Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 882
Filter
1.
J Musculoskelet Neuronal Interact ; 24(2): 200-208, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38826003

ABSTRACT

OBJECTIVES: Bilateral Deficit (BLD) occurs when the force generated by both limbs together is smaller than the sum of the forces developed separately by the two limbs. BLD may be modulated by physical training. Here, were investigated the effects of unilateral or bilateral plyometric training on BLD and neuromuscular activation during lower limb explosive extensions. METHODS: Fourteen young males were randomized into the unilateral (UL_) or bilateral (BL_) training group. Plyometric training (20 sessions, 2 days/week) was performed on a sled ergometer, and consisted of UL or BL consecutive, plyometric lower limb extensions (3-to-5 sets; 8-to-10 repetitions). Before and after training, maximal explosive efforts with both lower limbs or with each limb separately were assessed. Electromyography of representative lower limb muscles was measured. RESULTS: BL_training significantly and largely decreased BLD (p=0.003, effect size=1.63). This was accompanied by the reversion from deficit to facilitation of the electromyography amplitude of knee extensors during bilateral efforts (p=0.007). Conversely, UL_training had negligible effects on BLD (p=0.781). Also, both groups showed similar improvements in their maximal explosive power generated after training. CONCLUSIONS: Bilateral plyometric training can mitigate BLD, and should be considered for training protocols focused on improving bilateral lower limb motor performance.


Subject(s)
Electromyography , Lower Extremity , Muscle, Skeletal , Plyometric Exercise , Humans , Male , Plyometric Exercise/methods , Lower Extremity/physiology , Young Adult , Electromyography/methods , Muscle, Skeletal/physiology , Adult , Muscle Strength/physiology
2.
J Sports Sci Med ; 23(2): 342-350, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841635

ABSTRACT

Microdosing can facilitate better accommodation to the training stimulus while aligning with the scheduling needs of teams. In this study, the effectiveness of microdosing exposure was investigated by comparing the effects of microdosing plyometric jump training (microPJT) with those of regular plyometric jump training (regPJT) and a control group not exposed to plyometric training. The comparison focused on the effects on jumping performance, reactive strength index (RSI), and acceleration over a 10-meter distance. Fifty-two male youth soccer players (16.3 ± 0.6 years old) from under-17 teams participated in a randomized controlled study, with interventions lasting 8 weeks. Assessments were conducted twice, before and after the intervention, measuring squat jump (SJ), countermovement jump (CMJ), RSI during drop jumps, and acceleration in a 10-meter sprint test. The regPJT group completed 34 bilateral jumps and 48 unilateral jumps per week over two weekly sessions, totaling 82 jumps. Conversely, the microPJT group performed 17 bilateral jumps and 24 unilateral jumps weekly over 4 sessions week, totaling 41 jumps. Significant interactions between groups and time were observed concerning SJ (p < 0.001; η2= 0.282), CMJ (p < 0.001; η2= 0.368), RSI (p < 0.001; η2= 0.400) and 10-m sprint time (p < 0.001; η2 = 0.317). Between-group analysis indicated that both the microPJT (p < 0.001) and regPJT (p < 0.001) groups exhibited significant better results compared to the control group in post-intervention evaluation of SJ, CMJ, RSI and 10-m sprint time, while no significant differences were found between experimental groups (p > 0.050). In conclusion, this study has revealed that both microPJT and regPJT are equally effective in enhancing jumping performance and acceleration time in soccer players. This suggests that a smaller training volume, distributed more frequently across the week, can effectively induce improvements in soccer players.


Subject(s)
Acceleration , Athletic Performance , Muscle Strength , Plyometric Exercise , Soccer , Humans , Soccer/physiology , Adolescent , Male , Athletic Performance/physiology , Muscle Strength/physiology
3.
J Sports Sci Med ; 23(2): 418-424, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841636

ABSTRACT

To determine how lateral shuffling/lateral shuffle (LS) -induced fatigue affects ankle proprioception and countermovement jump (CMJ) performance. Eighteen male college athletes performed 6 modes of a repeated LS protocol with 2 distances (2.5 and 5 m) and 3 speeds (1.6, 1.8, and 2.0 m/s). After LS, ankle inversion proprioception (AIP) was measured using the active movement extent discrimination apparatus (AMEDA). CMJ, blood lactate (BLa), heart rate (HR) and rating of perceived exertion (RPE) were measured before and after LS. The number of changes of direction (CODs) in each protocol was recorded. LS-induced fatigue was evident in BLa, HR and RPE (all p < 0.05), increasing with shorter shuffle distance and faster speed. RM-ANOVA showed a significant distance main effect on both AIP (p < 0.01) and CMJ (p < 0.05), but the speed main effect was only significant for CMJ (p ≤ 0.001), not AIP (p = 0.87). CMJ performance was correlated with BLa, HR and RPE (r values range from -0.62 to -0.32, all p ≤ 0.001). AIP was only correlated with CODs (r = -0.251, p < 0.01). These results suggested that in LS, shorter distance, regardless of speed, was associated with worse AIP, whereas subsequent CMJ performance was affected by both LS distance and speed. Hence, AIP performance was not related to physiological fatigue, but CMJ performance was. Results imply that LS affects processing proprioceptive input and producing muscular output differently, and that these two aspects of neuromuscular control are affected by physiological fatigue to varying degrees. These findings have implications for injury prevention and performance enhancement.


Subject(s)
Ankle , Athletic Performance , Heart Rate , Lactic Acid , Muscle Fatigue , Proprioception , Humans , Male , Proprioception/physiology , Young Adult , Heart Rate/physiology , Muscle Fatigue/physiology , Ankle/physiology , Athletic Performance/physiology , Lactic Acid/blood , Plyometric Exercise , Physical Exertion/physiology
4.
J Sports Sci Med ; 23(2): 445-454, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841638

ABSTRACT

The objective of this study was to compare the effectiveness of both small-sided games (SSG) and short interval running-based high-intensity interval training (HIIT) programs over an 8-week period in fostering adaptations in aerobic capacity, change-of-direction abilities, and jumping performances of youth female soccer players. The study involved 48 female youth participants under the age of 19, competing at the regional level, who took part in a randomized controlled trial. Participants were assigned to either the SSG group, the HIIT group, or a control group, which involved regular in-field sessions. Assessments were conducted at baseline and after the 8-week training intervention, measuring aerobic capacity using the 30-15 intermittent fitness test (VIFT), change of direction (COD) using the 5-0-5 test, and jumping performance using the countermovement jump test (CMJ). Time 5 group analysis revealed significant interactions in CMJ (p = 0.005; ηp2= 0.213) and VIFT (p < 0.001; ηp2 = 0.433), although no significant interaction were found in COD deficit (p = 0.246; ηp2 = 0.060). Within-group analysis revealed that SSG significantly improved CMJ (p < 0.001), COD deficit (p < 0.001), and VIFT (p < 0.001). HIIT group also significantly improved CMJ (p = 0.029), COD deficit (p = 0.001), and VIFT (p < 0.001). As conclusion, the study revealed that SSG promoted significantly improvements in VIFT, CMJ and COD deficit, being significantly better than control group, while HIIT was only significantly better than control in VIFT. SSG revealed to be effective approach for favoring key physical attributes of female soccer players, being an interesting and recommended training approach to increase the ecology of the training practice, while favoring physical positive adaptations.


Subject(s)
Adaptation, Physiological , Athletic Performance , High-Intensity Interval Training , Soccer , Humans , Soccer/physiology , Female , High-Intensity Interval Training/methods , Adolescent , Athletic Performance/physiology , Exercise Test , Plyometric Exercise/methods , Running/physiology
5.
J Sports Sci Med ; 23(2): 410-417, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841645

ABSTRACT

The aim of this study was to compare the effects of jumping interval training (JIT) and running high-intensity interval training (HIIT) on the aerobic, anaerobic and jumping performances of youth female aerobic gymnasts. A randomized controlled study was conducted over an 8-week period, involving 73 youth female athletes (16.2 ± 1.3 years old) of aerobic gymnastics. The study comprised two experimental groups (JIT and HIIT) and a control group. Participants in the experimental groups engaged in two additional training sessions per week alongside their regular training regimen, while the control group followed their usual training routine. Before and after the intervention period, gymnasts were assessed for their performance in the countermovement jump test (CMJ), the specific aerobic gymnastics anaerobic test (SAGAT) and the 20-m multistage fitness test. Significant interactions time × group were found in SAGAT (p < 0.001; = 0.495), CMJ (p < 0.001; = 0.338) and 20-m multistage fitness test (p < 0.001; = 0.500). The time × group analysis post-intervention revealed significantly lower scores in SAGAT for the control group compared to the JIT (p = 0.003) and HIIT (p = 0.034). Additionally, significantly higher scores were observed for the JIT group in the CMJ test compared to the HIIT (p = 0.020) and control (p = 0.028) groups following the intervention. Finally, the 20 m multistage fitness test post-intervention revealed significantly lower scores for the control group compared to JIT (p < 0.001) and HIIT (p < 0.001). Both JIT and HIIT are recommended training strategies to adopt in aerobic gymnastics for significantly improving the aerobic and anaerobic performances of athletes. However, JIT may be particularly relevant to use as it offers additional benefits in improving vertical jumping performances.


Subject(s)
Athletic Performance , Gymnastics , High-Intensity Interval Training , Humans , Female , Gymnastics/physiology , High-Intensity Interval Training/methods , Athletic Performance/physiology , Adolescent , Exercise Test , Plyometric Exercise/methods , Running/physiology
6.
Sci Rep ; 14(1): 11272, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760392

ABSTRACT

Plyometric training (PT) is an effective training method for improving physical fitness among trained individuals; however, its impact on health-related physical fitness in untrained participants remains ambiguous. Therefore, this meta-analysis aimed to evaluate the effects of PT on health-related physical fitness among untrained participants. Six electronic databases (PubMed, CINAHL Plus, MEDLINE Complete, Web of Science Core Collection, SCOPUS, and SPORTDiscus) were systematically searched until March 2024. We included controlled trials that examined the effects of PT on health-related physical fitness indices in untrained participants. Twenty-one studies were eligible, including a total of 1263 participants. Our analyses revealed small to moderate effects of PT on body mass index, muscular strength, cardiorespiratory fitness, and flexibility (ES = 0.27-0.61; all p > 0.05). However, no significant effects were detected for body fat percentage and lean mass (ES = 0.21-0.41; all p > 0.05). In conclusion, the findings suggest that PT may be potentially effective in improving health-related physical fitness indices (i.e., body mass index, muscular strength, cardiorespiratory fitness, and flexibility) in untrained participants. However, the results should be interpreted cautiously due to data limitations in some fitness variables.


Subject(s)
Body Mass Index , Cardiorespiratory Fitness , Muscle Strength , Physical Fitness , Plyometric Exercise , Humans , Physical Fitness/physiology , Muscle Strength/physiology , Plyometric Exercise/methods , Cardiorespiratory Fitness/physiology , Male , Female , Adult
7.
PLoS One ; 19(5): e0295786, 2024.
Article in English | MEDLINE | ID: mdl-38781181

ABSTRACT

PURPOSE: The purpose of this study was to compare the effects of vertical (VPT), horizontal (HPT) and combined vertical and horizontal (V+HPT) plyometric training on sprint, jump and change of direction (COD) performance in adult male soccer players. METHOD: Participants were randomly allocated into VPT (n = 8), HPT (n = 8) and V+HPT (n = 8) groups which undertook eight weeks of PT, executing 100 foot contacts per session, twice weekly. RESULTS: Though demonstrably effective, no specific one of the three applied programmes enhanced performance to a greater extent than another with only the 40 m sprint for the HPT group (mean difference = 0.07 s [HPT] vs. 0.04 s [VPT] and 0.04 s [V+HPT]) and the vertical jump for the V+HPT group (mean difference = 4.5 cm [V+HPT] vs. 4.0 cm [VPT] and 3.25 cm [HPT]) appearing to deviate from a uniform pattern of group level adaptation across the performance tests. CONCLUSION: A total volume of 100 foot contacts per session, twice per week for eight weeks was sufficient to achieve the observed changes. Though jump and changing direction performance were enhanced, linear sprint performance was largely unchanged and so a more complete and intense programme may have been warranted. No method was superior to another in eliciting changes across these tests and a directionally-specific pattern of adaptation was not apparent.


Subject(s)
Athletic Performance , Plyometric Exercise , Soccer , Humans , Soccer/physiology , Male , Athletic Performance/physiology , Plyometric Exercise/methods , Young Adult , Adult , Running/physiology , Athletes
8.
J Strength Cond Res ; 38(6): 1144-1148, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38781471

ABSTRACT

ABSTRACT: Dos'Santos, T, Evans, DT, and Read, DB. Validity of the Hawkin dynamics wireless dual force platform system against a piezoelectric laboratory grade system for vertical countermovement jump variables. J Strength Cond Res 38(6): 1144-1148, 2024-The aim of this study was to determine the criterion validity of the Hawkin Dynamics (HD) wireless dual force platform system for assessing vertical countermovement jump (CMJ) variables, compared with those derived from a Kistler piezoelectric laboratory grade force platform system. During a single testing session, HD force platforms were placed directly on top of 2 adjacent Kistler force platforms to simultaneously collect vertical ground reaction forces produced by 2 male recreational soccer players (age: 29.0 ± 2.8 years, height: 1.79 ± 0.01 m, mass: 85.6 ± 4.7 kg) that performed 25 vertical CMJs each. Sixteen vertical CMJ variables pertaining to jump height (JH), flight time (FT), time-to-take off (TTT), countermovement depth, body weight (BW), propulsive and braking mean, and peak powers, forces, and impulses were compared between systems. Fixed bias was observed for 6 of 16 variables (peak and mean braking power, mean propulsion force, TTT, FT, and BW), while proportional bias was present for 10 of 16 variables (peak and mean propulsive and braking force, TTT, FT, peak and mean braking power, mean propulsive power, and BW). For all variables regardless of fixed or proportional bias, percentage differences were ≤3.4% between force platform systems, with near perfect to perfect correlations (r or ρ = 0.977-1.000) observed for 15 of 16 variables. The HD dual wireless force platform system can be considered a valid alternative to a piezoelectric laboratory grade force platform system for the collection of vertical CMJ variables, particularly outcome (i.e., JH, reactive strength index modified) and strategy variables (countermovement depth).


Subject(s)
Soccer , Humans , Male , Adult , Soccer/physiology , Exercise Test/instrumentation , Biomechanical Phenomena , Reproducibility of Results , Muscle Strength/physiology , Athletic Performance/physiology , Plyometric Exercise , Wireless Technology/instrumentation
9.
Int J Sports Physiol Perform ; 19(6): 585-592, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38594016

ABSTRACT

PURPOSE: To determine between-limbs differences in isometric rate of force development (RFD) measured during open- (OKC) and closed-kinetic-chain (CKC) strength testing and establish which method had the strongest relationship to single-leg vertical-jump performance and knee mechanics after anterior cruciate ligament (ACL) reconstruction. METHODS: Subjects (n = 19) 1 to 5 years from ACL reconstruction performed isometric knee extensions (OKC), unilateral isometric midthigh pulls (CKC), and single-leg vertical jumps on the ACL-involved and -noninvolved limbs. Between-limbs differences were assessed using paired t tests, and the relationship between RFD, jump performance, and knee mechanics was assessed using correlation coefficients (r; P ≤ .05). RESULTS: There were significant between-limbs differences in OKC RFD (P = .008, d = -0.69) but not CKC RFD. OKC RFD in the ACL-involved limb had a strong association with jump height (r = .64, P = .003), knee-joint power (r = .72, P < .001), and peak knee-flexion angle (r = .72, P = .001). CKC RFD in the ACL-involved limb had a strong association with jump height (r = .65, P = .004) and knee-joint power (r = .67, P = .002) but not peak knee-flexion angle (r = .40, P = .09). CONCLUSIONS: While both OKC and CKC RFD were strongly related to jump performance and knee-joint power, OKC RFD was able to detect between-limbs RFD asymmetries and was strongly related to knee-joint kinematics. These findings indicate that isometric knee extension may be optimal for assessing RFD after ACL reconstruction.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Muscle Strength , Humans , Male , Female , Muscle Strength/physiology , Biomechanical Phenomena , Young Adult , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Injuries/physiopathology , Isometric Contraction/physiology , Adult , Knee Joint/physiology , Adolescent , Plyometric Exercise , Athletic Performance/physiology
10.
J Strength Cond Res ; 38(6): 1041-1047, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38595295

ABSTRACT

ABSTRACT: Sasajima, S and Kubo, K. Effect of static stretching on tendon hysteresis and efficiency during repetitive jumping. J Strength Cond Res 38(6): 1041-1047, 2024-To date, no studies have experimentally shown a relationship between tendon hysteresis and exercise efficiency. However, previous studies showed that tendon hysteresis decreased immediately after static stretching. The purposes of this study were to (a) investigate the change in tendon hysteresis during the recovery period after static stretching and (b) determine whether exercise efficiency is enhanced because of the decline of tendon hysteresis after static stretching. For stretching (1 minute × 4 sets) and control conditions, tendon hysteresis was measured during ramp (i.e., lower strain rate of tendon) and ballistic (i.e., higher strain rate of tendon) contractions before, immediately, 15, 30, 45, and 60 minutes after interventions. In addition, electromyograms of the plantar flexor muscles (medial gastrocnemius [MG], lateral gastrocnemius [LG], and soleus muscles [SOL]) and oxygen consumption (V̇O 2 ) were measured during 10 minutes of submaximal repetitive jumping after both interventions. Tendon hysteresis (during ramp and ballistic contractions) reduced by static stretching persisted for up to 60 minutes (effect of time p < 0.001). During repetitive jumping, no differences in electromyograms of the plantar flexor muscles (effect of condition p = 0.786 for MG, p = 0.124 for LG, p = 0.682 for SOL) or V̇O 2 (effect of condition p = 0.534) were found between stretching and control conditions. These results suggest that the reduction in tendon hysteresis because of static stretching continues until 60 minutes after the end of stretching, and static stretching does not change the efficiency (evaluated by electromyograms of the plantar flexor muscles and V̇O 2 ) during submaximal repetitive jumping.


Subject(s)
Electromyography , Muscle Stretching Exercises , Muscle, Skeletal , Oxygen Consumption , Tendons , Humans , Muscle Stretching Exercises/physiology , Male , Young Adult , Tendons/physiology , Muscle, Skeletal/physiology , Oxygen Consumption/physiology , Adult , Biomechanical Phenomena , Plyometric Exercise , Muscle Contraction/physiology
11.
Phys Ther Sport ; 67: 61-67, 2024 May.
Article in English | MEDLINE | ID: mdl-38593626

ABSTRACT

OBJECTIVE: To analyse interlimb kinetics and asymmetries during the tuck jump assessment (TJA), before and after kinetic stabilization, to identify injury risk in healthy female athletes. DESIGN: Cross-sectional study. SETTING: Laboratory. PARTICIPANTS: Twenty-five healthy females (age 21.0 ± 1.83 yrs; height 1.68 ± 0.06 m; body mass 69.4 ± 10.7 kg). MAIN OUTCOME MEASURES: Kinetics were measured during 10-s trials of the TJA and absolute asymmetries compared, before and after kinetic stabilization using paired sample t-tests. Statistical parametric mapping (SPM) compared vertical ground reaction force (VGRF) data for each limb during the jumping cycles before and after stabilization. RESULTS: Small to moderate increases in interlimb asymmetries were observed after stabilization for VGRF, relative vertical leg stiffness, average loading rate, total and propulsive impulse, peak braking and propulsive force (p < 0.05). SPM revealed significant interlimb differences between 77-98% and 83-99% of ground contact for the jumping cycles pre- and post-stabilization respectively. CONCLUSIONS: Larger asymmetries were evident after kinetic stabilization, with increased VGRF in the non-dominant limb. We speculate that participants sacrificed interlimb landing symmetry to achieve kinetic stability, which may reflect a primal landing strategy that forgoes movement quality. Assessing lower limb biomechanics using the TJA should involve examining kinetic stability and interlimb kinetic asymmetries.


Subject(s)
Plyometric Exercise , Humans , Female , Cross-Sectional Studies , Young Adult , Biomechanical Phenomena , Kinetics , Lower Extremity/physiology , Athletic Injuries , Leg/physiology
12.
J Sports Sci Med ; 23(1): 177-195, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38455436

ABSTRACT

This meta-analysis aimed to examine the effects of plyometric training on physical fitness attributes in handball players. A systematic literature search across PubMed, SCOPUS, SPORTDiscus, and Web of Science identified 20 studies with 563 players. Plyometric training showed significant medium-to-large effects on various attributes: countermovement jump with arms (ES = 1.84), countermovement jump (ES = 1.33), squat jump (ES = 1.17), and horizontal jump (ES = 0.83), ≤ 10-m linear sprint time (ES = -1.12), > 10-m linear sprint time (ES = -1.46), repeated sprint ability with change-of-direction time (ES = -1.53), agility (ES = -1.60), maximal strength (ES = 0.52), and force-velocity (muscle power) (ES = 1.13). No significant impact on balance was found. Subgroup analysis indicated more pronounced agility improvements in players ≤ 66.6 kg compared to > 66.6 kg (ES = -1.93 vs. -0.23, p = 0.014). Additionally, greater improvements were observed in linear sprint and repeat sprint ability when comparing training durations of > 8 weeks with those ≤ 8 weeks (ES = -2.30 to -2.89 vs. ES = -0.92 to -0.97). In conclusion, plyometric training effectively improves various physical fitness attributes, including jump performance, linear sprint ability, maximal strength, muscle power and agility.


Subject(s)
Athletic Performance , Plyometric Exercise , Humans , Athletic Performance/physiology , Physical Fitness/physiology , Running/physiology , Sports
13.
J Sports Sci ; 42(5): 425-433, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38545865

ABSTRACT

In high jump, the thigh and shank rotations mainly induce the effective energy for height (Evert) by directly or indirectly (via joint work) converting horizontal-kinetic energy. Meanwhile, inter-individual differences in Evert may not only be explained by large contributors. Here we show that the Evert components due to relatively small contributor segments share variance with total Evert while those due to the two largest contributor segments do not, by analyzing high jump of 15 male jumpers (personal best: 1.90-2.31 m). The largest Evert components were from the stance-leg thigh and shank (36 ± 7%, 34 ± 7% of total Evert), but each of them did not significantly share variance with total Evert (r2 < 0.12). Meanwhile, each of the thoracic and stance-leg-foot components significantly shared variance with total increase in Evert (r2 > 0.30), despite their relatively small contributions (11 ± 2%, 4 ± 1%). The stance-leg thigh and shank components had a strongly trade-off relationship (r2 = 0.60). We reveal that large contributors to the performance variable do not directly imply by their large contribution that they explain inter-individual differences in motor performance, and vice versa. We provide an example where large contributors to the performance variable are related to individually different strategies for achieving performance rather than to performance itself.


Subject(s)
Athletic Performance , Humans , Male , Biomechanical Phenomena , Athletic Performance/physiology , Young Adult , Leg/physiology , Rotation , Plyometric Exercise , Lower Extremity/physiology , Individuality , Thigh
14.
Int J Sports Physiol Perform ; 19(5): 471-479, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38458179

ABSTRACT

PURPOSE: Monitoring performance athletes' training responses can be efficiently completed at competitive events. This study aimed to explore the changes in swimming, countermovement-jump (CMJ), and pull-up (PU) performance following training across a competitive phase, as well as immediately before and after each race. METHODS: Fourteen well-trained male sprint/middle-distance swimmers (height 179 [7] cm, mass 70 [8] kg, age 18 [2] y), from 3 regional training groups, completed CMJ and PU tests before and after the national competitions in October and May, when race performance was also assessed. RESULTS: Swimming race performance was significantly improved from before the national competitions in October to after the national competitions in May (1.8% [3.2%], P = .044, d = 0.60, moderate effect). Although there were no significant changes in PU velocity, CMJ performance significantly improved from before the national competitions in October to after the national competitions in May (mean difference 2.29 cm, P = .004, d = 3.52) and showed before-to-after race decreases (mean difference -1.64 cm, P = .04, d = 2.28). CONCLUSION: Swimming performance and CMJ performance improved as the season progressed, although these improvements were not directly correlated. PU performance did not appear to be sensitive to training or race-induced fatigue, in contrast to CMJ, in this group of male swimmers.


Subject(s)
Athletic Performance , Competitive Behavior , Swimming , Humans , Swimming/physiology , Male , Athletic Performance/physiology , Adolescent , Competitive Behavior/physiology , Young Adult , Physical Conditioning, Human/methods , Exercise Test , Plyometric Exercise
15.
Medicine (Baltimore) ; 103(10): e37359, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457594

ABSTRACT

OBJECTIVES: To investigate the effect of combined balance and plyometric training (PT) on the agility and dynamic balance of adolescent taekwondo athletes. METHODS: Thirty female adolescent taekwondo players volunteered to participate and were randomly assigned to the combined balance training and PT (CT; n = 15) and PT (n = 15) groups. The CT group performed balance training combined with PT 3 times a week for 6 weeks (40 minutes of plyometrics and 20 minutes of balance training) while the PT group performed only PT for the same period (3 sets × 8-12 reps for each exercise). Both groups received the same routine technical taekwondo training. RESULTS: Post-intervention assessments revealed that both groups significantly improved their dynamic posture stability index scores (DPSI; forward jump [F-DPSI] and lateral jump [L-DPSI]). However, participants in the CT group achieved notably superior outcomes in the F-DPSI and L-DPSI scores compared with those achieved by their PT counterparts. The center of pressure metrics exhibited improvements post-intervention, with scores of specific measures in the PT group surpassing those in the CT group. Additionally, the 5-0-5 test scores exhibited improvements post-intervention, with scores of specific measures in the PT group surpassing those in the CT group, and the TAST (Taekwondo Specific Agility Test) of the CT group and the PT changed significantly after the intervention. CONCLUSION: An 8-week regimen that integrates balance and plyometric training effectively augments knee function and proprioception in adolescent Taekwondo athletes. This study underscores the potential benefits of a combined training approach, providing coaches and athletes with valuable insights into Taekwondo training.


Subject(s)
Athletic Performance , Plyometric Exercise , Humans , Adolescent , Female , Exercise , Proprioception , Athletes , Muscle Strength
16.
J Strength Cond Res ; 38(6): 1082-1089, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38489585

ABSTRACT

ABSTRACT: Moran, J, Vali, N, Tallent, J, Howe, L, Clemente, FM, Chaabene, H, and Ramirez-Campillo, R. Evaluating the effects of consecutive phases of plyometric jump training on athletic performance in male soccer players: The effect of training frequency and volume manipulations. J Strength Cond Res 38(6): 1082-1089, 2024-This 14-week, 2-phase study aimed to determine the relative effects of 1 day or 2 days of volume-matched plyometric training on athletic performance (10- and 40-m sprints, change of direction [COD], and vertical jump [VJ]) in male soccer players (phase 1). The objective of phase 2 was to determine the relative effects of higher- and lower-volume plyometric training protocols in maintaining any previously attained increases in athletic performance from phase 1. A randomized parallel-group trial design was utilized. In phase 1, subjects ( n = 24; mean age: 19.5 ± 1.2 years; mean height: 179.7 ± 7.1 cm; mean weight: 69.8 ± 6.9 kg) were randomly allocated to 1 of 2 groups to receive either 1 day or 2 days of volume- and intensity-matched plyometric training for a 7-week period. For the second 7-week period (phase 2), half of each group was randomized into either a lower-volume or higher-volume plyometric training group. In phase 1, both the 1-day group and the 2-day group attained comparably significant ( p < 0.001) increases in performance in all fitness tests ranging from effect sizes (ESs) ( d ) of 0.4 (95% confidence interval: 0.11 to 0.70) for 10-m sprint to 1.51 (0.42-2.60) for VJ. There were no significant differences between the performance increases in the 2 groups. In phase 2, neither group increased or decreased performance, maintaining all previously attained increases with only trivial ESs observed (-0.02 [-0.58 to 0.53] to 0.11 [-0.38 to 0.61]). Increases in 10- and 40-m sprint speed, COD speed, and VJ height can be achieved and maintained with as little as 1 plyometric training session per week. Sessions can include 120 jumps to induce increases of the reported magnitudes, with 60 jumps to maintain these increases thereafter, in male soccer players.


Subject(s)
Athletic Performance , Plyometric Exercise , Soccer , Humans , Soccer/physiology , Male , Athletic Performance/physiology , Plyometric Exercise/methods , Young Adult , Muscle Strength/physiology
17.
J Strength Cond Res ; 38(6): 1048-1055, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38489659

ABSTRACT

ABSTRACT: Harrison, K, Williams, DSB III, Darter, BJ, Zernicke, RF, Shall, M, and Finucane, S. Effect of strength and plyometric training on kinematics in female novice runners. J Strength Cond Res 38(6): 1048-1055, 2024-Both running performance and injury have been associated with running kinematics. Plyometric training improves run performance and reduces injury risk in court-sport and field-sport athletes. The aim of this study was to assess longitudinal changes in kinematics in novice runners before and after a typical beginners' running program, compared with those who perform a plyometric intervention before running. Fifty-seven novice female runners were assigned to the control group (8 weeks walking +8 weeks running) or the intervention group (8 weeks strength or plyometric training +8 weeks running). Kinematics were assessed at baseline, 8 weeks, and 16 weeks. Joint angles throughout the stride of those who completed the training ( n = 21) were compared between groups and assessment time points using a statistical parametric mapping 2-way analysis of variance, with group and study time point as independent variables. There was no interaction effect of group and study time point ( p > 0.05), indicating that both training programs had similar effects on running kinematics. There was a main effect of time for sagittal plane knee and hip kinematics ( p < 0.001); after training, subjects ran with a more extended leg, particularly during swing. Programs of 8 weeks of preparatory training, followed by 8 weeks of running, resulted in altered sagittal plane biomechanics, which have previously been related to improved running economy. A greater volume of plyometric, run training or concurrent plyometric and run training may be required to elicit changes in running form associated with lower injury risk.


Subject(s)
Plyometric Exercise , Resistance Training , Running , Humans , Female , Running/physiology , Biomechanical Phenomena , Young Adult , Resistance Training/methods , Adult , Knee Joint/physiology , Hip Joint/physiology
18.
J Sports Sci Med ; 23(1): 219-227, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38455432

ABSTRACT

This study aimed to analyze the effects of three off-season training programs on the aerobic capacity, countermovement jump (CMJ), and linear sprint performance of young male soccer players. The study employed a randomized multi-arm design, consisting of three experimental groups: i) a high-intensity interval training (HIIT) group; (ii) a plyometric jump training (PJT) group; and (iii) a HIIT+PJT group; and an inactive control group. Fifty-eight under-19 male soccer players (aged 17.6 ±0.6 years) were randomly assigned to participate in a 3-week offseason training program exclusively performing HIIT, PJT, or a combination of both, while the fourth group remained inactive. Players underwent assessments twice, using the Yo-Yo Intermittent Recovery Test - Level 1 (YYIRT), CMJ, and 30-meter linear sprint. Significant interactions between time and groups were found in CMJ (p<0.001), YYIRT (p<0.001), and 30-m sprint (p<0.001). Group*time interaction revealed that the control group was significantly different from HIIT (p<0.001), PJT (p<0.001), and HIIT+PJT (p<0.001) considering the CMJ. Moreover, the control group was significantly different from HIIT (p=0.037) in YYIRT. Finally, the control group was significantly different from HIIT (p=0.024), PJT (p<0.001), and HIIT+PJT (p=0.021) considering the 30-m sprint. In conclusion, off-season training programs are effective in significantly reducing declines in CMJ and sprint performance compared to maintaining training cessation. However, in the YYIRT, only HIIT seems to be significantly superior to maintaining inactivity. To mitigate aerobic performance declines, incorporating HIIT sessions twice weekly during the offseason is advisable. To enhance or maintain jump performance, integrating at least one session of PJT weekly is beneficial.


Subject(s)
Athletic Performance , High-Intensity Interval Training , Plyometric Exercise , Soccer , Humans , Male , Adolescent , Physical Fitness
19.
J Sports Sci Med ; 23(1): 97-106, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38455429

ABSTRACT

Incorporating plyometric exercises (PE) into soccer players' conditioning routines is vital for boosting their performance. Nevertheless, the effects of PE sessions with diverse volume loads on inflammation, oxidative stress, and muscle damage are not yet clearly understood. This study aimed to examine the effects of altering the volume-loads of PE on indicators of oxidative muscle damage and inflammation. The study involved forty young male soccer players who were randomly assigned to three different volume-loads of PE (Low volume-load [100 jumps]: LVL, n = 10; Moderate volume-load [150 jumps]: MVL, n = 10; and High volume-load [200 jumps]: HVL, n = 10) and a control group (CON = 10). The levels of various biomarkers including delayed onset muscle soreness (DOMS), serum lactate dehydrogenase (LDH), creatine kinase (CK), 8-hydroxy-2-deoxyguanosine (8-OHdG), malondialdehyde (MDA), protein carbonyl (PC), leukocytes, neutrophils, interleukin-6 (IL-6), and C-reactive protein (CRP) were measured at different time points. These measurements were taken at rest, immediately after completion of PE, and 24-, 48-, and 72-hours post-PE. The CK, LDH, DOMS, 8-OHdG, MDA, and PC levels were significantly increased (p < 0.05) after the PE protocol, reaching their peak values between 24 to 48 hours post-PE for all the volume-loaded groups. The levels of leukocytes, neutrophils, and IL-6 also increased after the PE session but returned to resting values within 24 hours post-PE. On the other hand, CRP levels increased at 24 hours post-PE for all the treatment groups (p < 0.05). The changes observed in the indicators of muscle damage and inflammation in response to different volume-loads of PE was not significant. However, the HVL and MVL indicated significant differences compared to LVL in the 8-OHdG (at 48-hour) and MDA (at 72-hour). Athletes engaging in higher volume-loads demonstrated more pronounced responses in terms of biochemical variables (specifically, LVL < MVL < HVL); however, these changes were not statistically significant (except 8-OHdG and MDA).


Subject(s)
Plyometric Exercise , Soccer , Humans , Male , Muscle, Skeletal/metabolism , Interleukin-6 , Soccer/physiology , Myalgia/metabolism , Oxidative Stress , Inflammation
20.
J Sci Med Sport ; 27(5): 287-292, 2024 May.
Article in English | MEDLINE | ID: mdl-38383211

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAIDs) are frequently consumed by athletes to manage muscle soreness, expedite recovery, or improve performance. Despite the prevalence of NSAID use, their effects on muscle soreness and performance, particularly when administered prophylactically, remain unclear. This randomized, double-blind, counter-balanced, crossover study examined the effect of consuming a single dose of each of three NSAIDs (celecoxib, 200 mg; ibuprofen, 800 mg; flurbiprofen, 100 mg) or placebo 2 h before on muscle soreness and performance following an acute plyometric training session. Twelve healthy adults, aged 18-42 years, completed a standardized plyometric exercise session consisting of 10 sets of 10 repetitions at 40 % 1-repetition maximum (1RM) on a leg press device. During exercise, total work, rating of perceived exertion, and heart rate were measured. Maximum voluntary contraction force (MVC), vertical jump height, and muscle soreness were measured before exercise and 4-h and 24-h post-exercise. We found no significant differences in total work, heart rate, or rating of perceived exertion between treatments. Additionally, no significant differences in muscle soreness or vertical jump were observed between treatments. Ibuprofen and flurbiprofen did not prevent decrements in MVC, but celecoxib attenuated decreases in MVC 4-h post exercise (p < 0.05). This study suggests that athletes may not benefit from prophylactic ibuprofen or flurbiprofen treatment to prevent discomfort or performance decrements associated with exercise, but celecoxib may mitigate short-term performance decrements.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Cross-Over Studies , Flurbiprofen , Ibuprofen , Myalgia , Humans , Myalgia/prevention & control , Myalgia/drug therapy , Double-Blind Method , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Ibuprofen/administration & dosage , Ibuprofen/therapeutic use , Adult , Young Adult , Male , Female , Flurbiprofen/administration & dosage , Adolescent , Athletic Performance/physiology , Celecoxib/administration & dosage , Plyometric Exercise , Heart Rate/drug effects , Exercise/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...