Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.881
Filter
1.
Planta ; 260(1): 15, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829528

ABSTRACT

MAIN CONCLUSION: One of seven Solanum taxa studied displayed associations between pollen presence and floral scent composition and volume, suggesting buzz-pollinated plants rarely use scent as an honest cue for foraging pollinators. Floral scent influences the recruitment, learning, and behaviour of floral visitors. Variation in floral scent can provide information on the amount of reward available or whether a flower has been visited recently and may be particularly important in species with visually concealed rewards. In many buzz-pollinated flowers, tubular anthers opening via small apical pores (poricidal anthers) visually conceal pollen and appear similar regardless of pollen quantity within the anther. We investigated whether pollen removal changes floral scent composition and emission rate in seven taxa of buzz-pollinated Solanum (Solanaceae). We found that pollen removal reduced both the overall emission of floral scent and the emission of specific compounds (linalool and farnesol) in S. lumholtzianum. Our findings suggest that in six out of seven buzz-pollinated taxa studied here, floral scent could not be used as a signal by visitors as it does not contain information on pollen availability.


Subject(s)
Flowers , Odorants , Pollen , Pollination , Solanum , Solanum/physiology , Solanum/chemistry , Pollination/physiology , Flowers/physiology , Flowers/chemistry , Pollen/physiology , Pollen/chemistry , Odorants/analysis , Animals , Bees/physiology
2.
PeerJ ; 12: e17148, 2024.
Article in English | MEDLINE | ID: mdl-38708360

ABSTRACT

One of the most vulnerable phases in the plant life cycle is sexual reproduction, which depends on effective pollen transfer, but also on the thermotolerance of pollen grains. Pollen thermotolerance is temperature-dependent and may be reduced by increasing temperature associated with global warming. A growing body of research has focused on the effect of increased temperature on pollen thermotolerance in crops to understand the possible impact of temperature extremes on yield. Yet, little is known about the effects of temperature on pollen thermotolerance of wild plant species. To fill this gap, we selected Lotus corniculatus s.l. (Fabaceae), a species common to many European habitats and conducted laboratory experiments to test its pollen thermotolerance in response to artificial increase in temperature. To test for possible local adaptation of pollen thermal tolerance, we compared data from six lowland (389-451 m a.s.l.) and six highland (841-1,030 m a.s.l.) populations. We observed pollen germination in vitro at 15 °C, 25 °C, 30 °C, and 40 °C. While lowland plants maintained a stable germination percentage across a broad temperature range (15-30 °C) and exhibited reduced germination only at extremely high temperatures (40 °C), highland plants experienced reduced germination even at 30 °C-temperatures commonly exceeded in lowlands during warm summers. This suggests that lowland populations of L. corniculatus may be locally adapted to higher temperature for pollen germination. On the other hand, pollen tube length decreased with increasing temperature in a similar way in lowland and highland plants. The overall average pollen germination percentage significantly differed between lowland and highland populations, with highland populations displaying higher germination percentage. On the other hand, the average pollen tube length was slightly smaller in highland populations. In conclusion, we found that pollen thermotolerance of L. corniculatus is reduced at high temperature and that the germination of pollen from plant populations growing at higher elevations is more sensitive to increased temperature, which suggests possible local adaptation of pollen thermotolerance.


Subject(s)
Lotus , Pollen , Thermotolerance , Pollen/physiology , Thermotolerance/physiology , Lotus/physiology , Lotus/growth & development , Adaptation, Physiological/physiology , Global Warming , Germination/physiology , Altitude , Climate Change , Temperature , Acclimatization/physiology
3.
Physiol Plant ; 176(3): e14331, 2024.
Article in English | MEDLINE | ID: mdl-38710477

ABSTRACT

Sporopollenin, as the main component of the pollen exine, is a highly resistant polymer that provides structural integrity under unfavourable environmental conditions. Tetraketone α-pyrone reductase 1 (TKPR1) is essential for sporopollenin formation, catalyzing the reduction of tetraketone carbonyl to hydroxylated α-pyrone. The functional role of TKPR1 in male sterility has been reported in flowering plants such as maize, rice, and Arabidopsis. However, the molecular cloning and functional characterization of TKPR1 in cotton remain unaddressed. In this study, we identified 68 TKPR1s from four cotton species, categorized into three clades. Transcriptomics and RT-qPCR demonstrated that GhTKPR1_8 exhibited typical expression patterns in the tetrad stage of the anther. GhTKPR1_8 was localized to the endoplasmic reticulum. Moreover, ABORTED MICROSPORES (GhAMS) transcriptionally activated GhTKPR1_8 as indicated by luciferase complementation tests. GhTKPR1_8-knockdown inhibited anther dehiscence and reduced pollen viability in cotton. Additionally, overexpression of GhTKPR1_8 in the attkpr1 mutant restored its male sterile phenotype. This study offers novel insights into the investigation of TKPR1 in cotton while providing genetic resources for studying male sterility.


Subject(s)
Gene Expression Regulation, Plant , Gossypium , Plant Proteins , Pollen , Pollen/genetics , Pollen/physiology , Gossypium/genetics , Gossypium/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/genetics , Flowers/physiology , Plant Infertility/genetics , Phylogeny
4.
Sci Rep ; 14(1): 11392, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762587

ABSTRACT

Uniparental reproduction is advantageous when lack of mates limits outcrossing opportunities in plants. Baker's law predicts an enrichment of uniparental reproduction in habitats colonized via long-distance dispersal, such as volcanic islands. To test it, we analyzed reproductive traits at multiple hierarchical levels and compared seed-set after selfing and crossing experiments in both island and mainland populations of Limonium lobatum, a widespread species that Baker assumed to be self-incompatible because it had been described as pollen-stigma dimorphic, i.e., characterized by floral morphs differing in pollen-surface morphology and stigma-papillae shape that are typically self-incompatible. We discovered new types and combinations of pollen and stigma traits hitherto unknown in the literature on pollen-stigma dimorphism and a lack of correspondence between such combinations and pollen compatibility. Contrary to previous reports, we conclude that Limonium lobatum comprises both self-compatible and self-incompatible plants characterized by both known and previously undescribed combinations of reproductive traits. Most importantly, plants with novel combinations are overrepresented on islands, selfed seed-set is higher in islands than the mainland, and insular plants with novel pollen-stigma trait-combinations disproportionally contribute to uniparental reproduction on islands. Our results thus support Baker's law, connecting research on reproductive and island biology.


Subject(s)
Islands , Plumbaginaceae , Pollen , Pollination , Reproduction , Pollen/physiology , Reproduction/physiology , Plumbaginaceae/physiology , Pollination/physiology , Seeds/physiology , Flowers/physiology , Phenotype
5.
Am J Bot ; 111(4): e16309, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584339

ABSTRACT

PREMISE: Barriers at different reproductive stages contribute to reproductive isolation. Self-incompatibility (SI) systems that prevent self-pollination could also act to control interspecific pollination and contribute to reproductive isolation, preventing hybridization. Here we evaluated whether SI contributes to reproductive isolation among four co-occurring Opuntia species that flower at similar times and may hybridize with each other. METHODS: We assessed whether Opuntia cantabrigiensis, O. robusta, O. streptacantha, and O. tomentosa, were self-compatible and formed hybrid seeds in five manipulation treatments to achieve self-pollination, intraspecific cross-pollination, open pollination (control), interspecific crosses or apomixis, then recorded flowering phenology and synchrony. RESULTS: All species flowered in the spring with a degree of synchrony, so that two pairs of species were predisposed to interspecific pollination (O. cantabrigiensis with O. robusta, O. streptacantha with O. tomentosa). All species had distinct reproductive systems: Opuntia cantabrigiensis is self-incompatible and did not produce hybrid seeds as an interspecific pollen recipient; O. robusta is a dioecious species, which formed a low proportion of hybrid seeds; O. streptacantha and O. tomentosa are self-compatible and produced hybrid seeds. CONCLUSIONS: Opuntia cantabrigiensis had a strong pollen-pistil barrier, likely due to its self-incompatibility. Opuntia robusta, the dioecious species, is an obligate outcrosser and probably partially lost its ability to prevent interspecific pollen germination. Given that the self-compatible species can set hybrid seeds, we conclude that pollen-pistil interaction and high flowering synchrony represent weak barriers; whether reproductive isolation occurs later in their life cycle (e.g., germination or seedling survival) needs to be determined.


Subject(s)
Flowers , Hybridization, Genetic , Opuntia , Pollination , Reproductive Isolation , Seeds , Self-Incompatibility in Flowering Plants , Sympatry , Self-Incompatibility in Flowering Plants/physiology , Flowers/physiology , Seeds/physiology , Opuntia/physiology , Reproduction , Pollen/physiology , Species Specificity , Apomixis/physiology
6.
Naturwissenschaften ; 111(3): 26, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647655

ABSTRACT

In specialized plant-pollinator associations, partners may exhibit adaptive traits, which favor the maintenance of the interaction. The association between Calibrachoa elegans (Solanaceae) and its oligolectic bee pollinator, Hexantheda missionica (Colletidae), is mutualistic and forms a narrowly specialized pollination system. Flowers of C. elegans are pollinated exclusively by this bee species, and the bees restrict their pollen resources to this plant species. The pollen presentation schedules of C. elegans were evaluated at the population level to test the hypothesis that H. missionica females adjust their foraging behavior to the resource offering regime of C. elegans plants. For this, the number of new flowers and anthers opened per hour (as a proxy for pollen offering) was determined, and pollen advertisement was correlated with the frequency of flower visits during the day. Preferences of female bees for flowers of different stages were also investigated, and their efficiency as pollinators was evaluated. Pollen offering by C. elegans was found to be partitioned throughout the day through scattered flower openings. Females of H. missionica indeed adjusted their foraging activity to the most profitable periods of pollen availability. The females preferred new, pollen-rich flowers over old ones and gathered pollen and nectar selectively according to flower age. Such behaviors must optimize female bee foraging efficiency on flowers. Female bees set 93% of fruit after a single visit. These findings guarantee their importance as pollinators and the persistence of the specialized plant-pollinator association.


Subject(s)
Feeding Behavior , Flowers , Pollination , Solanaceae , Animals , Bees/physiology , Flowers/physiology , Pollination/physiology , Female , Feeding Behavior/physiology , Solanaceae/physiology , Pollen/physiology
7.
New Phytol ; 242(6): 2832-2844, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581189

ABSTRACT

Nicotiana attenuata styles preferentially select pollen from among accessions with corresponding expression patterns of NaS-like-RNases (SLRs), and the postpollination ethylene burst (PPEB) is an accurate predictor of seed siring success. However, the ecological consequences of mate selection, its effect on the progeny, and the role of SLRs in the control of ethylene signaling remain unknown. We explored the link between the magnitude of the ethylene burst and expression of the SLRs in a set of recombinant inbred lines (RILs), dissected the genetic underpinnings of mate selection through genome-wide association study (GWAS), and examined its outcome for phenotypes in the next generation. We found that high levels of PPEB are associated with the absence of SLR2 in most of the tested RILs. We identified candidate genes potentially involved in the control of mate selection and showed that pollination of maternal genotypes with their favored pollen donors produces offspring with longer roots. When the maternal genotypes are only able to select against nonfavored pollen donors, the selection for such positive traits is abolished. We conclude that plants' ability of mate choice contributes to measurable changes in progeny phenotypes and is thus likely a target of selection.


Subject(s)
Gene Expression Regulation, Plant , Phenotype , Pollen , Ribonucleases , Pollen/genetics , Pollen/physiology , Ribonucleases/genetics , Ribonucleases/metabolism , Nicotiana/genetics , Nicotiana/physiology , Ethylenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pollination , Genome-Wide Association Study , Zygote/metabolism , Genotype , Inbreeding
8.
New Phytol ; 242(6): 2888-2899, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38622779

ABSTRACT

Plant pollen is rich in protein, sterols and lipids, providing crucial nutrition for many pollinators. However, we know very little about the quantity, quality and timing of pollen availability in real landscapes, limiting our ability to improve food supply for pollinators. We quantify the floral longevity and pollen production of a whole plant community for the first time, enabling us to calculate daily pollen availability. We combine these data with floral abundance and nectar measures from UK farmland to quantify pollen and nectar production at the landscape scale throughout the year. Pollen and nectar production were significantly correlated at the floral unit, and landscape level. The species providing the highest quantity of pollen on farmland were Salix spp. (38%), Filipendula ulmaria (14%), Rubus fruticosus (10%) and Taraxacum officinale (9%). Hedgerows were the most pollen-rich habitats, but permanent pasture provided the majority of pollen at the landscape scale, because of its large area. Pollen and nectar were closely associated in their phenology, with both peaking in late April, before declining steeply in June and remaining low throughout the year. Our data provide a starting point for including pollen in floral resource assessments and ensuring the nutritional requirements of pollinators are met in farmland landscapes.


Subject(s)
Plant Nectar , Pollen , Pollen/physiology , Farms , Flowers/physiology , Seasons , Pollination/physiology , Ecosystem
9.
Planta ; 259(6): 137, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683389

ABSTRACT

MAIN CONCLUSION: Self-incompatibility studies have revealed a potential use of Tunisian apple resources for crop improvement and modern breeding programs and a likely correlation between the pollen tube growth and flowering period. Apples [Malus domestica. Borkh] exhibit an S-RNase-based gametophytic self-incompatibility (GSI) system. Four primer combinations were used to S-genotype eighteen Tunisian local apple accessions and twelve introduced accessions that served as references. Within the Tunisian local accessions, S2, S3, S7, and S28 S-alleles were the most frequent and were assigned to 14 S-genotypes; among them, S7S28, S3S7, S2S5, and S2S3 were the most abundant. PCA plot showed that population structuring was affected by the S-alleles frequencies and revealed a modern origin of the Tunisian varieties rather than being ancient ones. Nonetheless, the results obtained with 17 SSR markers showed a separate grouping of local Tunisian accessions that calls into question the hypothesis discussed. Pollination experiments showed that the pollen started to germinate within 24 h of pollination but 48 h after pollination in the "El Fessi" accession. The first pollen tubes arrived in the styles within 36 h of pollination in two early flowering accessions known as "Arbi" and "Bokri", and after 72 h of pollination in late flowering "El Fessi" and 48 h after pollination in remaining accessions. The first pollen tube arrests were observed in accessions "Arbi" and "Bokri" within 84 h of pollination, within 108 h of pollination in "El Fessi" and within 108 h of pollination in remaining accessions. In the apple accession called "Boutabgaya," the pollen tubes reached the base of the style within 120 h of pollination without being aborted. Nevertheless, the self-compatible nature of "Boutabgaya" needs more studies to be confirmed. However, our results revealed the malfunction of the female component of the GSI in this accession. To conclude, this work paved the path for further studies to enhance the insight (i) into the relation between the flowering period and the pollen tube growth, (ii) self-compatible nature of "Boutabgaya", and (iii) the origin of the Tunisian apple.


Subject(s)
Genotype , Malus , Pollen Tube , Pollination , Self-Incompatibility in Flowering Plants , Pollen Tube/growth & development , Pollen Tube/physiology , Pollen Tube/genetics , Malus/genetics , Malus/growth & development , Malus/physiology , Tunisia , Self-Incompatibility in Flowering Plants/genetics , Alleles , Pollen/genetics , Pollen/physiology , Pollen/growth & development , Ribonucleases/genetics , Ribonucleases/metabolism , Flowers/growth & development , Flowers/genetics , Flowers/physiology
10.
Plant Biol (Stuttg) ; 26(4): 612-620, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38634401

ABSTRACT

Most Aristolochiaceae species studied so far are from temperate regions, bearing self-compatible protogynous trap flowers. Although self-incompatibility has been suggested for tropical species, the causes of self-sterility in this family remain unknown. To fill this gap, we studied the pollination of the tropical Aristolochia esperanzae, including the physical and physiological anti-selfing mechanisms. Floral visitors trapped inside flowers were collected to determine the pollinators. Protogyny was characterized by observing the temporal expression of sexual phases and stigmatic receptivity tests. The breeding system was investigated using hand-pollination treatments. Pollen tube growth was observed using epifluorescence to identify the self-incompatibility mechanism. Flies were the most frequent visitors found inside A. esperanzae trap flowers, with individuals from the family Ulidiidae being potential pollinators since they carried pollen. The characteristic flower odour and presence of larvae indicate that A. esperanzae deceives flies through oviposition-site mimicry. Although this species showed incomplete protogyny, stigmatic receptivity decreased during the male phase, avoiding self-pollination. Fruits developed only after cross- and open pollination, indicating that the population is non-autonomous, non-apomictic, and self-sterile. This occurred through a delay in the growth of geitonogamous pollen tubes to the ovary and lower ovule penetration, indicating a late-acting self-incompatibility mechanism. Our findings expand the number of families in which late-acting self-incompatibility has been reported, demonstrating that it is more widespread than previously thought, especially when considering less-studied tropical species among the basal angiosperms.


Subject(s)
Aristolochia , Flowers , Pollination , Pollination/physiology , Flowers/physiology , Aristolochia/physiology , Animals , Self-Incompatibility in Flowering Plants/physiology , Pollen Tube/physiology , Pollen Tube/growth & development , Fruit/physiology , Fruit/growth & development , Pollen/physiology , Diptera/physiology
11.
New Phytol ; 243(1): 440-450, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38655668

ABSTRACT

Hybrid zones provide natural experimental settings to test hypotheses about species divergence. We concentrated on a hybrid swarm in which oil-collecting bees and flower-pecking birds act as pollinators of two Calceolaria species. We asked whether both pollinators contributed to flower divergence by differentially promoting prezygotic fitness at the phenotypic extremes that represent parentals. We studied pollinator-mediated selection on phenotypic traits critical in plant-pollinator mechanical interaction, namely plant height, reward-to-stigma distance, and flower shape. We utilised the quantity and quality of pollen deposited as fitness measures and distinguished between the contribution of the two pollinator types. Results showed uni- and bivariate disruptive selection for most traits through pollen grains deposited by both pollinators. Bird-mediated fitness favoured low plants with a long reward-to-stigma distance and a straight corolla, while bee-mediated fitness favoured tall plants with a short reward-to-stigma distance and curved corolla. In addition, stabilising selection at one end of the phenotypic range showed a bird-mediated reproductive asymmetry within the swarm. The disruptive pattern was countered, albeit weakly, by hybrids receiving higher-quality pollen on the stigmas. Results suggest that pollinator-mediated selection promotes divergence of integrated flower phenotypes mechanically adjusted either to bees or birds underscoring the importance of pollinator specialisation in diversification.


Subject(s)
Flowers , Genetic Fitness , Phenotype , Pollination , Selection, Genetic , Pollination/physiology , Animals , Bees/physiology , Flowers/physiology , Flowers/anatomy & histology , Birds/physiology , Pollen/physiology , Hybridization, Genetic , Species Specificity
13.
Plant Physiol ; 195(2): 1293-1311, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38428987

ABSTRACT

In plants, pollen-pistil interactions during pollination and fertilization mediate pollen hydration and germination, pollen tube growth, and seed set and development. Cell wall invertases (CWINs) help provide the carbohydrates for pollen development; however, their roles in pollination and fertilization have not been well established. In cucumber (Cucumis sativus), CsCWIN3 showed the highest expression in flowers, and we further examined CsCWIN3 for functions during pollination to seed set. Both CsCWIN3 transcript and CsCWIN3 protein exhibited similar expression patterns in the sepals, petals, stamen filaments, anther tapetum, and pollen of male flowers, as well as in the stigma, style, transmitting tract, and ovule funiculus of female flowers. Notably, repression of CsCWIN3 in cucumber did not affect the formation of parthenocarpic fruit but resulted in an arrested growth of stigma integuments in female flowers and a partially delayed dehiscence of anthers with decreased pollen viability in male flowers. Consequently, the pollen tube grew poorly in the gynoecia after pollination. In addition, CsCWIN3-RNA interference plants also showed affected seed development. Considering that sugar transporters could function in cucumber fecundity, we highlight the role of CsCWIN3 and a potential close collaboration between CWIN and sugar transporters in these processes. Overall, we used molecular and physiological analyses to determine the CsCWIN3-mediated metabolism during pollen formation, pollen tube growth, and plant fecundity. CsCWIN3 has essential roles from pollination and fertilization to seed set but not parthenocarpic fruit development in cucumber.


Subject(s)
Cell Wall , Cucumis sativus , Plant Proteins , Pollination , Cucumis sativus/genetics , Cucumis sativus/physiology , Cucumis sativus/enzymology , Cucumis sativus/growth & development , Plant Proteins/metabolism , Plant Proteins/genetics , Cell Wall/metabolism , Gene Expression Regulation, Plant , Sugars/metabolism , beta-Fructofuranosidase/metabolism , beta-Fructofuranosidase/genetics , Pollen/genetics , Pollen/growth & development , Pollen/physiology , Flowers/genetics , Flowers/physiology , Flowers/growth & development , Fertilization , Pollen Tube/growth & development , Pollen Tube/genetics , Pollen Tube/physiology
14.
Plant Physiol ; 195(2): 1277-1292, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38431526

ABSTRACT

Low temperatures occurring at the booting stage in rice (Oryza sativa L.) often result in yield loss by impeding male reproductive development. However, the underlying mechanisms by which rice responds to cold at this stage remain largely unknown. Here, we identified MITOCHONDRIAL ACYL CARRIER PROTEIN 2 (OsMTACP2), the encoded protein of which mediates lipid metabolism involved in the cold response at the booting stage. Loss of OsMTACP2 function compromised cold tolerance, hindering anther cuticle and pollen wall development, resulting in abnormal anther morphology, lower pollen fertility, and seed setting. OsMTACP2 was highly expressed in tapetal cells and microspores during anther development, with the encoded protein localizing to both mitochondria and the cytoplasm. Comparative transcriptomic analysis revealed differential expression of genes related to lipid metabolism between the wild type and the Osmtacp2-1 mutant in response to cold. Through a lipidomic analysis, we demonstrated that wax esters, which are the primary lipid components of the anther cuticle and pollen walls, function as cold-responsive lipids. Their levels increased dramatically in the wild type but not in Osmtacp2-1 when exposed to cold. Additionally, mutants of two cold-induced genes of wax ester biosynthesis, ECERIFERUM1 and WAX CRYSTAL-SPARSE LEAF2, showed decreased cold tolerance. These results suggest that OsMTACP2-mediated wax ester biosynthesis is essential for cold tolerance in rice at the booting stage.


Subject(s)
Acyl Carrier Protein , Cold Temperature , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Pollen , Oryza/genetics , Oryza/physiology , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/genetics , Pollen/metabolism , Pollen/growth & development , Pollen/physiology , Acyl Carrier Protein/metabolism , Acyl Carrier Protein/genetics , Flowers/genetics , Flowers/physiology , Flowers/growth & development , Lipid Metabolism/genetics , Mutation/genetics , Waxes/metabolism
15.
Plant Physiol ; 195(2): 1312-1332, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38438131

ABSTRACT

Changing ambient temperature often impairs plant development and sexual reproduction, particularly pollen ontogenesis. However, mechanisms underlying cold stress-induced male sterility are not well understood. Here, we exposed Chinese cabbage (Brassica campestris) to different cold conditions during flowering and demonstrated that the tetrad stage was the most sensitive. After completion of pollen development at optimal conditions, transient cold stress at the tetrad stage still impacted auxin levels, starch and lipid accumulation, and pollen germination, ultimately resulting in partial male sterility. Transcriptome and metabolome analyses and histochemical staining indicated that the reduced pollen germination rate was due to the imbalance of energy metabolism during pollen maturation. The investigation of ß-glucuronidase (GUS)-overexpressing transgenic plants driven by the promoter of DR5 (DR5::GUS report system) combined with cell tissue staining and metabolome analysis further validated that cold stress during the tetrad stage reduced auxin levels in mature pollen grains. Low-concentration auxin treatment on floral buds at the tetrad stage before cold exposure improved the cold tolerance of mature pollen grains. Artificially changing the content of endogenous auxin during pollen maturation by spraying chemical reagents and loss-of-function investigation of the auxin biosynthesis gene YUCCA6 by artificial microRNA technology showed that starch overaccumulation severely reduced the pollen germination rate. In summary, we revealed that transient cold stress at the tetrad stage of pollen development in Chinese cabbage causes auxin-mediated starch-related energy metabolism imbalance that contributes to the decline in pollen germination rate and ultimately seed set.


Subject(s)
Brassica , Energy Metabolism , Indoleacetic Acids , Pollen , Pollen/drug effects , Pollen/genetics , Pollen/physiology , Pollen/growth & development , Indoleacetic Acids/metabolism , Energy Metabolism/drug effects , Brassica/genetics , Brassica/physiology , Brassica/metabolism , Brassica/drug effects , Cold-Shock Response/physiology , Gene Expression Regulation, Plant/drug effects , Plants, Genetically Modified , Cold Temperature , Germination/drug effects
16.
Sci Rep ; 14(1): 7127, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38531911

ABSTRACT

Although Chaenomeles is widely used in horticulture, traditional Chinese medicine and landscape greening, insufficient research has hindered its breeding and seed selection. This study investigated the floral phenology, floral organ characteristics, palynology, and breeding systems of Chaenomeles speciosa (Sweet) Nakai. The floral characteristics of C. speciosa were observed both visually and stereoscopically. The microstructures of the flower organs were observed using scanning electron microscopy. Pollen stainability was determined using triphenyl tetrazolium chloride staining. Stigma receptivity was determined using the benzidine-H2O2 method and the post-artificial pollination pollen germination method. The breeding system was assessed based on the outcrossing index and pollen-ovule ratio. The flowers of C. speciosa were bisexual with a flowering period from March to April. The flowering periods of single flowers ranged from 8 to 19 d, and those of single plants lasted 18-20 d. The anthers were cylindrical, with the base attached to the filament, and were split longitudinally to release pollen. The flower had five styles, with a connate base. The ovaries had five carpels and five compartments. The inverted ovules were arranged in two rows on the placental axis. The stigma of C. speciosa was dry and had many papillary protrusions. In the early flowering stage (1-2 d of flowering), the pollen exhibited high stainability (up to 84.24%), but all stainability was lost at 7 d of flowering. Storage at - 20 °C effectively delayed pollen inactivation. The stigma receptivity of C. speciosa lasted for approximately 7 days, and the breeding system was classified as outcrossing with partial self-compatibility.


Subject(s)
Pollination , Rosaceae , Pregnancy , Female , Humans , Pollination/physiology , Ovule , Hydrogen Peroxide , Plant Breeding , Placenta , Reproduction/physiology , Flowers/physiology , Pollen/physiology
17.
J Exp Bot ; 75(11): 3351-3367, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38459807

ABSTRACT

In gymnosperms such as Ginkgo biloba, the arrival of pollen plays a key role in ovule development, before fertilization occurs. Accordingly, G. biloba female plants geographically isolated from male plants abort all their ovules after the pollination drop emission, which is the event that allows the ovule to capture pollen grains. To decipher the mechanism induced by pollination required to avoid ovule senescence and then abortion, we compared the transcriptomes of pollinated and unpollinated ovules at three time points after the end of the emission of pollination drop. Transcriptomic and in situ expression analyses revealed that several key genes involved in programmed cell death such as senescence and apoptosis, DNA replication, and cell cycle regulation were differentially expressed in unpollinated ovules compared to pollinated ovules. We provide evidence that the pollen captured by the pollination drop affects auxin local accumulation and might cause deregulation of key genes required for the ovule's programmed cell death, activating both the cell cycle regulation and DNA replication genes.


Subject(s)
Ginkgo biloba , Ovule , Pollen , Pollination , Ovule/growth & development , Ovule/physiology , Ovule/genetics , Pollen/genetics , Pollen/growth & development , Pollen/physiology , Ginkgo biloba/genetics , Ginkgo biloba/physiology , Ginkgo biloba/growth & development , Transcriptome , Gene Expression Regulation, Plant
18.
Plant Biol (Stuttg) ; 26(3): 349-368, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38407440

ABSTRACT

Floral colours represent a highly diverse communication signal mainly involved in flower visitors' attraction and guidance, but also flower discrimination, filtering non-pollinators and discouraging floral antagonists. The divergent visual systems and colour preferences of flower visitors, as well as the necessity of cues for flower detection and discrimination, foster the diversity of floral colours and colour patterns. Despite the bewildering diversity of floral colour patterns, a recurrent component is a yellow UV-absorbing floral centre, and it is still not clear why this pattern is so frequent in angiosperms. The pollen, anther, stamen, and androecium mimicry (PASAM) hypothesis suggests that the system composed of the flowers possessing such yellow UV-absorbing floral reproductive structures, the flowers displaying central yellow UV-absorbing structures as floral guides, and the pollen-collecting, as well as pollen-eating, flower visitors responding to such signals constitute the world's most speciose mimicry system. In this review, we call the attention of researchers to some hypothetical PASAM systems around the globe, presenting some fascinating examples that illustrate their huge diversity. We will also present new and published data on pollen-eating and pollen-collecting pollinators' responses to PASAM structures supporting the PASAM hypothesis and will discuss how widespread these systems are around the globe. Ultimately, our goal is to promote the idea that PASAM is a plausible first approach to understanding floral colour patterns in angiosperms.


Subject(s)
Magnoliopsida , Pollination , Pollination/physiology , Reproduction , Flowers/physiology , Pollen/physiology , Magnoliopsida/physiology
19.
Sci Total Environ ; 915: 170097, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38224898

ABSTRACT

Despite widespread recognition of pollen's potential sensitivity to ultraviolet-B (UV-B) radiation (280-315 nm), there remains ongoing debate surrounding the extent and mechanisms of this effect. In this study, using published data on pollen germination and tube growth including 377 pair-wise comparisons from 77 species in 30 families, we present the first global quantification of the effects of UV-B radiation on pollen germination and tube growth, along with its underlying mechanisms. Our results showed a substantial reduction in both pollen germination and tube growth in response to UV-B radiation, affecting 90.9 % and 84.2 % of species, respectively. Notably, these reductions exhibited phylogenetic constraints, highlighting the role of evolutionary history in shaping the sensitivity of pollen germination and tube growth to UV-B radiation. A negative correlation between elevation and the sensitivity of pollen tube growth was detected, suggesting that pollens from plants at higher elevations exhibit greater resistance to UV-B radiation. Our investigation also revealed that the effects of UV-B radiation on pollen germination and tube growth were influenced by a range of abiotic and biotic factors. Nevertheless, the intensity and duration of UV-B radiation exposure exhibited the highest explanatory power for the effects on both pollen germination and tube growth. This suggests that the responses of pollens to UV-B radiation are profoundly influenced by its dose, a critical consideration within the context of global change. In conclusion, our study provides valuable insights into the diverse responses of pollen germination and tube growth to UV-B radiation, highlighting the environment and species-dependent nature of pollen's susceptibility to UV-B radiation, with substantial implications for our understanding of the ecological and agricultural consequences of ongoing changes in UV-B radiation.


Subject(s)
Germination , Pollen , Humans , Phylogeny , Pollen/physiology , Plants , Biological Evolution
20.
Plant Physiol ; 195(1): 343-355, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38270530

ABSTRACT

Flowering plants contain tightly controlled pollen-pistil interactions required for promoting intraspecific fertilization and preventing interspecific hybridizations. In Arabidopsis (Arabidopsis thaliana), several receptor kinases (RKs) are known to regulate the later stages of intraspecific pollen tube growth and ovular reception in the pistil, but less is known about RK regulation of the earlier stages. The Arabidopsis RECEPTOR-LIKE KINASE IN FLOWERS1 (RKF1)/RKF1-LIKE (RKFL) 1-3 cluster of 4 leucine-rich repeat malectin (LRR-MAL) RKs was previously found to function in the stigma to promote intraspecific pollen hydration. In this study, we tested additional combinations of up to 7 Arabidopsis LRR-MAL RK knockout mutants, including RKF1, RKFL1-3, LysM RLK1-INTERACTING KINASE1, REMORIN-INTERACTING RECEPTOR1, and NEMATODE-INDUCED LRR-RLK2. These LRR-MAL RKs were discovered to function in the female stigma to support intraspecific Arabidopsis pollen tube growth and to establish a prezygotic interspecific barrier against Capsella rubella pollen. Thus, this study uncovered additional biological functions for this poorly understood group of RKs in regulating the early stages of Arabidopsis sexual reproduction.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Flowers , Pollen Tube , Pollen , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Flowers/genetics , Flowers/physiology , Pollen/genetics , Pollen/physiology , Pollen/growth & development , Pollen Tube/genetics , Pollen Tube/growth & development , Pollination/physiology , Capsella/genetics , Capsella/physiology , Capsella/metabolism , Gene Expression Regulation, Plant , Protein Kinases/metabolism , Protein Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Leucine-Rich Repeat Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...