Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.569
Filter
1.
Plant Mol Biol ; 114(3): 71, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856917

ABSTRACT

Mitochondria and plastids, originated as ancestral endosymbiotic bacteria, contain their own DNA sequences. These organelle DNAs (orgDNAs) are, despite the limited genetic information they contain, an indispensable part of the genetic systems but exist as multiple copies, making up a substantial amount of total cellular DNA. Given this abundance, orgDNA is known to undergo tissue-specific degradation in plants. Previous studies have shown that the exonuclease DPD1, conserved among seed plants, degrades orgDNAs during pollen maturation and leaf senescence in Arabidopsis. However, tissue-specific orgDNA degradation was shown to differ among species. To extend our knowledge, we characterized DPD1 in rice in this study. We created a genome-edited (GE) mutant in which OsDPD1 and OsDPD1-like were inactivated. Characterization of this GE plant demonstrated that DPD1 was involved in pollen orgDNA degradation, whereas it had no significant effect on orgDNA degradation during leaf senescence. Comparison of transcriptomes from wild-type and GE plants with different phosphate supply levels indicated that orgDNA had little impact on the phosphate starvation response, but instead had a global impact in plant growth. In fact, the GE plant showed lower fitness with reduced grain filling rate and grain weight in natural light conditions. Taken together, the presented data reinforce the important physiological roles of orgDNA degradation mediated by DPD1.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , Oryza/enzymology , Oryza/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Exonucleases/metabolism , Exonucleases/genetics , Gene Editing , Gene Expression Regulation, Plant , DNA, Plant/genetics , DNA, Plant/metabolism , Pollen/genetics , Pollen/metabolism , Pollen/growth & development , Plant Leaves/genetics , Plant Leaves/metabolism , Genome, Plant , Mutation
2.
BMC Plant Biol ; 24(1): 535, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862889

ABSTRACT

BACKGROUND: Cytoplasmic male sterility (CMS) has greatly improved the utilization of heterosis in crops due to the absence of functional male gametophyte. The newly developed sporophytic D1 type CMS (CMS-D1) rice exhibits unique characteristics compared to the well-known sporophytic CMS-WA line, making it a valuable resource for rice breeding. RESULTS: In this research, a novel CMS-D1 line named Xingye A (XYA) was established, characterized by small, transparent, and shriveled anthers. Histological and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays conducted on anthers from XYA and its maintainer line XYB revealed that male sterility in XYA is a result of delayed degradation of tapetal cells and abnormal programmed cell death (PCD) of microspores. Transcriptome analysis of young panicles revealed that differentially expressed genes (DEGs) in XYA, compared to XYB, were significantly enriched in processes related to chromatin structure and nucleosomes during the microspore mother cell (MMC) stage. Conversely, processes associated with sporopollenin biosynthesis, pollen exine formation, chitinase activity, and pollen wall assembly were enriched during the meiosis stage. Metabolome analysis identified 176 specific differentially accumulated metabolites (DAMs) during the meiosis stage, enriched in pathways such as α-linoleic acid metabolism, flavone and flavonol biosynthesis, and linolenic acid metabolism. Integration of transcriptomic and metabolomic data underscored the jasmonic acid (JA) biosynthesis pathway was significant enriched in XYA during the meiosis stage compared to XYB. Furthermore, levels of JA, MeJA, OPC4, OPDA, and JA-Ile were all higher in XYA than in XYB at the meiosis stage. CONCLUSIONS: These findings emphasize the involvement of the JA biosynthetic pathway in pollen development in the CMS-D1 line, providing a foundation for further exploration of the molecular mechanisms involved in CMS-D1 sterility.


Subject(s)
Oryza , Plant Infertility , Pollen , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Pollen/genetics , Pollen/growth & development , Pollen/metabolism , Plant Infertility/genetics , Transcriptome , Gene Expression Profiling , Metabolomics , Metabolome , Gene Expression Regulation, Plant , Meiosis
3.
Nat Commun ; 15(1): 4612, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816386

ABSTRACT

In plants, small-interfering RNAs (siRNAs) mediate epigenetic silencing via the RNA-directed DNA methylation (RdDM) pathway, which is particularly prominent during reproduction and seed development. However, there is limited understanding of the origins and dynamics of reproductive siRNAs acting in different cellular and developmental contexts. Here, we used the RNaseIII-like protein RTL1 to suppress siRNA biogenesis in Arabidopsis pollen, and found distinct siRNA subsets produced during pollen development. We demonstrate that RTL1 expression in the late microspore and vegetative cell strongly impairs epigenetic silencing, and resembles RdDM mutants in their ability to bypass interploidy hybridization barriers in the seed. However, germline-specific RTL1 expression did not impact transgenerational inheritance of triploid seed lethality. These results reveal the existence of multiple siRNA subsets accumulated in mature pollen, and suggest that mobile siRNAs involved in the triploid block are produced in germline precursor cells after meiosis, or in the vegetative cell during pollen mitosis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Pollen , RNA, Small Interfering , Seeds , Pollen/genetics , Pollen/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Seeds/genetics , Seeds/metabolism , Triploidy , DNA Methylation , Meiosis/genetics , Ribonuclease III/metabolism , Ribonuclease III/genetics , Epigenesis, Genetic
4.
Nature ; 629(8014): 1118-1125, 2024 May.
Article in English | MEDLINE | ID: mdl-38778102

ABSTRACT

Higher plants survive terrestrial water deficiency and fluctuation by arresting cellular activities (dehydration) and resuscitating processes (rehydration). However, how plants monitor water availability during rehydration is unknown. Although increases in hypo-osmolarity-induced cytosolic Ca2+ concentration (HOSCA) have long been postulated to be the mechanism for sensing hypo-osmolarity in rehydration1,2, the molecular basis remains unknown. Because osmolarity triggers membrane tension and the osmosensing specificity of osmosensing channels can only be determined in vivo3-5, these channels have been classified as a subtype of mechanosensors. Here we identify bona fide cell surface hypo-osmosensors in Arabidopsis and find that pollen Ca2+ spiking is controlled directly by water through these hypo-osmosensors-that is, Ca2+ spiking is the second messenger for water status. We developed a functional expression screen in Escherichia coli for hypo-osmosensitive channels and identified OSCA2.1, a member of the hyperosmolarity-gated calcium-permeable channel (OSCA) family of proteins6. We screened single and high-order OSCA mutants, and observed that the osca2.1/osca2.2 double-knockout mutant was impaired in pollen germination and HOSCA. OSCA2.1 and OSCA2.2 function as hypo-osmosensitive Ca2+-permeable channels in planta and in HEK293 cells. Decreasing osmolarity of the medium enhanced pollen Ca2+ oscillations, which were mediated by OSCA2.1 and OSCA2.2 and required for germination. OSCA2.1 and OSCA2.2 convert extracellular water status into Ca2+ spiking in pollen and may serve as essential hypo-osmosensors for tracking rehydration in plants.


Subject(s)
Arabidopsis , Calcium Signaling , Calcium , Germination , Osmolar Concentration , Pollen , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Germination/genetics , Mutation , Pollen/genetics , Pollen/metabolism , Water/metabolism , HEK293 Cells , Humans , Dehydration
5.
Cells ; 13(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38786062

ABSTRACT

Pollen, the male gametophyte of seed plants, is extremely sensitive to UV light, which may prevent fertilization. As a result, strategies to improve plant resistance to solar ultraviolet (UV) radiation are required. The tardigrade damage suppressor protein (Dsup) is a putative DNA-binding protein that enables tardigrades to tolerate harsh environmental conditions, including UV radiation, and was therefore considered as a candidate for reducing the effects of UV exposure on pollen. Tobacco pollen was genetically engineered to express Dsup and then exposed to UV-B radiation to determine the effectiveness of the protein in increasing pollen resistance. To establish the preventive role of Dsup against UV-B stress, we carried out extensive investigations into pollen viability, germination rate, pollen tube length, male germ unit position, callose plug development, marker protein content, and antioxidant capacity. The results indicated that UV-B stress has a significant negative impact on both pollen grain and pollen tube growth. However, Dsup expression increased the antioxidant levels and reversed some of the UV-B-induced changes to pollen, restoring the proper distance between the tip and the last callose plug formed, as well as pollen tube length, tubulin, and HSP70 levels. Therefore, the expression of heterologous Dsup in pollen may provide the plant male gametophyte with enhanced responses to UV-B stress and protection against harmful environmental radiation.


Subject(s)
Nicotiana , Plant Proteins , Pollen , Ultraviolet Rays , Nicotiana/radiation effects , Nicotiana/genetics , Nicotiana/metabolism , Pollen/radiation effects , Pollen/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Stress, Physiological/radiation effects , Pollen Tube/metabolism , Pollen Tube/radiation effects , Pollen Tube/genetics , Plants, Genetically Modified , Antioxidants/metabolism , Germination/radiation effects , Gene Expression Regulation, Plant/radiation effects
6.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791503

ABSTRACT

Paeonia ostii is an important economic oil and medicinal crop. Its anthers are often used to make tea in China with beneficial effects on human health. However, the metabolite profiles, as well as potential biological activities of P. ostii anthers and the pollen within anthers have not been systematically analyzed, which hinders the improvement of P. ostii utilization. With comprehensive untargeted metabolomic analysis using UPLC-QTOF-MS, we identified a total of 105 metabolites in anthers and pollen, mainly including phenylpropanoids, polyketides, organic acids, benzenoids, lipids, and organic oxygen compounds. Multivariate statistical analysis revealed the metabolite differences between anthers and pollen, with higher carbohydrates and flavonoids content in pollen and higher phenolic content in anthers. Meanwhile, both anthers and pollen extracts exhibited antioxidant activity, antibacterial activity, α-glucosidase and α-amylase inhibitory activity. In general, the anther stage of S4 showed the highest biological activity among all samples. This study illuminated the metabolites and biological activities of anthers and pollen of P. ostii, which supports the further utilization of them.


Subject(s)
Metabolomics , Paeonia , Pollen , Pollen/metabolism , Pollen/chemistry , Paeonia/metabolism , Paeonia/chemistry , Chromatography, High Pressure Liquid/methods , Metabolomics/methods , Antioxidants/metabolism , Metabolome , Plant Extracts/pharmacology , Plant Extracts/chemistry , Flowers/metabolism , Flavonoids/metabolism , Flavonoids/analysis , Mass Spectrometry/methods
7.
Nat Commun ; 15(1): 4512, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802369

ABSTRACT

In higher plants, mature male gametophytes have distinct apertures. After pollination, pollen grains germinate, and a pollen tube grows from the aperture to deliver sperm cells to the embryo sac, completing fertilization. In rice, the pollen aperture has a single-pore structure with a collar-like annulus and a plug-like operculum. A crucial step in aperture development is the formation of aperture plasma membrane protrusion (APMP) at the distal polar region of the microspore during the late tetrad stage. Previous studies identified OsINP1 and OsDAF1 as essential regulators of APMP and pollen aperture formation in rice, but their precise molecular mechanisms remain unclear. We demonstrate that the Poaceae-specific OsSRF8 gene, encoding a STRUBBELIG-receptor family 8 protein, is essential for pollen aperture formation in Oryza sativa. Mutants lacking functional OsSRF8 exhibit defects in APMP and pollen aperture formation, like loss-of-function OsINP1 mutants. OsSRF8 is specifically expressed during early anther development and initially diffusely distributed in the microsporocytes. At the tetrad stage, OsSRF8 is recruited by OsINP1 to the pre-aperture region through direct protein-protein interaction, promoting APMP formation. The OsSRF8-OsINP1 complex then recruits OsDAF1 to the APMP site to co-regulate annulus formation. Our findings provide insights into the mechanisms controlling pollen aperture formation in cereal species.


Subject(s)
Gene Expression Regulation, Plant , Oryza , Plant Proteins , Pollen , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Plant Proteins/metabolism , Plant Proteins/genetics , Pollen/metabolism , Pollen/genetics , Pollen/growth & development , Mutation , Pollination , Cell Membrane/metabolism , Plants, Genetically Modified , Pollen Tube/metabolism , Pollen Tube/growth & development , Pollen Tube/genetics
8.
Plant Mol Biol ; 114(3): 64, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809410

ABSTRACT

Pollen tube growth is an essential step leading to reproductive success in flowering plants, in which vesicular trafficking plays a key role. Vesicular trafficking from endoplasmic reticulum to the Golgi apparatus is mediated by the coat protein complex II (COPII). A key component of COPII is small GTPase Sar1. Five Sar1 isoforms are encoded in the Arabidopsis genome and they show distinct while redundant roles in various cellular and developmental processes, especially in reproduction. Arabidopsis Sar1b is essential for sporophytic control of pollen development while Sar1b and Sar1c are critical for gametophytic control of pollen development. Because functional loss of Sar1b and Sar1c resulted in pollen abortion, whether they influence pollen tube growth was unclear. Here we demonstrate that Sar1b mediates pollen tube growth, in addition to its role in pollen development. Although functional loss of Sar1b does not affect pollen germination, it causes a significant reduction in male transmission and of pollen tube penetration of style. We further show that membrane dynamics at the apex of pollen tubes are compromised by Sar1b loss-of-function. Results presented provide further support of functional complexity of the Sar1 isoforms.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Pollen Tube , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Pollen Tube/growth & development , Pollen Tube/metabolism , Pollen Tube/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Monomeric GTP-Binding Proteins/genetics , Gene Expression Regulation, Plant , Pollen/growth & development , Pollen/genetics , Pollen/metabolism , Plants, Genetically Modified , Germination/genetics
9.
Plant Physiol Biochem ; 210: 108654, 2024 May.
Article in English | MEDLINE | ID: mdl-38663264

ABSTRACT

Fatty acid de novo biosynthesis in plant plastids is initiated from acetyl-CoA and catalyzed by a series of enzymes, which is required for the vegetative growth, reproductive growth, seed development, stress response, chloroplast development and other biological processes. In this review, we systematically summarized the fatty acid de novo biosynthesis-related genes/enzymes and their critical roles in various plant developmental processes. Based on bioinformatic analysis, we identified fatty acid synthase encoding genes and predicted their potential functions in maize growth and development, especially in anther and pollen development. Finally, we highlighted the potential applications of these fatty acid synthases in male-sterility hybrid breeding, seed oil content improvement, herbicide and abiotic stress resistance, which provides new insights into future molecular crop breeding.


Subject(s)
Fatty Acids , Plastids , Fatty Acids/biosynthesis , Fatty Acids/metabolism , Plastids/metabolism , Plastids/enzymology , Plant Proteins/metabolism , Plant Proteins/genetics , Reproduction , Pollen/genetics , Pollen/metabolism , Pollen/growth & development , Pollen/enzymology , Fatty Acid Synthases/metabolism , Fatty Acid Synthases/genetics , Zea mays/genetics , Zea mays/metabolism , Zea mays/enzymology , Plants/metabolism , Plants/genetics , Plants/enzymology
10.
Plant Sci ; 345: 112107, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38685455

ABSTRACT

Programmed cell death (PCD) is an important factor to reduces the viability of plant germplasm after cryopreservation. However, the pathways by which PCD occurs is not fully understood. To investigate whether there is a mitochondrial pathway for pollen PCD after cryopreservation, the pollen of Paeonia lactiflora two cultivars with different PCD levels after cryopreservation was used as test material and the changes of mitochondrial calcium ions (Ca2+), structure, function and their relationship with PCD were compared. The results showed that compared with fresh pollen, the PCD of 'Feng Huang Nie Pan' was significantly reduced after cryopreservation. Their mitochondrial Ca2+ content decreased by 74.27%, mitochondrial permeability transition pore (MPTP) opening reduced by 25.41%, mitochondrial membrane potential slightly decreased by 5.02%, cardiolipin oxidation decreased by 65.31%, and oxygen consumption remained stable, with a slightly ATP production increase. On the contrary, compared with fresh pollen, 'Zi Feng Chao Yang' showed severe PCD after cryopreservation. The decline in mitochondrial Ca2+-ATPase activity led to an accumulation of excessive Ca2+ within mitochondria, triggering widespread opening of MPTP, significantly affecting mitochondrial respiration and energy synthesis. These results suggest the mitochondrial pathway of PCD exists in pollen cryopreservation.


Subject(s)
Apoptosis , Calcium , Cryopreservation , Mitochondria , Paeonia , Pollen , Mitochondria/metabolism , Paeonia/physiology , Paeonia/metabolism , Pollen/physiology , Pollen/metabolism , Cryopreservation/methods , Calcium/metabolism , Membrane Potential, Mitochondrial/physiology , Mitochondrial Permeability Transition Pore/metabolism
11.
Cell Rep ; 43(3): 113913, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38442016

ABSTRACT

The self-incompatibility system evolves in angiosperms to promote cross-pollination by rejecting self-pollination. Here, we show the involvement of Exo84c in the SI response of both Brassica napus and Arabidopsis. The expression of Exo84c is specifically elevated in stigma during the SI response. Knocking out Exo84c in B. napus and SI Arabidopsis partially breaks down the SI response. The SI response inhibits both the protein secretion in papillae and the recruitment of the exocyst complex to the pollen-pistil contact sites. Interestingly, these processes can be partially restored in exo84c SI Arabidopsis. After incompatible pollination, the turnover of the exocyst-labeled compartment is enhanced in papillae. However, this process is perturbed in exo84c SI Arabidopsis. Taken together, our results suggest that Exo84c regulates the exocyst complex vacuolar degradation during the SI response. This process is likely independent of the known SI pathway in Brassicaceae to secure the SI response.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Brassicaceae , Brassicaceae/genetics , Brassicaceae/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Pollen/metabolism , Protein Transport , Plant Proteins/genetics , Plant Proteins/metabolism
12.
Plant Physiol Biochem ; 208: 108522, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38493663

ABSTRACT

In staple crops, such as rice (Oryza sativa L.), pollen plays a crucial role in seed production. However, the molecular mechanisms underlying rice pollen germination and tube growth remain underexplored. Notably, we recently uncovered the redundant expression and mutual interaction of two rice genes encoding cyclic nucleotide-gated channels (CNGCs), OsCNGC4 and OsCNGC5, in mature pollen. Building on these findings, the current study focused on clarifying the functional roles of these two genes in pollen germination and tube growth. To overcome functional redundancy, we produced gene-edited rice plants with mutations in both genes using the CRISPR-Cas9 system. The resulting homozygous OsCNGC4 and OsCNGC5 gene-edited mutants (oscngc4/5) exhibited significantly lower pollen germination rates than the wild type (WT), along with severely reduced fertility. Transcriptome analysis of the double oscngc4/5 mutant revealed downregulation of genes related to receptor kinases, transporters, and cell wall metabolism. To identify the direct regulators of OsCNGC4, which form a heterodimer with OsCNGC5, we screened a yeast two-hybrid library containing rice cDNAs from mature anthers. Subsequently, we identified two calmodulin isoforms (CaM1-1 and CaM1-2), NETWORKED 2 A (NET2A), and proline-rich extension-like receptor kinase 13 (PERK13) proteins as interactors of OsCNGC4, suggesting its roles in regulating Ca2+ channel activity and F-actin organization. Overall, our results suggest that OsCNGC4 and OsCNGC5 may play critical roles in pollen germination and elongation by regulating the Ca2+ gradient in growing pollen tubes.


Subject(s)
Oryza , Oryza/physiology , Cyclic Nucleotide-Gated Cation Channels/genetics , Germination/genetics , Pollen/metabolism , Pollen Tube/genetics , Calmodulin/genetics , Calmodulin/metabolism , Phosphotransferases , Nucleotides, Cyclic/metabolism
13.
Plant Physiol ; 195(2): 1277-1292, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38431526

ABSTRACT

Low temperatures occurring at the booting stage in rice (Oryza sativa L.) often result in yield loss by impeding male reproductive development. However, the underlying mechanisms by which rice responds to cold at this stage remain largely unknown. Here, we identified MITOCHONDRIAL ACYL CARRIER PROTEIN 2 (OsMTACP2), the encoded protein of which mediates lipid metabolism involved in the cold response at the booting stage. Loss of OsMTACP2 function compromised cold tolerance, hindering anther cuticle and pollen wall development, resulting in abnormal anther morphology, lower pollen fertility, and seed setting. OsMTACP2 was highly expressed in tapetal cells and microspores during anther development, with the encoded protein localizing to both mitochondria and the cytoplasm. Comparative transcriptomic analysis revealed differential expression of genes related to lipid metabolism between the wild type and the Osmtacp2-1 mutant in response to cold. Through a lipidomic analysis, we demonstrated that wax esters, which are the primary lipid components of the anther cuticle and pollen walls, function as cold-responsive lipids. Their levels increased dramatically in the wild type but not in Osmtacp2-1 when exposed to cold. Additionally, mutants of two cold-induced genes of wax ester biosynthesis, ECERIFERUM1 and WAX CRYSTAL-SPARSE LEAF2, showed decreased cold tolerance. These results suggest that OsMTACP2-mediated wax ester biosynthesis is essential for cold tolerance in rice at the booting stage.


Subject(s)
Acyl Carrier Protein , Cold Temperature , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Pollen , Oryza/genetics , Oryza/physiology , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/genetics , Pollen/metabolism , Pollen/growth & development , Pollen/physiology , Acyl Carrier Protein/metabolism , Acyl Carrier Protein/genetics , Flowers/genetics , Flowers/physiology , Flowers/growth & development , Lipid Metabolism/genetics , Mutation/genetics , Waxes/metabolism
14.
Sci China Life Sci ; 67(6): 1280-1291, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38489006

ABSTRACT

Lariat RNA is concomitantly produced by excised intron during RNA splicing, which is usually debranched by DBR1, an RNA debranching enzyme. However, increasing evidence showed that some lariat RNA could escape debranching. Little is known about how and why these lariat RNAs could be retained. By comparing the atlas of lariat RNAs between the non-dividing cell (mature pollen) and three actively dividing tissues (young shoot apex, young seeds, and young roots), we identified hundreds to thousands of lariat RNA naturally retained in each tissue, and the incidence of lariat RNA retention is much less in shoot apex while much more in pollen. Many lariat RNAs derived from the same intron or different lariat RNAs from the same pre-mRNA could be retained in one tissue while degraded in the other tissues. By deciphering lariat RNA sequences, we identified an AG-rich (RAAAAVAAAR) motif and a UC-rich (UCUCUYUCUC) motif for pollen-specific and the other three tissues-retained lariat RNAs, respectively. Reconstitution of the pollen-specific AG-rich motif indeed enhanced lariat RNA retention in plants. Biologically, hundreds of lariat RNAs harbored miRNA binding sites, and dual-luciferase reporter assay showed that these natural lariat RNAs had the potential to protect expression of miRNA target genes. Collectively, our results uncover that selective retention of lariat RNA is an actively regulatory process, and provide new insights into understanding how lariat RNA metabolism may impact miRNA activity.


Subject(s)
Gene Expression Regulation, Plant , Introns , MicroRNAs , RNA, Plant , Introns/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Pollen/genetics , Pollen/metabolism , Organ Specificity/genetics , RNA Splicing , Arabidopsis/genetics , Arabidopsis/metabolism , Binding Sites
15.
Plant Cell Environ ; 47(7): 2410-2425, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38517937

ABSTRACT

Bainong sterility (BNS) is a thermo-sensitive genic male sterile wheat line, characterised by anther fertility transformation in response to low temperature (LT) stress during meiosis, the failure of vacuole decomposition and the absence of starch accumulation in sterile bicellular pollen. Our study demonstrates that the late microspore (LM) stage marks the transition from the anther growth to anther maturation phase, characterised by the changes in anther structure, carbohydrate metabolism and the main transport pathway of sucrose (Suc). Fructan is a main storage polysaccharide in wheat anther, and its synthesis and remobilisation are crucial for anther development. Moreover, the process of pollen amylogenesis and the fate of the large vacuole in pollen are closely intertwined with fructan synthesis and remobilisation. LT disrupts the normal physiological metabolism of BNS anthers during meiosis, particularly affecting carbohydrate metabolism, thus determining the fate of male gametophytes and pollen abortion. Disruption of fructan synthesis and remobilisation regulation serves as a decisive event that results in anther abortion. Sterile pollen exhibits common traits of pollen starvation and impaired starch accumulation due to the inhibition of apoplastic transport starting from the LM stage, which is regulated by cell wall invertase TaIVR1 and Suc transporter TaSUT1.


Subject(s)
Carbohydrate Metabolism , Flowers , Plant Infertility , Pollen , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/metabolism , Triticum/physiology , Plant Infertility/genetics , Pollen/growth & development , Pollen/genetics , Pollen/metabolism , Flowers/growth & development , Flowers/genetics , Flowers/physiology , Flowers/metabolism , Starch/metabolism , Sucrose/metabolism , Fructans/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plant Proteins/genetics
16.
Nat Commun ; 15(1): 2676, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538581

ABSTRACT

Autophagy modulates the degradation and recycling of intracellular materials and contributes to male gametophyte development and male fertility in plants. However, whether autophagy participates in seed development remains largely unknown. Here, we demonstrate that autophagy is crucial for timely programmed cell death (PCD) in the integumentary tapetum, the counterpart of anther tapetum, influencing embryo pattern formation and seed viability. Inhibition of autophagy resulted in delayed PCD of the integumentary tapetum and defects in embryo patterning. Cell-type-specific restoration of autophagic activities revealed that the integumentary tapetum plays a non-autonomous role in embryo patterning. Furthermore, high-throughput, comprehensive lipidomic analyzes uncovered an unexpected seed-developmental-stage-dependent role of autophagy in seed lipid metabolism: it contributes to triacylglycerol degradation before fertilization and to triacylglycerol biosynthesis after fertilization. This study highlights the critical role of autophagy in regulating timely integumentary tapetum PCD and reveals its significance in seed lipid metabolism and viability.


Subject(s)
Apoptosis , Pollen , Pollen/metabolism , Apoptosis/physiology , Skin , Autophagy/genetics , Triglycerides/metabolism , Gene Expression Regulation, Plant , Flowers
17.
Sci Rep ; 14(1): 5639, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38454044

ABSTRACT

The involvement of Ca2+ ions in angiosperms sexual processes is well established, while in gymnosperms, such knowledge remains limited and is still a topic of discussion. In this study, we focused on Larix decidua, using Alizarin-red S staining and the pyroantimonate method to examine the tissue and subcellular distribution of free and loosely bound Ca2+ ions at different stages of the male gametophyte's development and its interaction with the ovule. Our findings show that in larch, both the germination of pollen grains and the growth of pollen tubes occur in an environment rich in Ca2+. These ions play a crucial role in the adhesion of the pollen grain to the stigmatic tip and its subsequent movement to the micropylar canal. There is a significant presence of free and loosely bound Ca2+ ions in both the fluid of the micropylar canal and the extracellular matrix of the nucellus. As the pollen tube extends through the nucellus, we observed a notable accumulation of Ca2+ ions just above the entry to the mature archegonium, a region likely crucial for the male gametophyte's directional growth. Meanwhile, the localized presence of free and loosely bound Ca2+ ions within the egg cell cytoplasm may inhibit the pollen tubes growth and rupture, playing an important role in fertilization.


Subject(s)
Larix , Pollination , Pollen Tube , Pollen/metabolism , Ions/metabolism , Germination
18.
Sci Rep ; 14(1): 5618, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38454094

ABSTRACT

The hazel allergen Cor a 1 is a PR-10 protein, closely related to the major birch pollen allergen Bet v 1. Hazel allergies are caused by cross-reactive IgE antibodies originally directed against Bet v 1. Despite the importance of PR-10 proteins in allergy development, their function and localization in the plant remain largely elusive. Therefore, the presence of Cor a 1 mRNA and proteins was investigated in different tissues, i.e., the female flower, immature and mature nuts, catkins, and pollen. Four yet unknown Cor a 1 isoallergens, i.e., Cor a 1.0501-1.0801, and one new Cor a 1.03 variant were discovered and characterized. Depending on the isoallergen, the occurrence and level of mRNA expression varied in different tissues, suggesting different functions. Interestingly, Cor a 1.04 previously thought to be only present in nuts, was also detected in catkins and pollen. The corresponding Cor a 1 genes were expressed in Escherichia coli. The purified proteins were analysed by CD and NMR spectroscopy. Immunoblots and ELISAs to determine their allergenic potential showed that the new proteins reacted positively with sera from patients allergic to birch, hazel and elder pollen and were recognized as novel isoallergens/variants by the WHO/IUIS Allergen Nomenclature Sub-Committee.


Subject(s)
Corylus , Hypersensitivity , Humans , Aged , Allergens , Plant Proteins/metabolism , Pollen/metabolism , Betulaceae/metabolism , Betula/metabolism , RNA, Messenger , Antigens, Plant/genetics , Antigens, Plant/metabolism
19.
Plant Cell ; 36(5): 1697-1717, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38299434

ABSTRACT

Proper anther dehiscence is essential for successful pollination and reproduction in angiosperms, and jasmonic acid (JA) is crucial for the process. However, the mechanisms underlying the tight regulation of JA biosynthesis during anther development remain largely unknown. Here, we demonstrate that the rice (Oryza sativa L.) ethylene-response factor-associated amphiphilic repression (EAR) motif-containing protein TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTORS (TCP) INTERACTOR CONTAINING EAR MOTIF PROTEIN1 (OsTIE1) tightly regulates JA biosynthesis by repressing TCP transcription factor OsTCP1/PCF5 during anther development. The loss of OsTIE1 function in Ostie1 mutants causes male sterility. The Ostie1 mutants display inviable pollen, early stamen filament elongation, and precocious anther dehiscence. In addition, JA biosynthesis is activated earlier and JA abundance is precociously increased in Ostie1 anthers. OsTIE1 is expressed during anther development, and OsTIE1 is localized in nuclei and has transcriptional repression activity. OsTIE1 directly interacts with OsTCP1, and overexpression of OsTCP1 caused early anther dehiscence resembling that of Ostie1. JA biosynthesis genes including rice LIPOXYGENASE are regulated by the OsTIE1-OsTCP1 complex. Our findings reveal that the OsTIE1-OsTCP1 module plays a critical role in anther development by finely tuning JA biosynthesis and provide a foundation for the generation of male sterile plants for hybrid seed production.


Subject(s)
Cyclopentanes , Flowers , Gene Expression Regulation, Plant , Oryza , Oxylipins , Plant Infertility , Plant Proteins , Oryza/genetics , Oryza/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Flowers/genetics , Flowers/metabolism , Flowers/growth & development , Flowers/physiology , Plant Infertility/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Pollen/genetics , Pollen/growth & development , Pollen/metabolism , Plants, Genetically Modified , Mutation
20.
Plant Physiol ; 195(1): 865-878, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38365204

ABSTRACT

Pollen development in flowering plants has strong implications for reproductive success. Pollen DNA can be targeted to improve plant traits for yield and stress tolerance. In this study, we demonstrated that the Mediator subunit CYCLIN-DEPENDENT KINASE 8 (CDK8) is a key modulator of pollen development in tomato (Solanum lycopersicum). SlCDK8 knockout led to significant decreases in pollen viability, fruit yield, and fruit seed number. We also found that SlCDK8 directly interacts with transcription factor TEOSINTE BRANCHED1-CYCLOIDEA-PCF15 (SlTCP15) using yeast two-hybrid screens. We subsequently showed that SlCDK8 phosphorylates Ser 187 of SlTCP15 to promote SlTCP15 stability. Phosphorylated TCP15 directly bound to the TGGGCY sequence in the promoters of DYSFUNCTIONAL TAPETUM 1 (SlDYT1) and MYB DOMAIN PROTEIN 103 (SlMYB103), which are responsible for pollen development. Consistently, disruption of SlTCP15 resembled slcdk8 tomato mutants. In sum, our work identified a new substrate of Mediator CDK8 and revealed an important regulatory role of SlCDK8 in pollen development via cooperation with SlTCP15.


Subject(s)
Cyclin-Dependent Kinase 8 , Gene Expression Regulation, Plant , Plant Proteins , Pollen , Solanum lycopersicum , Transcription Factors , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Pollen/growth & development , Pollen/genetics , Pollen/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Cyclin-Dependent Kinase 8/metabolism , Cyclin-Dependent Kinase 8/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Phosphorylation , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...