Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.688
Filter
1.
BMC Med Genomics ; 17(1): 152, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831322

ABSTRACT

OBJECTIVE: To investigate the role of BTG2 in periodontitis and diabetic kidney disease (DKD) and its potential underlying mechanism. METHODS: Gene expression data for periodontitis and DKD were acquired from the Gene Expression Omnibus (GEO) database. Differential expression analysis identified co-expressed genes between these conditions. The Nephroseq V5 online nephropathy database validated the role of these genes in DKD. Pearson correlation analysis identified genes associated with our target gene. We employed Gene Set Enrichment Analysis (GSEA) and Protein-Protein Interaction (PPI) networks to elucidate potential mechanisms. Expression levels of BTG2 mRNA were examined using quantitative polymerase Chain Reaction (qPCR) and immunofluorescence assays. Western blotting quantified proteins involved in epithelial-to-mesenchymal transition (EMT), apoptosis, mTORC1 signaling, and autophagy. Additionally, wound healing and flow cytometric apoptosis assays evaluated podocyte migration and apoptosis, respectively. RESULTS: Analysis of GEO database data revealed BTG2 as a commonly differentially expressed gene in both DKD and periodontitis. BTG2 expression was reduced in DKD compared to normal conditions and correlated with proteinuria. GSEA indicated enrichment of BTG2 in the EMT and mTORC1 signaling pathways. The PPI network highlighted BTG2's relevance to S100A9, S100A12, and FPR1. Immunofluorescence assays demonstrated significantly lower BTG2 expression in podocytes under high glucose (HG) conditions. Reduced BTG2 expression in HG-treated podocytes led to increased levels of EMT markers (α-SMA, vimentin) and the apoptotic protein Bim, alongside a decrease in nephrin. Lower BTG2 levels were associated with increased podocyte mobility and apoptosis, as well as elevated RPS6KB1 and mTOR levels, but reduced autophagy marker LC3. CONCLUSION: Our findings suggest that BTG2 is a crucial intermediary gene linking DKD and periodontitis. Modulating autophagy via inhibition of the mTORC1 signaling pathway, and consequently suppressing EMT, may be pivotal in the interplay between periodontitis and DKD.


Subject(s)
Apoptosis , Diabetic Nephropathies , Epithelial-Mesenchymal Transition , Periodontitis , Tumor Suppressor Proteins , Periodontitis/genetics , Periodontitis/metabolism , Periodontitis/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Humans , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Immediate-Early Proteins/metabolism , Immediate-Early Proteins/genetics , Podocytes/metabolism , Podocytes/pathology , Signal Transduction , Autophagy , Protein Interaction Maps , Mechanistic Target of Rapamycin Complex 1/metabolism , Cell Movement
2.
Kidney Int ; 105(1): 54-64, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38707675

ABSTRACT

The neonatal Fc receptor (FcRn) was initially discovered as the receptor that allowed passive immunity in newborns by transporting maternal IgG through the placenta and enterocytes. Since its initial discovery, FcRn has been found to exist throughout all stages of life and in many different cell types. Beyond passive immunity, FcRn is necessary for intrinsic albumin and IgG recycling and is important for antigen processing and presentation. Given its multiple important roles, FcRn has been utilized in many disease treatments including a new class of agents that were developed to inhibit FcRn for treatment of a variety of autoimmune diseases. Certain cell populations within the kidney also express high levels of this receptor. Specifically, podocytes, proximal tubule epithelial cells, and vascular endothelial cells have been found to utilize FcRn. In this review, we summarize what is known about FcRn and its function within the kidney. We also discuss how FcRn has been used for therapeutic benefit, including how newer FcRn inhibiting agents are being used to treat autoimmune diseases. Lastly, we will discuss what renal diseases may respond to FcRn inhibitors and how further work studying FcRn within the kidney may lead to therapies for kidney diseases.


Subject(s)
Histocompatibility Antigens Class I , Kidney Diseases , Receptors, Fc , Humans , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Receptors, Fc/metabolism , Receptors, Fc/immunology , Receptors, Fc/genetics , Kidney Diseases/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/therapy , Kidney Diseases/immunology , Animals , Kidney/metabolism , Kidney/immunology , Kidney/pathology , Podocytes/metabolism , Podocytes/immunology , Immunoglobulin G/metabolism , Immunoglobulin G/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism
3.
FASEB J ; 38(10): e23662, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38752545

ABSTRACT

The ubiquitination function in diabetic nephropathy (DN) has attracted much attention, but there is a lack of information on its ubiquitylome profile. To examine the differences in protein content and ubiquitination in the kidney between db/db mice and db/m mice, we deployed liquid chromatography-mass spectrometry (LC-MS/MS) to conduct analysis. We determined 145 sites in 86 upregulated modified proteins and 66 sites in 49 downregulated modified proteins at the ubiquitinated level. Moreover, 347 sites among the 319 modified proteins were present only in the db/db mouse kidneys, while 213 sites among the 199 modified proteins were present only in the db/m mouse kidneys. The subcellular localization study indicated that the cytoplasm had the highest proportion of ubiquitinated proteins (31.87%), followed by the nucleus (30.24%) and the plasma membrane (20.33%). The enrichment analysis revealed that the ubiquitinated proteins are mostly linked to tight junctions, oxidative phosphorylation, and thermogenesis. Podocin, as a typical protein of slit diaphragm, whose loss is a crucial cause of proteinuria in DN. Consistent with the results of ubiquitination omics, the K261R mutant of podocin induced the weakest ubiquitination compared with the K301R and K370R mutants. As an E3 ligase, c-Cbl binds to podocin, and the regulation of c-Cbl can impact the ubiquitination of podocin. In conclusion, in DN, podocin ubiquitination contributes to podocyte injury, and K261R is the most significant site. c-Cbl participates in podocin ubiquitination and may be a direct target for preserving the integrity of the slit diaphragm structure, hence reducing proteinuria in DN.


Subject(s)
Diabetic Nephropathies , Intracellular Signaling Peptides and Proteins , Membrane Proteins , Podocytes , Proto-Oncogene Proteins c-cbl , Ubiquitination , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Podocytes/metabolism , Podocytes/pathology , Mice , Proto-Oncogene Proteins c-cbl/metabolism , Proto-Oncogene Proteins c-cbl/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Male , Mice, Inbred C57BL
4.
FASEB J ; 38(10): e23668, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38742811

ABSTRACT

Podocyte injury plays a critical role in the progression of diabetic kidney disease (DKD), but the underlying cellular and molecular mechanisms remain poorly understanding. MicroRNAs (miRNAs) can disrupt gene expression by inducing translation inhibition and mRNA degradation, and recent evidence has shown that miRNAs may play a key role in many kidney diseases. In this study, we identified miR-4645-3p by global transcriptome expression profiling as one of the major downregulated miRNAs in high glucose-cultured podocytes. Moreover, whether DKD patients or STZ-induced diabetic mice, expression of miR-4645-3p was also significantly decreased in kidney. In the podocytes cultured by normal glucose, inhibition of miR-4645-3p expression promoted mitochondrial damage and podocyte apoptosis. In the podocytes cultured by high glucose (30 mM glucose), overexpression of miR-4645-3p significantly attenuated mitochondrial dysfunction and podocyte apoptosis induced by high glucose. Furthermore, we found that miR-4645-3p exerted protective roles by targeting Cdk5 inhibition. In vitro, miR-4645-3p obviously antagonized podocyte injury by inhibiting overexpression of Cdk5. In vivo of diabetic mice, podocyte injury, proteinuria, and impaired renal function were all effectively ameliorated by treatment with exogenous miR-4645-3p. Collectively, these findings demonstrate that miR-4645-3p can attenuate podocyte injury and mitochondrial dysfunction in DKD by targeting Cdk5. Sustaining the expression of miR-4645-3p in podocytes may be a novel strategy to treat DKD.


Subject(s)
Cyclin-Dependent Kinase 5 , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Mice, Inbred C57BL , MicroRNAs , Mitochondria , Podocytes , Podocytes/metabolism , Podocytes/pathology , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Mitochondria/metabolism , Male , Humans , Diabetes Mellitus, Experimental/metabolism , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinase 5/genetics , Apoptosis , Glucose
5.
Kidney Int ; 105(6): 1165-1167, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777401

ABSTRACT

The Oxford histopathologic classification (MEST-C: scores for lesions indicating active glomerular inflammation, mesangial [M] and endocapillary [E] hypercellularity as well as cellular or fibrocellular crescents [C], and for segmental glomerulosclerosis [S] and interstitial fibrosis and/or tubular atrophy [T]) is useful in helping assess prognosis in patients with IgA nephropathy. Elements of this classification indicative of active glomerular inflammation, endocapillary hypercellularity and crescents, also have been found to be responsive to immunosuppressive therapy, potentially including newer agents specifically targeting mediators of such inflammation. In this issue of Kidney International, Bellur and coworkers identify histopathologic subtypes of segmental glomerulosclerosis in IgA nephropathy showing podocyte injury that also behave like active lesions, including showing improved outcomes with immunosuppression. This podocyte injury, identifiable only by kidney biopsy, may represent a potential therapeutic target in some patients with IgA nephropathy.


Subject(s)
Glomerulonephritis, IGA , Podocytes , Glomerulonephritis, IGA/pathology , Glomerulonephritis, IGA/drug therapy , Glomerulonephritis, IGA/immunology , Humans , Podocytes/pathology , Podocytes/immunology , Podocytes/drug effects , Biopsy , Immunosuppressive Agents/therapeutic use , Glomerulosclerosis, Focal Segmental/pathology , Glomerulosclerosis, Focal Segmental/immunology , Glomerulosclerosis, Focal Segmental/drug therapy , Kidney Glomerulus/pathology , Kidney Glomerulus/immunology , Kidney Glomerulus/drug effects , Prognosis
7.
Sci Rep ; 14(1): 11718, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778209

ABSTRACT

Protein misfolding in the endoplasmic reticulum (ER) of podocytes contributes to the pathogenesis of glomerular diseases. Protein misfolding activates the unfolded protein response (UPR), a compensatory signaling network. We address the role of the UPR and the UPR transducer, inositol-requiring enzyme 1α (IRE1α), in streptozotocin-induced diabetic nephropathy in mice. Diabetes caused progressive albuminuria in control mice that was exacerbated in podocyte-specific IRE1α knockout (KO) mice. Compared to diabetic controls, diabetic IRE1α KO mice showed reductions in podocyte number and synaptopodin. Glomerular ultrastructure was altered only in diabetic IRE1α KO mice; the major changes included widening of podocyte foot processes and glomerular basement membrane. Activation of the UPR and autophagy was evident in diabetic control, but not diabetic IRE1α KO mice. Analysis of human glomerular gene expression in the JuCKD-Glom database demonstrated induction of genes associated with the ER, UPR and autophagy in diabetic nephropathy. Thus, mice with podocyte-specific deletion of IRE1α demonstrate more severe diabetic nephropathy and attenuation of the glomerular UPR and autophagy, implying a protective effect of IRE1α. These results are consistent with data in human diabetic nephropathy and highlight the potential for therapeutically targeting these pathways.


Subject(s)
Autophagy , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Endoribonucleases , Mice, Knockout , Podocytes , Protein Serine-Threonine Kinases , Unfolded Protein Response , Animals , Podocytes/metabolism , Podocytes/pathology , Endoribonucleases/metabolism , Endoribonucleases/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mice , Autophagy/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Humans , Male , Endoplasmic Reticulum Stress , Albuminuria/genetics , Albuminuria/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Gene Deletion , Endoplasmic Reticulum/metabolism
8.
Cells ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38786068

ABSTRACT

Induction of the adenosine receptor A2B (A2BAR) expression in diabetic glomeruli correlates with an increased abundance of its endogenous ligand adenosine and the progression of kidney dysfunction. Remarkably, A2BAR antagonism protects from proteinuria in experimental diabetic nephropathy. We found that A2BAR antagonism preserves the arrangement of podocytes on the glomerular filtration barrier, reduces diabetes-induced focal adhesion kinase (FAK) activation, and attenuates podocyte foot processes effacement. In spreading assays using human podocytes in vitro, adenosine enhanced the rate of cell body expansion on laminin-coated glass and promoted peripheral pY397-FAK subcellular distribution, while selective A2BAR antagonism impeded these effects and attenuated the migratory capability of podocytes. Increased phosphorylation of the Myosin2A light chain accompanied the effects of adenosine. Furthermore, when the A2BAR was stimulated, the cells expanded more broadly and more staining of pS19 myosin was detected which co-localized with actin cables, suggesting increased contractility potential in cells planted onto a matrix with a stiffness similar to of the glomerular basement membrane. We conclude that A2BAR is involved in adhesion dynamics and contractile actin bundle formation, leading to podocyte foot processes effacement. The antagonism of this receptor may be an alternative to the intervention of glomerular barrier deterioration and proteinuria in the diabetic kidney disease.


Subject(s)
Cell Adhesion , Diabetes Mellitus, Experimental , Focal Adhesion Protein-Tyrosine Kinases , Podocytes , Proteinuria , Receptor, Adenosine A2B , Podocytes/metabolism , Podocytes/drug effects , Podocytes/pathology , Animals , Humans , Proteinuria/metabolism , Rats , Receptor, Adenosine A2B/metabolism , Cell Adhesion/drug effects , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Male , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/drug therapy , Adenosine A2 Receptor Antagonists/pharmacology , Adenosine/metabolism , Adenosine/pharmacology , Cell Movement/drug effects , Phosphorylation/drug effects , Myosin Light Chains/metabolism
9.
Arch Endocrinol Metab ; 68: e230204, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38739524

ABSTRACT

Lipodystrophies are characterized by complete or selective loss of adipose tissue and can be acquired or inherited. Familial partial lipodystrophy (FPLD) is a hereditary lipodystrophy commonly caused by mutations in the LMNA gene. Herein, we report two cases of FPLD associated with podocytopathies. Patient 1 was diagnosed with FPLD associated with the heterozygous p.Arg482Trp variant in LMNA and had normal glucose tolerance and hyperinsulinemia. During follow-up, she developed nephroticrange proteinuria. Renal biopsy was consistent with minimal change disease. Patient 2 was diagnosed with FPLD associated with a de novo heterozygous p.Arg349Trp variant in LMNA. Microalbuminuria progressed to macroalbuminuria within 6 years and tonephrotic range proteinuria in the last year. He remained without diabetes and with hyperinsulinemia. Renal biopsy revealed focal segmental glomerulosclerosis not otherwise specified. This report provides further evidence of variable features of lipodystrophy associated with LMNA variants and the importance of long-term follow-up with evaluation of kidney dysfunction.


Subject(s)
Lamin Type A , Lipodystrophy, Familial Partial , Humans , Lamin Type A/genetics , Lipodystrophy, Familial Partial/genetics , Lipodystrophy, Familial Partial/complications , Female , Male , Adult , Podocytes/pathology , Mutation
10.
Sci Rep ; 14(1): 11591, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773220

ABSTRACT

Podocytes are specialized terminally differentiated cells in the glomerulus that are the primary target cells in many glomerular diseases. However, the current podocyte cell lines suffer from prolonged in vitro differentiation and limited survival time, which impede research progress. Therefore, it is necessary to establish a cell line that exhibits superior performance and characteristics. We propose a simple protocol to obtain an immortalized mouse podocyte cell (MPC) line from suckling mouse kidneys. Primary podocytes were cultured in vitro and infected with the SV40 tsA58 gene to obtain immortalized MPCs. The podocytes were characterized using Western blotting and quantitative real-time PCR. Podocyte injury was examined using the Cell Counting Kit-8 assay and flow cytometry. First, we successfully isolated an MPC line and identified 39 °C as the optimal differentiation temperature. Compared to undifferentiated MPCs, the expression of WT1 and synaptopodin was upregulated in differentiated MPCs. Second, the MPCs ceased proliferating at a nonpermissive temperature after day 4, and podocyte-specific proteins were expressed normally after at least 15 passages. Finally, podocyte injury models were induced to simulate podocyte injury in vitro. In summary, we provide a simple and popularized protocol to establish a conditionally immortalized MPC, which is a powerful tool for the study of podocytes.


Subject(s)
Cell Differentiation , Podocytes , Animals , Podocytes/metabolism , Podocytes/cytology , Mice , WT1 Proteins/metabolism , WT1 Proteins/genetics , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Cell Line , Cell Culture Techniques/methods , Cell Line, Transformed , Cell Proliferation
11.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732210

ABSTRACT

Investigating the role of podocytes in proteinuric disease is imperative to address the increasing global burden of chronic kidney disease (CKD). Studies strongly implicate increased levels of monocyte chemoattractant protein-1 (MCP-1/CCL2) in proteinuric CKD. Since podocytes express the receptor for MCP-1 (i.e., CCR2), we hypothesized that podocyte-specific MCP-1 production in response to stimuli could activate its receptor in an autocrine manner, leading to further podocyte injury. To test this hypothesis, we generated podocyte-specific MCP-1 knockout mice (Podo-Mcp-1fl/fl) and exposed them to proteinuric injury induced by either angiotensin II (Ang II; 1.5 mg/kg/d, osmotic minipump) or Adriamycin (Adr; 18 mg/kg, intravenous bolus). At baseline, there were no between-group differences in body weight, histology, albuminuria, and podocyte markers. After 28 days, there were no between-group differences in survival, change in body weight, albuminuria, kidney function, glomerular injury, and tubulointerstitial fibrosis. The lack of protection in the knockout mice suggests that podocyte-specific MCP-1 production is not a major contributor to either Ang II- or Adr-induced glomerular disease, implicating that another cell type is the source of pathogenic MCP-1 production in CKD.


Subject(s)
Angiotensin II , Chemokine CCL2 , Doxorubicin , Mice, Knockout , Podocytes , Animals , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Podocytes/metabolism , Podocytes/pathology , Podocytes/drug effects , Doxorubicin/adverse effects , Mice , Male , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Gene Deletion , Disease Models, Animal
12.
Pak J Pharm Sci ; 37(1): 155-161, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741412

ABSTRACT

Nephrin is a transmembrane protein that maintains the slit diaphragm of renal podocyte. In chronic kidney disease (CKD), podocyte effacement causes damage to glomerular basement membrane barrier leading to proteinuria. Boerhavia diffusa, (BD), an Ayurveda herb, is used in treatment of various diseases particularly in relation to the urinary system. This study attempts to evaluate the effect of ethanolic extract of BD on the expression of nephrin in adenine induced CKD rats. CKD was induced in Wistar albino rats using adenine (600/mg/kg, orally for 10 days). CKD rats were treated with BD (400/mg/kg) and pirfenidone (500/mg/kg) orally for 14 days. The kidneys were harvested from euthanized animals and processed for histopathology, electron microscopy and immunohistochemistry, gene and protein expression of nephrin. Diseased rats treated with BD and pirfenidone showed reduction in the thickening of renal basement membranes and reduced haziness in brush border of PCT and glomeruli. Nephrin gene and protein expressions were higher in BD and pirfenidone treated group when compared to the disease control group. The structural and functional damage brought on by adenine-induced nephrotoxicity was countered by protective action of BD by up regulating the expression of nephrin. Therefore, BD can be utilized as a nutraceutical for the prevention and treatment of CKD.


Subject(s)
Adenine , Membrane Proteins , Plant Extracts , Podocytes , Rats, Wistar , Renal Insufficiency, Chronic , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Podocytes/drug effects , Podocytes/metabolism , Podocytes/pathology , Plant Extracts/pharmacology , Adenine/pharmacology , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Male , Rats , Disease Models, Animal
13.
PLoS One ; 19(5): e0303910, 2024.
Article in English | MEDLINE | ID: mdl-38805434

ABSTRACT

Dach1 is highly expressed in normal podocytes, but this expression rapidly disappears after podocyte injury. To investigate the role of Dach1 in podocytes in vivo, we analyzed global, podocyte-specific, and inducible Dach1 knockout mice. Global Dach1 knockout (Dach1-/-) mice were assessed immediately after birth because they die within a day. The kidneys of Dach1-/- mice were slightly smaller than those of control mice but maintained a normal structure and normal podocyte phenotypes, including ultrastructure. To study the role of Dach1 in mature podocytes, we generated Dach1 knockout mice by mating Dach1fl/fl mice with Nphs1-Cre or ROSA-CreERT2 mice. Due to inefficient Cre recombination, only a small number of podocytes lacked Dach1 staining in these mice. However, all eleven Nphs1-Cre/Dach1fl/fl mice displayed abnormal albuminuria, and seven (63%) of them developed focal segmental glomerulosclerosis. Among 13 ROSA-CreERT2/Dach1fl/fl mice, eight (61%) exhibited abnormal albuminuria after treatment with tamoxifen, and five (38%) developed early sclerotic lesions. These results indicate that while Dach1 does not determine the fate of differentiation into podocytes, it is indispensable for maintaining the normal integrity of mature podocytes.


Subject(s)
Mice, Knockout , Podocytes , Animals , Podocytes/metabolism , Mice , Albuminuria/metabolism , Albuminuria/genetics , Cell Differentiation , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Glomerulosclerosis, Focal Segmental/genetics , Eye Proteins
14.
Matrix Biol ; 130: 47-55, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723871

ABSTRACT

Proteinuria, the presence of high molecular weight proteins in the urine, is a primary indicator of chronic kidney disease. Proteinuria results from increased molecular permeability of the glomerular filtration barrier combined with saturation or defects in tubular protein reabsorption. Any solute that passes into the glomerular filtrate traverses the glomerular endothelium, the glomerular basement membrane, and the podocyte slit diaphragm. Damage to any layer of the filter has reciprocal effects on other layers to increase glomerular permeability. The GBM is thought to act as a compressible ultrafilter that has increased molecular selectivity with increased pressure due to compression that reduced the porosity of the GBM with increased pressure. In multiple forms of chronic kidney disease, crosslinking enzymes are upregulated and may act to increase GBM stiffness. Here we show that enzymatically crosslinking porcine GBM with transglutaminase increases the stiffness of the GBM and mitigates pressure-dependent reductions in molecular sieving coefficient. This was modeled mathematically using a modified membrane transport model accounting for GBM compression. Changes in the mechanical properties of the GBM may contribute to proteinuria through pressure-dependent effects on GBM porosity.


Subject(s)
Glomerular Basement Membrane , Proteinuria , Transglutaminases , Animals , Transglutaminases/metabolism , Transglutaminases/genetics , Glomerular Basement Membrane/metabolism , Glomerular Basement Membrane/pathology , Swine , Proteinuria/metabolism , Pressure , Podocytes/metabolism , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/genetics , Humans , Porosity
15.
Life Sci ; 349: 122722, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38754814

ABSTRACT

AIMS: Steroidogenic acute regulatory (StAR)-related lipid transfer domain-3 (STARD3) is a sterol-binding protein that facilitates cholesterol transport between cellular organelles. Cholesterol accumulation in podocytes directly contributes to the pathogenesis of albuminuria and renal injury under the condition of diabetic kidney disease (DKD). The aim of this study is to determine the role of STARD3 on the intracellular distribution of cholesterol within podocytes. METHODS: In vivo and in vitro models of diabetes were performed. The protein levels of STARD3, Niemann-Pick disease type C1 (NPC1), and Niemann-Pick disease type C2 (NPC2) were respectively detected by western blot analysis, immunohistochemistry, and immunofluorescence. Filipin staining was used to evaluate the subcellular localization of cholesterol in podocytes. Mitochondrial damage was evaluated using JC-1 (CBIC2) and ROS (reactive oxygen species) assays. KEY FINDINGS: Upregulation of STARD3 under diabetes and hyperglycemia increases cholesterol transport from the late endosomal/lysosomal (LE/LY) to mitochondria, leading to mitochondrial cholesterol accumulation and cell injury in podocytes. Conversely, downregulating STARD3 expression attenuated mitochondrial cholesterol accumulation, and improved mitochondrial homeostasis. SIGNIFICANCE: STARD3 may govern intracellular cholesterol transport in podocytes, subsequently leading to regulation of mitochondrial metabolism. Therefore, targeting STARD3 emerges as a potential therapeutic strategy to mitigate diabetes-induced mitochondrial cholesterol accumulation and associated injury in podocytes.


Subject(s)
Cholesterol , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Mitochondria , Podocytes , Podocytes/metabolism , Podocytes/pathology , Animals , Cholesterol/metabolism , Mitochondria/metabolism , Mice , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Male , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Biological Transport , Mice, Inbred C57BL , Humans
16.
Sci Rep ; 14(1): 11850, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38782980

ABSTRACT

Natriuretic peptides (NPs) are cardio-derived hormones that have a crucial role in maintaining cardiovascular homeostasis. Physiological effects of NPs are mediated by binding to natriuretic peptide receptors 1 and 2 (NPR1/2), whereas natriuretic peptide receptor 3 (NPR3) acts as a clearance receptor that removes NPs from the circulation. Mouse studies have shown that local NP-signaling in the kidney glomerulus is important for the maintenance of renal homeostasis. In this study we examined the expression of NPR3 in kidney tissue and explored its involvement in renal physiology and disease by generating podocyte-specific knockout mice (NPR3podKO) as well as by using an NPR3 inhibitor (NPR3i) in rodent models of kidney disease. NPR3 was highly expressed by podocytes. NPR3podKO animals showed no renal abnormalities under healthy conditions and responded similarly to nephrotoxic serum (NTS) induced glomerular injury. However, NPR3i showed reno-protective effects in the NTS-induced model evidenced by decreased glomerulosclerosis and reduced podocyte loss. In a ZSF1 rat model of diabetic kidney injury, therapy alone with NPR3i did not have beneficial effects on renal function/histology, but when combined with losartan (angiotensin receptor blocker), NPR3i potentiated its ameliorative effects on albuminuria. In conclusion, these results suggest that NPR3 may contribute to kidney disease progression.


Subject(s)
Mice, Knockout , Podocytes , Receptors, Atrial Natriuretic Factor , Animals , Receptors, Atrial Natriuretic Factor/metabolism , Receptors, Atrial Natriuretic Factor/genetics , Mice , Podocytes/metabolism , Podocytes/pathology , Rats , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Male , Disease Models, Animal , Kidney Diseases/metabolism , Kidney Diseases/pathology , Losartan/pharmacology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology
17.
Cell Rep ; 43(5): 114249, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38758648

ABSTRACT

Signal-regulatory protein alpha (SIRPα) has recently been found to be highly expressed in podocytes and is essential for maintaining podocyte function. However, its immunoregulatory function in podocytes remains elusive. Here, we report that SIRPα controls podocyte antigen presentation in specific T cell activation via inhibiting spleen tyrosine kinase (Syk) phosphorylation. First, podocyte SIRPα under lupus nephritis (LN) conditions is strongly downregulated. Second, podocyte-specific deletion of SIRPα exacerbates renal disease progression in lupus-prone mice, as evidenced by an increase in T cell infiltration. Third, SIRPα deletion or knockdown enhances podocyte antigen presentation, which activates specific T cells, via enhancing Syk phosphorylation. Supporting this, Syk inhibitor GS-9973 prevents podocyte antigen presentation, resulting in a decrease of T cell activation and mitigation of renal disease caused by SIRPα knockdown or deletion. Our findings reveal an immunoregulatory role of SIRPα loss in promoting podocyte antigen presentation to activate specific T cell immune responses in LN.


Subject(s)
Lupus Nephritis , Podocytes , Receptors, Immunologic , Syk Kinase , T-Lymphocytes , Podocytes/metabolism , Podocytes/pathology , Podocytes/immunology , Lupus Nephritis/pathology , Lupus Nephritis/immunology , Lupus Nephritis/metabolism , Animals , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice , Syk Kinase/metabolism , Mice, Inbred C57BL , Inflammation/pathology , Inflammation/metabolism , Phosphorylation , Lymphocyte Activation/immunology , Humans , Antigen Presentation/immunology , Female
18.
Free Radic Biol Med ; 220: 312-323, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38740101

ABSTRACT

Podocytes are crucial for regulating glomerular permeability. They have foot processes that are integral to the renal filtration barrier. Understanding their energy metabolism could shed light on the pathogenesis of filtration barrier injury. Lactate has been increasingly recognized as more than a waste product and has emerged as a significant metabolic fuel and reserve. The recent identification of lactate transporters in podocytes, the expression of which is modulated by glucose levels and lactate, highlights lactate's relevance. The present study investigated the impact of lactate on podocyte respiratory efficiency and mitochondrial dynamics. We confirmed lactate oxidation in podocytes, suggesting its role in cellular energy production. Under conditions of glucose deprivation or lactate supplementation, a significant shift was seen toward oxidative phosphorylation, reflected by an increase in the oxygen consumption rate/extracellular acidification rate ratio. Notably, lactate dehydrogenase A (LDHA) and lactate dehydrogenase B (LDHB) isoforms, which are involved in lactate conversion to pyruvate, were detected in podocytes for the first time. The presence of lactate led to higher intracellular pyruvate levels, greater LDH activity, and higher LDHB expression. Furthermore, lactate exposure increased mitochondrial DNA-to-nuclear DNA ratios and resulted in upregulation of the mitochondrial biogenesis markers peroxisome proliferator-activated receptor coactivator-1α and transcription factor A mitochondrial, regardless of glucose availability. Changes in mitochondrial size and shape were observed in lactate-exposed podocytes. These findings suggest that lactate is a pivotal energy source for podocytes, especially during energy fluctuations. Understanding lactate's role in podocyte metabolism could offer insights into renal function and pathologies that involve podocyte injury.


Subject(s)
L-Lactate Dehydrogenase , Lactic Acid , Mitochondrial Dynamics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Podocytes , Podocytes/metabolism , Podocytes/pathology , Animals , Rats , Lactic Acid/metabolism , L-Lactate Dehydrogenase/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mitochondria/metabolism , Mitochondria/pathology , Glucose/metabolism , Energy Metabolism , Lactate Dehydrogenase 5/metabolism , Oxidative Phosphorylation/drug effects , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , Oxygen Consumption , Cells, Cultured , Pyruvic Acid/metabolism , Isoenzymes
19.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791159

ABSTRACT

Glomerulonephritis (GN) is characterized by podocyte injury or glomerular filtration dysfunction, which results in proteinuria and eventual loss of kidney function. Progress in studying the mechanism of GN, and developing an effective therapy, has been limited by the absence of suitable in vitro models that can closely recapitulate human physiological responses. We developed a microfluidic glomerulus-on-a-chip device that can recapitulate the physiological environment to construct a functional filtration barrier, with which we investigated biological changes in podocytes and dynamic alterations in the permeability of the glomerular filtration barrier (GFB) on a chip. We also evaluated the potential of GN-mimicking devices as a model for predicting responses to human GN. Glomerular endothelial cells and podocytes successfully formed intact monolayers on opposite sides of the membrane in our chip device. Permselectivity analysis confirmed that the chip was constituted by a functional GFB that could accurately perform differential clearance of albumin and dextran. Reduction in cell viability resulting from damage was observed in all serum-induced GN models. The expression of podocyte-specific marker WT1 was also decreased. Albumin permeability was increased in most models of serum-induced IgA nephropathy (IgAN) and membranous nephropathy (MN). However, sera from patients with minimal change disease (MCD) or lupus nephritis (LN) did not induce a loss of permeability. This glomerulus-on-a-chip system may provide a platform of glomerular cell culture for in vitro GFB in formation of a functional three-dimensional glomerular structure. Establishing a disease model of GN on a chip could accelerate our understanding of pathophysiological mechanisms of glomerulopathy.


Subject(s)
Glomerulonephritis , Kidney Glomerulus , Lab-On-A-Chip Devices , Podocytes , Humans , Podocytes/metabolism , Podocytes/pathology , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Glomerulonephritis/metabolism , Glomerulonephritis/physiopathology , Glomerulonephritis/pathology , Glomerular Filtration Barrier/metabolism , Glomerulonephritis, Membranous/metabolism , Glomerulonephritis, Membranous/pathology , Glomerulonephritis, Membranous/physiopathology , Glomerulonephritis, IGA/metabolism , Glomerulonephritis, IGA/pathology , Glomerulonephritis, IGA/physiopathology , Permeability , Endothelial Cells/metabolism , Endothelial Cells/pathology , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , Lupus Nephritis/physiopathology , Cell Survival , Nephrosis, Lipoid/metabolism , Nephrosis, Lipoid/pathology , Nephrosis, Lipoid/physiopathology
20.
Kidney Int ; 105(6): 1157-1159, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777398

ABSTRACT

Chen et al. identify dysregulation of the transcriptional activator Yes-associated protein in the podocytes of diabetic mouse and human kidneys. Podocyte Yes-associated protein deficiency led to downregulation of the key transcription factor Wilms' tumor 1, and worsened podocyte injury in a mouse model of diabetic kidney injury. Yes-associated protein may therefore play a critical role in diabetic podocyte injury via regulation of Wilms' tumor 1 expression.


Subject(s)
Adaptor Proteins, Signal Transducing , Diabetic Nephropathies , Podocytes , Transcription Factors , WT1 Proteins , YAP-Signaling Proteins , Podocytes/metabolism , Podocytes/pathology , Animals , Humans , YAP-Signaling Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , WT1 Proteins/metabolism , WT1 Proteins/genetics , Mice , Diabetic Nephropathies/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/etiology , Phosphoproteins/metabolism , Phosphoproteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...