Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.479
Filter
1.
Cells ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786077

ABSTRACT

Patients with COVID-19 have coagulation and platelet disorders, with platelet alterations and thrombocytopenia representing negative prognostic parameters associated with severe forms of the disease and increased lethality. METHODS: The aim of this study was to study the expression of platelet glycoprotein IIIa (CD61), playing a critical role in platelet aggregation, together with TRL-2 as a marker of innate immune activation. RESULTS: A total of 25 patients were investigated, with the majority (24/25, 96%) having co-morbidities and dying from a fatal form of SARS-CoV-2(+) infection (COVID-19+), with 13 men and 12 females ranging in age from 45 to 80 years. When compared to a control group of SARS-CoV-2 (-) negative lungs (COVID-19-), TLR-2 expression was up-regulated in a subset of patients with deadly COVID-19 fatal lung illness. The proportion of Spike-1 (+) patients found by PCR and ISH correlates to the proportion of Spike-S1-positive cases as detected by digital pathology examination. Furthermore, CD61 expression was considerably higher in the lungs of deceased patients. In conclusion, we demonstrate that innate immune prolonged hyperactivation is related to platelet/megakaryocyte over-expression in the lung. CONCLUSIONS: Microthrombosis in deadly COVID-19+ lung disease is associated with an increase in the number of CD61+ platelets and megakaryocytes in the pulmonary interstitium, as well as their functional activation; this phenomenon is associated with increased expression of innate immunity TLR2+ cells, which binds the SARS-CoV-2 E protein, and significantly with the persistence of the Spike-S1 viral sequence.


Subject(s)
COVID-19 , Lung , Megakaryocytes , SARS-CoV-2 , Thrombosis , Toll-Like Receptor 2 , Up-Regulation , Humans , COVID-19/pathology , COVID-19/immunology , COVID-19/metabolism , Male , Female , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Megakaryocytes/metabolism , Megakaryocytes/pathology , Megakaryocytes/virology , Aged , Middle Aged , Aged, 80 and over , Lung/pathology , Lung/virology , Lung/metabolism , Up-Regulation/genetics , Thrombosis/pathology , Integrin beta3/metabolism , Integrin beta3/genetics , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Pneumonia, Viral/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Pneumonia, Viral/metabolism , Immunity, Innate , Pandemics
2.
Front Immunol ; 15: 1382655, 2024.
Article in English | MEDLINE | ID: mdl-38803494

ABSTRACT

Introduction: Global microplastic (MP) pollution is now well recognized, with humans and animals consuming and inhaling MPs on a daily basis, with a growing body of concern surrounding the potential impacts on human health. Methods: Using a mouse model of mild COVID-19, we describe herein the effects of azide-free 1 µm polystyrene MP beads, co-delivered into lungs with a SARS-CoV-2 omicron BA.5 inoculum. The effect of MPs on the host response to SARS-CoV-2 infection was analysed using histopathology and RNA-Seq at 2 and 6 days post-infection (dpi). Results: Although infection reduced clearance of MPs from the lung, virus titres and viral RNA levels were not significantly affected by MPs, and overt MP-associated clinical or histopathological changes were not observed. However, RNA-Seq of infected lungs revealed that MP exposure suppressed innate immune responses at 2 dpi and increased pro-inflammatory signatures at 6 dpi. The cytokine profile at 6 dpi showed a significant correlation with the 'cytokine release syndrome' signature observed in some COVID-19 patients. Discussion: The findings are consistent with the recent finding that MPs can inhibit phagocytosis of apoptotic cells via binding of Tim4. They also add to a growing body of literature suggesting that MPs can dysregulate inflammatory processes in specific disease settings.


Subject(s)
COVID-19 , Disease Models, Animal , Immunity, Innate , Lung , Microplastics , SARS-CoV-2 , Animals , COVID-19/immunology , COVID-19/virology , Immunity, Innate/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Mice , Lung/immunology , Lung/virology , Lung/pathology , Cytokines/metabolism , Humans , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Female , Cytokine Release Syndrome/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Betacoronavirus/immunology , Pandemics
3.
BMC Pulm Med ; 24(1): 261, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811907

ABSTRACT

PURPOSE: This study mainly focuses on the immune function and introduces CD4+, CD8+ T cells and their ratios based on the MuLBSTA score, a previous viral pneumonia mortality risk warning model, to construct an early warning model of severe viral pneumonia risk. METHODS: A retrospective single-center observational study was operated from January 2021 to December 2022 at the People's Hospital of Liangjiang New Area, Chongqing, China. A total of 138 patients who met the criteria for viral pneumonia in hospital were selected and their data, including demographic data, comorbidities, laboratory results, CT scans, immunologic and pathogenic tests, treatment regimens, and clinical outcomes, were collected and statistically analyzed. RESULTS: Forty-one patients (29.7%) developed severe or critical illness. A viral pneumonia severe risk warning model was successfully constructed, including eight parameters: age, bacterial coinfection, CD4+, CD4+/CD8+, multiple lung lobe infiltrations, smoking, hypertension, and hospital admission days. The risk score for severe illness in patients was set at 600 points. The model had good predictive performance (AUROC = 0.94397), better than the original MuLBSTA score (AUROC = 0.8241). CONCLUSION: A warning system constructed based on immune function has a good warning effect on the risk of severe conversion in patients with viral pneumonia.


Subject(s)
CD8-Positive T-Lymphocytes , Pneumonia, Viral , Humans , Male , Female , Retrospective Studies , Middle Aged , Pneumonia, Viral/immunology , China/epidemiology , CD8-Positive T-Lymphocytes/immunology , Aged , Adult , Severity of Illness Index , CD4-Positive T-Lymphocytes/immunology , Risk Assessment , Disease Progression , Risk Factors , Early Warning Score
4.
Nat Commun ; 15(1): 4235, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762489

ABSTRACT

Inflammation induced by lung infection is a double-edged sword, moderating both anti-viral and immune pathogenesis effects; the mechanism of the latter is not fully understood. Previous studies suggest the vasculature is involved in tissue injury. Here, we report that expression of Sparcl1, a secreted matricellular protein, is upregulated in pulmonary capillary endothelial cells (EC) during influenza-induced lung injury. Endothelial overexpression of SPARCL1 promotes detrimental lung inflammation, with SPARCL1 inducing 'M1-like' macrophages and related pro-inflammatory cytokines, while SPARCL1 deletion alleviates these effects. Mechanistically, SPARCL1 functions through TLR4 on macrophages in vitro, while TLR4 inhibition in vivo ameliorates excessive inflammation caused by endothelial Sparcl1 overexpression. Finally, SPARCL1 expression is increased in lung ECs from COVID-19 patients when compared with healthy donors, while fatal COVID-19 correlates with higher circulating SPARCL1 protein levels in the plasma. Our results thus implicate SPARCL1 as a potential prognosis biomarker for deadly COVID-19 pneumonia and as a therapeutic target for taming hyperinflammation in pneumonia.


Subject(s)
COVID-19 , Endothelial Cells , Lung , Macrophage Activation , SARS-CoV-2 , Animals , Humans , COVID-19/immunology , COVID-19/virology , COVID-19/metabolism , COVID-19/pathology , Mice , Endothelial Cells/metabolism , Endothelial Cells/virology , Endothelial Cells/immunology , SARS-CoV-2/physiology , Lung/virology , Lung/pathology , Lung/immunology , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Mice, Inbred C57BL , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Pneumonia, Viral/metabolism , Male , Macrophages/metabolism , Macrophages/immunology , Female , Mice, Knockout , Extracellular Matrix Proteins
5.
J Nanobiotechnology ; 22(1): 304, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822339

ABSTRACT

Nanobodies, single-domain antibodies derived from variable domain of camelid or shark heavy-chain antibodies, have unique properties with small size, strong binding affinity, easy construction in versatile formats, high neutralizing activity, protective efficacy, and manufactural capacity on a large-scale. Nanobodies have been arisen as an effective research tool for development of nanobiotechnologies with a variety of applications. Three highly pathogenic coronaviruses (CoVs), SARS-CoV-2, SARS-CoV, and MERS-CoV, have caused serious outbreaks or a global pandemic, and continue to post a threat to public health worldwide. The viral spike (S) protein and its cognate receptor-binding domain (RBD), which initiate viral entry and play a critical role in virus pathogenesis, are important therapeutic targets. This review describes pathogenic human CoVs, including viral structures and proteins, and S protein-mediated viral entry process. It also summarizes recent advances in development of nanobodies targeting these CoVs, focusing on those targeting the S protein and RBD. Finally, we discuss potential strategies to improve the efficacy of nanobodies against emerging SARS-CoV-2 variants and other CoVs with pandemic potential. It will provide important information for rational design and evaluation of therapeutic agents against emerging and reemerging pathogens.


Subject(s)
COVID-19 , SARS-CoV-2 , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/therapeutic use , Single-Domain Antibodies/chemistry , Humans , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Animals , COVID-19/virology , COVID-19/immunology , COVID-19/therapy , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/immunology , Virus Internalization/drug effects , Pandemics , Betacoronavirus/immunology , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Pneumonia, Viral/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use
6.
J Virol ; 98(5): e0176223, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38563762

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and is responsible for the largest human pandemic in 100 years. Thirty-four vaccines are currently approved for use worldwide, and approximately 67% of the world population has received a complete primary series of one, yet countries are dealing with new waves of infections, variant viruses continue to emerge, and breakthrough infections are frequent secondary to waning immunity. Here, we evaluate a measles virus (MV)-vectored vaccine expressing a stabilized prefusion SARS-CoV-2 spike (S) protein (MV-ATU3-S2PΔF2A; V591) with demonstrated immunogenicity in mouse models (see companion article [J. Brunet, Z. Choucha, M. Gransagne, H. Tabbal, M.-W. Ku et al., J Virol 98:e01693-23, 2024, https://doi.org/10.1128/jvi.01693-23]) in an established African green monkey model of disease. Animals were vaccinated with V591 or the control vaccine (an equivalent MV-vectored vaccine with an irrelevant antigen) intramuscularly using a prime/boost schedule, followed by challenge with an early pandemic isolate of SARS-CoV-2 at 56 days post-vaccination. Pre-challenge, only V591-vaccinated animals developed S-specific antibodies that had virus-neutralizing activity as well as S-specific T cells. Following the challenge, V591-vaccinated animals had lower infectious virus and viral (v) RNA loads in mucosal secretions and stopped shedding virus in these secretions earlier. vRNA loads were lower in these animals in respiratory and gastrointestinal tract tissues at necropsy. This correlated with a lower disease burden in the lungs as quantified by PET/CT at early and late time points post-challenge and by pathological analysis at necropsy.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the largest human pandemic in 100 years. Even though vaccines are currently available, countries are dealing with new waves of infections, variant viruses continue to emerge, breakthrough infections are frequent, and vaccine hesitancy persists. This study uses a safe and effective measles vaccine as a platform for vaccination against SARS-CoV-2. The candidate vaccine was used to vaccinate African green monkeys (AGMs). All vaccinated AGMs developed robust antigen-specific immune responses. After challenge, these AGMs produced less virus in mucosal secretions, for a shorter period, and had a reduced disease burden in the lungs compared to control animals. At necropsy, lower levels of viral RNA were detected in tissue samples from vaccinated animals, and the lungs of these animals lacked the histologic hallmarks of SARS-CoV-2 disease observed exclusively in the control AGMs.


Subject(s)
COVID-19 Vaccines , COVID-19 , Measles virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Chlorocebus aethiops , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Measles virus/immunology , Measles virus/genetics , COVID-19 Vaccines/immunology , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Genetic Vectors , Vero Cells , Pandemics/prevention & control , Female , Betacoronavirus/immunology , Betacoronavirus/genetics , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Pneumonia, Viral/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Disease Models, Animal
7.
Int J Biol Macromol ; 267(Pt 1): 131427, 2024 May.
Article in English | MEDLINE | ID: mdl-38583833

ABSTRACT

Due to the health emergency created by SARS-CoV-2, the virus that causes the COVID-19 disease, the rapid implementation of a new vaccine technology was necessary. mRNA vaccines, being one of the cutting-edge new technologies, attracted significant interest and offered a lot of hope. The potential of these vaccines in preventing admission to hospitals and serious illness in people with comorbidities has recently been called into question due to the vaccines' rapidly waning immunity. Mounting evidence indicates that these vaccines, like many others, do not generate sterilizing immunity, leaving people vulnerable to recurrent infections. Additionally, it has been discovered that the mRNA vaccines inhibit essential immunological pathways, thus impairing early interferon signaling. Within the framework of COVID-19 vaccination, this inhibition ensures an appropriate spike protein synthesis and a reduced immune activation. Evidence is provided that adding 100 % of N1-methyl-pseudouridine (m1Ψ) to the mRNA vaccine in a melanoma model stimulated cancer growth and metastasis, while non-modified mRNA vaccines induced opposite results, thus suggesting that COVID-19 mRNA vaccines could aid cancer development. Based on this compelling evidence, we suggest that future clinical trials for cancers or infectious diseases should not use mRNA vaccines with a 100 % m1Ψ modification, but rather ones with the lower percentage of m1Ψ modification to avoid immune suppression.


Subject(s)
COVID-19 , Neoplasms , Pseudouridine , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Neoplasms/immunology , Pseudouridine/metabolism , COVID-19 Vaccines/immunology , Animals , mRNA Vaccines , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Pneumonia, Viral/prevention & control , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/virology
8.
Obstet Gynecol ; 143(6): e149-e152, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38574363

ABSTRACT

BACKGROUND: Since the onset of the coronavirus disease (COVID-19) pandemic, a variety of long-COVID-19 symptoms and autoimmune complications have been recognized. CASES: We report three cases of autoimmune premature poor ovarian response in patients aged 30-37 years after mild to asymptomatic COVID-19 before vaccination, with nucleotide antibody confirmation. Two patients failed to respond to maximum-dose gonadotropins for more than 4 weeks, despite a recent history of response before having COVID-19. After a month of prednisone 30 mg, these two patients had normal follicle-stimulating hormone (FSH) levels, high oocyte yield, and blastocyst formation in successful in vitro fertilization cycles. All three patients have above-average anti-müllerian hormone levels that persisted throughout their clinical ovarian insufficiency. Two patients had elevated FSH levels, perhaps resulting from FSH receptor blockade. One patient, with a history of high response to gonadotropins 75 international units per day and below-normal FSH levels, had no ovarian response to more than a month of gonadotropins (525 international units daily), suggesting autoimmune block of the FSH glycoprotein and possible FSH receptor blockade. CONCLUSION: Auto-antibody production in response to COVID-19 before vaccination may be a rare cause of autoimmune poor ovarian response. Although vaccination is likely protective, further study will be required to evaluate the effect of vaccination and duration of autoimmune FSH or FSH receptor blockade.


Subject(s)
COVID-19 , Primary Ovarian Insufficiency , Receptors, FSH , SARS-CoV-2 , Humans , Female , COVID-19/immunology , COVID-19/complications , Primary Ovarian Insufficiency/immunology , Primary Ovarian Insufficiency/drug therapy , Adult , SARS-CoV-2/immunology , Pandemics , Follicle Stimulating Hormone/blood , Coronavirus Infections/immunology , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Pneumonia, Viral/immunology , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Betacoronavirus
9.
Mol Ther ; 32(5): 1510-1525, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38454605

ABSTRACT

The acute respiratory virus infection can induce uncontrolled inflammatory responses, such as cytokine storm and viral pneumonia, which are the major causes of death in clinical cases. Cyclophilin A (CypA) is mainly distributed in the cytoplasm of resting cells and released into the extracellular space in response to inflammatory stimuli. Extracellular CypA (eCypA) is upregulated and promotes inflammatory response in severe COVID-19 patients. However, how eCypA promotes virus-induced inflammatory response remains elusive. Here, we observe that eCypA is induced by influenza A and B viruses and SARS-CoV-2 in cells, mice, or patients. Anti-CypA mAb reduces pro-inflammatory cytokines production, leukocytes infiltration, and lung injury in virus-infected mice. Mechanistically, eCypA binding to integrin ß2 triggers integrin activation, thereby facilitating leukocyte trafficking and cytokines production via the focal adhesion kinase (FAK)/GTPase and FAK/ERK/P65 pathways, respectively. These functions are suppressed by the anti-CypA mAb that specifically blocks eCypA-integrin ß2 interaction. Overall, our findings reveal that eCypA-integrin ß2 signaling mediates virus-induced inflammatory response, indicating that eCypA is a potential target for antibody therapy against viral pneumonia.


Subject(s)
COVID-19 , Cyclophilin A , Cyclophilin A/metabolism , Animals , Humans , Mice , COVID-19/metabolism , COVID-19/virology , COVID-19/immunology , CD18 Antigens/metabolism , SARS-CoV-2 , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Pneumonia, Viral/metabolism , Pneumonia, Viral/immunology , Cytokines/metabolism , Antibodies, Monoclonal/pharmacology , Signal Transduction , Influenza A virus , Disease Models, Animal
10.
J Innate Immun ; 16(1): 133-142, 2024.
Article in English | MEDLINE | ID: mdl-38325356

ABSTRACT

INTRODUCTION: Coronavirus disease 2019 caused by coronavirus-2 (SARS-CoV-2) has emerged as an aggressive viral pandemic. Health care providers confront a challenging task for rapid development of effective strategies to combat this and its long-term after effects. Virus entry into host cells involves interaction between receptor-binding domain (RBD) of spike (S) protein S1 subunit with angiotensin converting enzyme present on host cells. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a moonlighting enzyme involved in cellular glycolytic energy metabolism and micronutrient homeostasis. It is deployed in various cellular compartments and the extra cellular milieu. Though it is known to moonlight as a component of mammalian innate immune defense machinery, till date its role in viral restriction remains unknown. METHOD: Recombinant S protein, the RBD, and human GAPDH protein were used for solid phase binding assays and biolayer interferometry. Pseudovirus particles expressing four different strain variants of S protein all harboring ZsGreen gene as marker of infection were used for flow cytometry-based infectivity assays. RESULTS: Pseudovirus entry into target cells in culture was significantly inhibited by addition of human GAPDH into the extracellular medium. Binding assays demonstrated that human GAPDH binds to S protein and RBD of SARS-CoV-2 with nanomolar affinity. CONCLUSIONS: Our investigations suggest that this interaction of GAPDH interferes in the viral docking with hACE2 receptors, thereby affecting viral ingress into mammalian cells.


Subject(s)
COVID-19 , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Internalization , Humans , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2/physiology , COVID-19/virology , HEK293 Cells , Betacoronavirus/physiology , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Pneumonia, Viral/virology , Pneumonia, Viral/immunology , Pandemics , Coronavirus Infections/virology , Angiotensin-Converting Enzyme 2/metabolism
11.
Nature ; 623(7988): 803-813, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938781

ABSTRACT

Patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1) caused by autosomal recessive AIRE deficiency produce autoantibodies that neutralize type I interferons (IFNs)1,2, conferring a predisposition to life-threatening COVID-19 pneumonia3. Here we report that patients with autosomal recessive NIK or RELB deficiency, or a specific type of autosomal-dominant NF-κB2 deficiency, also have neutralizing autoantibodies against type I IFNs and are at higher risk of getting life-threatening COVID-19 pneumonia. In patients with autosomal-dominant NF-κB2 deficiency, these autoantibodies are found only in individuals who are heterozygous for variants associated with both transcription (p52 activity) loss of function (LOF) due to impaired p100 processing to generate p52, and regulatory (IκBδ activity) gain of function (GOF) due to the accumulation of unprocessed p100, therefore increasing the inhibitory activity of IκBδ (hereafter, p52LOF/IκBδGOF). By contrast, neutralizing autoantibodies against type I IFNs are not found in individuals who are heterozygous for NFKB2 variants causing haploinsufficiency of p100 and p52 (hereafter, p52LOF/IκBδLOF) or gain-of-function of p52 (hereafter, p52GOF/IκBδLOF). In contrast to patients with APS-1, patients with disorders of NIK, RELB or NF-κB2 have very few tissue-specific autoantibodies. However, their thymuses have an abnormal structure, with few AIRE-expressing medullary thymic epithelial cells. Human inborn errors of the alternative NF-κB pathway impair the development of AIRE-expressing medullary thymic epithelial cells, thereby underlying the production of autoantibodies against type I IFNs and predisposition to viral diseases.


Subject(s)
Autoantibodies , Genetic Predisposition to Disease , Interferon Type I , NF-kappa B , Humans , Autoantibodies/immunology , COVID-19/genetics , COVID-19/immunology , Gain of Function Mutation , Heterozygote , I-kappa B Proteins/deficiency , I-kappa B Proteins/genetics , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Loss of Function Mutation , NF-kappa B/deficiency , NF-kappa B/genetics , NF-kappa B p52 Subunit/deficiency , NF-kappa B p52 Subunit/genetics , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Thymus Gland/abnormalities , Thymus Gland/immunology , Thymus Gland/pathology , Thyroid Epithelial Cells/metabolism , Thyroid Epithelial Cells/pathology , AIRE Protein , NF-kappaB-Inducing Kinase
12.
Allergol. immunopatol ; 51(3): 42-48, 01 mayo 2023. tab
Article in English | IBECS | ID: ibc-219812

ABSTRACT

Background: Although the human adenovirus infection is common, adenovirus infection with liver dysfunction is rare. Methods: To retrospectively analyze and compare the clinical characteristics and outcomes of pediatric patients diagnosed with severe adenovirus pneumonia with and without liver dysfunction, who were admitted to the pediatric intensive care unit of Hunan Children’s Hospital (South China University) between January 2018 and June 2022. Results: Of the 330 severe adenovirus pneumonia cases analyzed (mean age, 19.88 ± 18.26 months), 102 were girls and 228 were boys. They were divided into two groups: those with liver dysfunction (n = 54) and without liver dysfunction (n = 276). Comparison analysis showed no significant between-group differences in body mass index and levels of white blood cells, neutrophils, platelets, albumin, total bilirubin, direct bilirubin, indirect bilirubin, creatine kinase, procalcitonin, creatinine, and urea nitrogen. However, the levels of alanine aminotransferase (175.99 U/L vs 30.55 U/L) and aspartate transaminase (215.96 U/L vs 74.30 U/L) were significantly higher in patients with liver dysfunction compared to those without liver dysfunction. Further analysis showed that pediatric patients with liver dysfunction had a significantly lower percentage of natural killer (NK) cells (6.93% vs 8.71%) and higher mortality rate (22% vs 9%) than those without liver dysfunction. Conclusion: A decrease in serum NK cell levels in pediatric patients with severe adenovirus pneumonia could serve as a marker for monitoring the onset or progression of hepatic damage (AU)


Subject(s)
Humans , Male , Female , Infant, Newborn , Infant , Adenoviridae Infections/immunology , Pneumonia, Viral/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Liver/physiopathology , Severity of Illness Index , Intensive Care Units, Pediatric
14.
Proc Natl Acad Sci U S A ; 119(37): e2121385119, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36067309

ABSTRACT

Interferon (IFN) regulatory factor 3 (IRF3) is a transcription factor activated by phosphorylation in the cytoplasm of a virus-infected cell; by translocating to the nucleus, it induces transcription of IFN-ß and other antiviral genes. We have previously reported IRF3 can also be activated, as a proapoptotic factor, by its linear polyubiquitination mediated by the RIG-I pathway. Both transcriptional and apoptotic functions of IRF3 contribute to its antiviral effect. Here, we report a nontranscriptional function of IRF3, namely, the repression of IRF3-mediated NF-κB activity (RIKA), which attenuated viral activation of NF-κB and the resultant inflammatory gene induction. In Irf3-/- mice, consequently, Sendai virus infection caused enhanced inflammation in the lungs. Mechanistically, RIKA was mediated by the direct binding of IRF3 to the p65 subunit of NF-κB in the cytoplasm, which prevented its nuclear import. A mutant IRF3 defective in both the transcriptional and the apoptotic activities was active in RIKA and inhibited virus replication. Our results demonstrated IRF3 deployed a three-pronged attack on virus replication and the accompanying inflammation.


Subject(s)
Immunity, Innate , Interferon Regulatory Factor-3 , NF-kappa B , Pneumonia, Viral , Active Transport, Cell Nucleus , Animals , Cell Nucleus/metabolism , Gene Expression , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon-beta/genetics , Mice , NF-kappa B/metabolism , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Sendai virus
16.
BMC Infect Dis ; 22(1): 343, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35382755

ABSTRACT

BACKGROUND: Pneumonia is a common complication of influenza and closely related to mortality in influenza patients. The present study examines cytokines as predictors of the prognosis of influenza-associated pneumonia. METHODS: This study included 101 inpatients with influenza (64 pneumonia and 37 non-pneumonia patients). 48 cytokines were detected in the serum samples of the patients and the clinical characteristics were analyzed. The correlation between them was analyzed to identify predictive biomarkers for the prognosis of influenza-associated pneumonia. RESULTS: Seventeen patients had poor prognosis and developed pneumonia. Among patients with influenza-associated pneumonia, the levels of 8 cytokines were significantly higher in those who had a poor prognosis: interleukin-6 (IL-6), interferon-γ (IFN-γ), granulocyte colony-stimulating factor (G-CSF), monocyte colony-stimulating factor (M-CSF), monocyte chemoattractant protein-1 (MCP-1), monocyte chemoattractant protein-3, Interleukin-2 receptor subunit alpha and Hepatocyte growth factor. Correlation analysis showed that the IL-6, G-CSF, M-CSF, IFN-γ, and MCP-1 levels had positive correlations with the severity of pneumonia. IL-6 and G-CSF showed a strong and positive correlation with poor prognosis in influenza-associated pneumonia patients. The combined effect of the two cytokines resulted in the largest area (0.926) under the receiver-operating characteristic curve. CONCLUSION: The results indicate that the probability of poor prognosis in influenza patients with pneumonia is significantly increased. IL-6, G-CSF, M-CSF, IFN-γ, and MCP-1 levels had a positive correlation with the severity of pneumonia. Importantly, IL-6 and G-CSF were identified as significant predictors of the severity of influenza-associated pneumonia.


Subject(s)
Granulocyte Colony-Stimulating Factor , Influenza, Human , Interleukin-6 , Pneumonia, Viral , Cytokines/blood , Granulocyte Colony-Stimulating Factor/blood , Humans , Influenza, Human/complications , Influenza, Human/immunology , Interleukin-6/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Prognosis
19.
J Immunol Res ; 2021: 2958394, 2021.
Article in English | MEDLINE | ID: mdl-34926703

ABSTRACT

Adenovirus (Ad) is a major causal agent of acute respiratory infections. However, they are a powerful delivery system for gene therapy and vaccines. Some Ad serotypes antagonize the immune system leading to meningitis, conjunctivitis, gastroenteritis, and/or acute hemorrhagic cystitis. Studies have shown that the release of small, membrane-derived extracellular vesicles (EVs) may offer a mechanism by which viruses can enter cells via receptor-independent entry and how they influence disease pathogenesis and/or host protection considering their existence in almost all bodily fluids. We proposed that Ad3 could alter EV biogenesis, composition, and trafficking and may stimulate various immune responses in vitro. In the present study, we evaluated the impact of in vitro infection with Ad3 vector on EV biogenesis and composition in the human adenocarcinoma lung epithelial cell line A549. Cells were infected in an exosome-free media at different multiplicity of infections (MOIs) and time points. The cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and fluorometric calcein-AM. EVs were isolated via ultracentrifugation. Isolated EV proteins were quantified and evaluated via nanoparticle tracking, transmission electron microscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and immunoblotting assays. The cell viability significantly decreased with an increase in MOI and incubation time. A significant increase in particle mean sizes, concentrations, and total EV protein content was detected at higher MOIs when compared to uninfected cells (control group). A549 cell-derived EVs revealed the presence of TSG101, tetraspanins CD9 and CD63, and heat shock proteins 70 and 100 with significantly elevated levels of Rab5, 7, and 35 at higher MOIs (300, 750, and 1500) when compared to the controls. Our findings suggested Ad3 could modulate EV biogenesis, composition, and trafficking which could impact infection pathogenesis and disease progression. This study might suggest EVs could be diagnostic and therapeutic advancement to Ad infections and other related viral infections. However, further investigation is warranted to explore the underlying mechanism(s).


Subject(s)
Adenovirus Infections, Human/immunology , Adenoviruses, Human/immunology , Extracellular Vesicles/immunology , Lung/pathology , Pneumonia, Viral/immunology , A549 Cells , Adenovirus Infections, Human/pathology , Adenovirus Infections, Human/virology , Adenoviruses, Human/genetics , Cell Survival/immunology , Extracellular Vesicles/metabolism , Humans , Lung/cytology , Lung/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Serogroup
20.
Viruses ; 13(12)2021 11 28.
Article in English | MEDLINE | ID: mdl-34960654

ABSTRACT

The host immunity of patients with adenovirus pneumonia in different severity of illness is unclear. This study compared the routine laboratory tests and the host immunity of human adenovirus (HAdV) patients with different severity of illness. A co-cultured cell model in vitro was established to verify the T cell response in vitro. Among 140 patients with confirmed HAdV of varying severity, the number of lymphocytes in the severe patients was significantly reduced to 1.91 × 109/L compared with the healthy control (3.92 × 109/L) and the mild patients (4.27 × 109/L). The levels of IL-6, IL-10, and IFN-γ in patients with adenovirus pneumonia were significantly elevated with the severity of the disease. Compared with the healthy control (20.82%) and the stable patients (33.96%), the percentage of CD8+ T cells that produced IFN-γ increased to 56.27% in the progressing patients. Adenovirus infection increased the percentage of CD8+ T and CD4+ T cells that produce IFN-γ in the co-culture system. The hyperfunction of IFN-γ+ CD8+ T cells might be related to the severity of adenovirus infection. The in vitro co-culture cell model could also provide a usable cellular model for subsequent experiments.


Subject(s)
Adenovirus Infections, Human/immunology , Adenoviruses, Human/physiology , CD8-Positive T-Lymphocytes/microbiology , Interferon-gamma/immunology , Pneumonia, Viral/immunology , Adenovirus Infections, Human/genetics , Adenovirus Infections, Human/pathology , Adenovirus Infections, Human/virology , Adenoviruses, Human/genetics , Child , Child, Preschool , Female , Humans , Infant , Interferon-gamma/genetics , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Lymphocyte Count , Male , Patient Acuity , Pneumonia, Viral/genetics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...