. Also, the bioaccumulation of the trace elements in fortified mushrooms was estimated. METHODS: Biomass production and radial growth rate were observed on Se and Zn supplemented broth and agar based medium. Furthermore, the influence of Se and Zn supplementation was recorded on the fruit body yield. The colorimetric assays were employed to estimate total soluble protein, total phenol and total flavonoid contents. The antioxidant activity was assayed as DPPH radical scavenging test. While, ICP-AES was performed to estimate the variation in the Zn and Se content of the fruit bodies. RESULTS: The Se supplementation at low rate resulted in improvement in the radial growth rate and biomass production for P. sajor caju. For solid-state fermentation, a better yield was obtained with inorganic salt supplementation in comparison to organically enriched Se straw. The maximum total soluble protein content and total flavonoid content were observed in fruit bodies of P. sajor caju at 4 mg L -1 of Se and Se-Zn respectively. Pleurotus djamor exhibited the highest total phenolic content on Zn supplementation (10 mg L-1). Improved antioxidant potential was recorded with dual supplementations. Salt supplementations caused shrinkage, distortion of the fungal hyphae, and decreased basidiospores with significant amelioration in elemental composition in fortified mushrooms. CONCLUSION: The inorganic salt supplementation increased the biochemical potential of Pleurotus spp. in comparison to organically enriched substrate which could further be used for the development of dietary supplements.


Subject(s)
Pleurotus , Selenium , Selenium/pharmacology , Selenium/metabolism , Pleurotus/chemistry , Pleurotus/metabolism , Zinc/metabolism , Fermentation , Biofortification , Antioxidants/metabolism , Flavonoids/metabolism
11.
Prep Biochem Biotechnol ; 54(4): 545-552, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37667995

ABSTRACT

Mushrooms are a source of primary and secondary metabolites. Little is known about the most suitable conditions for production of mushrooms by submerged fermentation. This article reports antioxidant and cytotoxic assays, in addition to quantitatively evaluating the content of proteases with fibrinolytic action in the crude extracts of two species of edible mushrooms produced in different formulations, as well as evaluating the recovery of these enzymes by aqueous two-phase systems (ATPS). The mushrooms Pleurotus ostreatus and Pleurotus eryngii, at concentration of 100 µg/mL, displayed inhibition of DPPH and ABTS radicals below 50%. In the cytotoxicity test, the cells human fibroblast cell lines (MRC-5) showed cell viability greater than 80%. Concerning fibrinolytic activity, P. eryngii presented 226.47 ± 7.26 U/mL, therefore being more efficient than P. ostreatus (71.5 ± 0.56 U/mL). In the recovery of the P. eryngii extract by ATPS, the fibrinolytic protease was partitioned in the salt phase (30.25 U/mL). The molecular mass of the proteases was between 75 and 100 kDa. These results prove the low cytotoxicity of the extracts produced and that fermentation in supplemented malt broth favored the excretion of fibrinolytic proteases compared to the other evaluated media.


Subject(s)
Agaricales , Antineoplastic Agents , Pleurotus , Humans , Antioxidants/chemistry , Pleurotus/chemistry , Peptide Hydrolases/metabolism , Agaricales/chemistry , Endopeptidases/metabolism , Antineoplastic Agents/metabolism
12.
Sci Rep ; 13(1): 21148, 2023 11 30.
Article in English | MEDLINE | ID: mdl-38036649

ABSTRACT

The research investigates the potential use of maize cobs (or corncobs) from five genotypes, including the B73 inbred line and four locally cultivated landraces from Northern Italy, as substrate for implementing Solid State fermentation processes with four Medicinal Mushrooms (MMs). The corncobs were characterized based on their proximate composition, lignin, phenolics content (both free and bound), and total antioxidant capacity. Among the MMs tested, Pleurotus ostreatus and Ganoderma annularis demonstrated the most robust performance. Their growth was parametrized using Image Analysis technique, and chemical composition of culture samples was characterized compared to that of corncobs alone. In all culture samples, the growth of MMs led to a significant reduction (averaging 40%) in the total phenolics contents compared to that measured in corncobs alone. However, the high content of free phenolics in the cobs negatively impacted the growth of P. ostreatus. The final MM-corncob matrix exhibited reduced levels of free sugars and starch (≤ 2.2% DW, as a sum) and increased levels of proteins (up to 5.9% DW) and soluble dietary fiber (up to 5.0% DW), with a notable trend toward higher levels of ß-glucan compared to corncobs alone. This research paves the way for the use of this matrix as an active ingredient to enhance the nutritional value of food preparations.


Subject(s)
Agaricales , Pleurotus , Agaricales/chemistry , Zea mays , Pleurotus/chemistry , Antioxidants/metabolism , Agriculture , Phenols/metabolism
13.
Carbohydr Polym ; 322: 121367, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37839837

ABSTRACT

Fungal ß-glucans have received a lot of interest due to their proinflammatory activity towards cells of the innate immune system. Although commonly described as (1➔3)-ß-glucans with varying degree of (1➔6)-branching, the fungal ß-glucans constitute a diverse polysaccharide class. In this study, the alkali-soluble ß-glucans from the edible mushroom Pleurotus eryngii were extracted and characterized by GC, GC-MS and 2D NMR analyses. The extracts contain several structurally different polysaccharides, including a (1➔3)-ß-d-glucan with single glucose units attached at O-6, and a (1➔6)-ß-d-glucan, possibly branched at O-3. The immunomodulatory activities of the P. eryngii extracts were assessed by investigating their ability to bind to the receptor dectin-1, and their ability to induce production of the proinflammatory cytokines TNF-α, IL-6 and IL-1ß in LPS-differentiated THP-1 cells. Although the samples were able to bind to the dectin-1a receptor, they did not induce production of significant levels of cytokines in the THP-1 cells. Positive controls of yeast-derived (1➔3)-ß-d-glucans with branches at O-6 induced cytokine production in the cells. Thus, it appears that the P. eryngii ß-glucans are unable to induce production of proinflammatory cytokines in LPS-differentiated THP-1 cells, despite being able to activate the human dectin-1a receptor.


Subject(s)
Pleurotus , beta-Glucans , Humans , beta-Glucans/metabolism , Lipopolysaccharides , Glucans/chemistry , Pleurotus/chemistry , Polysaccharides/chemistry , Cytokines/metabolism , Fruiting Bodies, Fungal/chemistry
14.
Int J Biol Macromol ; 253(Pt 6): 127255, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37827398

ABSTRACT

In this work, aqueous extracts from six different Pleurotus species were obtained and their yield, gross composition, ß-glucan content, monosaccharide profile, thermal stability, molecular weight distribution, and FT-IR were analyzed before and after purification through ethanol precipitation of the carbohydrate-rich fractions. The bioactivity (anti-inflammatory and immunomodulatory activity) of the various fractions obtained was also analyzed in three different cell cultures and compared with a lentinan control. The trend observed after purification of the aqueous fractions was an increase in the concentration of polysaccharides (especially ß-glucans), a decrease in ash, glucosamine and protein content and the elimination of low molecular weight (Mw) compounds, thus leaving in the purified samples high Mw populations with increased thermal stability. Interestingly, all these purified fractions displayed immunomodulatory capacity when tested in THP-1 macrophages and most of them also showed significant activity in HEK-hTLR4 cells, highlighting the bioactivity observed for Pleurotus ostreatus (both the extracts obtained from the whole mushroom and from the stipes). This specific species was richer in heteropolysaccharides, having moderate ß-glucan content and being enriched upon purification in a high Mw fraction with good thermal stability.


Subject(s)
Agaricales , Pleurotus , beta-Glucans , beta-Glucans/pharmacology , Pleurotus/chemistry , Spectroscopy, Fourier Transform Infrared , Polysaccharides/chemistry
15.
J Environ Manage ; 344: 118742, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37573696

ABSTRACT

In Europe, rapeseed is a common oilseed crop, resulting in the production of 20 million tons of rapeseed press cake yearly. This press cake can be further upcycled and a protein fraction can be extracted for food purposes, leaving de-proteinized fiber-rich residues. This study examined the use of these residues in the production of oyster mushrooms (Pleurotus ostreatus) and of the spent substrate as feed, since mushroom cultivation may improve the feed properties of substrate. In terms of mushroom production, the addition of rapeseed press residues was beneficial, giving significantly higher biological efficiency (BE = 93.1 ± 11.0%) compared with the control, sugar beet pulp substrate (70.0 ± 6.6%). This increase in productivity can most likely be explained by higher energy content in the substrate supplemented with lipid-rich rapeseed residues. Despite differences in BE between the substrates, high similarity was observed in lipid composition of the fruiting bodies (lipid profile dominated by linoleic acid (18:2), palmitic acid (16:0), and oleic acid (18:1)), and in protein and moisture content. After mushroom harvest, approximately 70% of the initial dry weight of both substrates remained as a possible feed source. Both substrates had significantly lower levels of carbohydrates and unchanged neutral detergent fiber content after mushroom harvest, and both gave lower in vitro digestibility, total gas production, and methane production. However, protein concentration differed between the substrates, with the highest concentration (15.8% of dry weight) found in spent substrate containing rapeseed press residues. The result of the present study suggests that the de-proteinized rapeseed press residue is a resource well-suited for use in the production of mushrooms and feed.


Subject(s)
Agaricales , Brassica napus , Brassica rapa , Pleurotus , Pleurotus/chemistry , Pleurotus/metabolism , Agaricales/chemistry , Agaricales/metabolism , Lipids
16.
Int J Med Mushrooms ; 25(8): 43-53, 2023.
Article in English | MEDLINE | ID: mdl-37560889

ABSTRACT

Pleurotus ostreatus was cultivated on a commercially available wheat straw substrate enriched with Zn and Se. Various amounts of Zn (10, 50, and 100 mg) and Se (1, 5, and 10 mg) in suitable forms ((CH3COO)2Zn·2H2O, Zn(NO3)2·6H2O, and Na2SeO3·5H2O, respectively) were dissolved in 50 ml of deionized water and homogenously nebulized into the substrate block of 2.4 kg weight. The increase in the Zn content in fruiting bodies cultivated on the enriched substrate was relatively low compared with fruiting bodies cultivated on the substrate with no addition at the first flush. The application of different Zn compounds (acetate vs. nitrate) gave similar results. However, the addition of 1 mg of Se into the cultivation substrate block increased the content of Se in fruiting bodies to about 3-6 mg/kg dry matter. This content was one order of magnitude higher compared with the Se content in fruiting bodies harvested from the substrate with no Se addition (< 0.12-0.58 mg/kg dry matter). In the case of the addition of 5 mg of Se, there was a further significant increase in the content of this element to about 40-60 mg/kg dry matter.


Subject(s)
Pleurotus , Selenium , Selenium/analysis , Pleurotus/chemistry , Zinc/analysis , Fruiting Bodies, Fungal/chemistry , Triticum
17.
Int J Med Mushrooms ; 25(7): 55-64, 2023.
Article in English | MEDLINE | ID: mdl-37585316

ABSTRACT

Lucilia cuprina is a vector of important diseases in humans and animals that causes myiasis in sheep, leading to enormous damage to the sheep sector. Chemical products are used to control these flies; however, there are reports of resistance in addition to these products causing toxicity to the environment, humans, and animals, so alternative controls have been studied to reduce these impacts. Pleurotus spp. are basidiomycete fungi and present bioactive compounds with medicinal properties. Due to the potential use of fungi to control Diptera, this study aimed to verify the activity of Pleurotus florida, P. ostreatus, and P. djamor in the control of larvae and adults of L. cuprina, as well as the effects of aqueous extracts of the fungi P. ostreatus, P. djamor, and P. florida on larvae and adults of L. cuprina. The aqueous extract from P. florida was the only one that showed larvicidal activity against L. cuprina, with a half-maximal effective concentration of 11.42 mg/mL. In the test with adult stages, 30 insects were used for each solution concentration, sprinkled with 1 mL of the solution. All aqueous extracts showed adulticidal activity at all concentrations, P. ostreatus showing the best results, with adult mortality ranging from 75.86 to 100%. Our results demonstrated an important larvicidal effect of P. florida and an adulticidal effect of all AE, with emphasis on P. ostreatus.


Subject(s)
Diptera , Pleurotus , Humans , Animals , Sheep , Pleurotus/chemistry , Larva
18.
Chem Biodivers ; 20(9): e202300346, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37503864

ABSTRACT

Pleurotus ostreatus is an edible fungus with high nutritional value that uses industrial and agricultural lignocellulosic residues as substrates for growth and reproduction. Understanding their growth metabolic dynamics on agro-industrial wastes would help to develop economically viable and eco-friendly biotechnological strategies for food production. Thus, we used UHPLC/MS/MS and GNPS as an innovative approach to investigate the chemical composition of two strains of P. ostreatus, coded as BH (Black Hirataki) and WH (White Hirataki), grown on sisal waste mixture (SW) supplemented with 20 % cocoa almond tegument (CAT) or 20 % of wheat bran (WB). Metabolite dereplication allowed the identification of 53 metabolites, which included glycerophospholipids, fatty acids, monoacylglycerols, steroids, carbohydrates, amino acids, and flavonoids. This is the first report of the identification of these compounds in P. ostreatus, except for the steroid ergosterol. Most of the metabolites described in this work possess potential biological activities, which support the nutraceutical properties of P. ostreatus. Thus, the results of this study provide essential leads to the understanding of white-rot fungi chemical plasticity aiming at developing alternative biotechnologies strategies for waste recycling.


Subject(s)
Pleurotus , Prunus dulcis , Pleurotus/chemistry , Pleurotus/metabolism , Industrial Waste , Dietary Fiber/metabolism , Tandem Mass Spectrometry , Dietary Supplements
19.
Braz J Biol ; 83: e273829, 2023.
Article in English | MEDLINE | ID: mdl-37436252

ABSTRACT

One of the new waters, and environmentally friendly agriculture initiatives in Peru is to encourage the utilization of agricultural waste, because low agricultural output is a threat to food security there. The purpose of this research was to evaluate the effect of harvest residues on the basidiocarp production of the fungus Pleurotus Ostreatus, in Acobamba-Huancavelica. The trial had a completely randomized design, and the treatments included T1, barley stubbles; T2, wheat stubbles; T3, pea stubbles; T4, broad bean stubbles; and T5, quinoa stubbles. The research was quantitative in nature, taking the form of an experiment with an applied, explanatory level of design. The recorded data was tabulated and analyzed with analysis of variance, as well as Tukey's test (α:0.05), for which the statistical software Infostat was used. The results are presented in tables and graphs for a better interpretation. As main results, it was obtained that the time (colonization), diameter (stem, pileus), length (stem) and weight (basidiocarps), present statistical differences between treatments showing significant enhancement in all parameters. Despite a numerical difference, a Tukey average comparison test revealed that there was no statistically significant difference between the averages for the variable time for fungus colonisation, suggesting that the treatment T5 in which quinoa substrate showed the greatest average. Treatment T4 in which broad bean stubbles were used gave the most low-average. In conclusion, increment in all parámeters were noted in all treatment of Pleurotus basidiocarps ostreatus under Acobamba conditions.


Subject(s)
Agaricales , Pleurotus , Pleurotus/chemistry , Agriculture/methods , Triticum
20.
Molecules ; 28(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37446941

ABSTRACT

When added to mushroom growing substrates, edible and medicinal herbs affect the mushrooms' nutritional and medicinal value. In this study, polysaccharides (P0OP-I and P15OP-I) were extracted and purified from oyster mushrooms grown on substrates supplemented with 0% and 15% Astragalus roots (P0 and P15), respectively, and their chemical structure and immunobiological activities were compared. P15OP-I and P0OP-I were extracted using ultrasound-assisted hot water and deproteinized with the Sevage method, depigmented with 30% H2O2, desalted with dialysis, and purified using DEAE-52 cellulose and Sephadex G-100 dextran column chromatography. The molecular weight of P0OP-I and P15OP-I was 21,706.96 and 20,172.65 Da, respectively. Both were composed of monosaccharides D-mannose, galacturonic acid, D-glucose, D-galactose, and L-arabinose but in different molar ratios, and both were connected by a pyranoside linkage. P15OP-I consisted of higher contents of mannose, glucose, galactose and arabinose and lower content of galacturonic acid as compared to P0OP-I. Both P0OP-I and P15OP-I induced NO and TNF-α production but did not show cytotoxic effect or induce ROS generation in RAW264.7 cells. P15OP-I showed a stronger ability to promote NO and TNF-α production relative to P0OP-I. In vitro experiments showed that the immunomodulatory activity of P0OP-I and P15OP-I in RAW264.7 macrophages were mediated by the JNK/MAPK, Erk/MAPK, and NF-κB signaling pathways. The results would be helpful for elucidation of the health promoting mechanism of Astragalus oyster mushrooms as a source of neutraceuticals.


Subject(s)
Astragalus Plant , Pleurotus , Pleurotus/chemistry , Tumor Necrosis Factor-alpha , Hydrogen Peroxide , Renal Dialysis , Polysaccharides/pharmacology , Polysaccharides/chemistry , Astragalus Plant/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...