Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.955
Filter
1.
AAPS PharmSciTech ; 25(6): 148, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937387

ABSTRACT

Our study aimed to explore the potential of using nanostructured lipid carriers (NLCs) to enhance the topical administration of ß-sitosterol, a bioactive that is poorly soluble in water. Here, we have taken advantage of the unique characteristics that cubosomes have to provide as a drug delivery system. These characteristics include a large surface area, thermal stability, and the capacity to encapsulate molecules that are hydrophobic, amphiphilic, and hydrophilic. The cubosomal formulation was optimized by building a central composite design. The optimum dispersion exhibited a particle size of 88.3 nm, a zeta potential of -43, a polydispersity index of 0.358, and drug entrapment of 95.6%. It was composed of 15% w/w oleic acid and 5% w/w pluronic F127. The optimized cubosome dispersion was incorporated into a sponge formulation. The optimized cubosome sponge achieved a higher drug release compared with the cubosome dispersion. The SEM micrograph of the selected sponge showed that it has an interwoven irregular fibrous lamellar structure with low density and high porosity. The in-vivo data revealed that topical application of the ß-sitosterol cubosomal sponge showed significant higher wound closure percentage relative to the ß-sitosterol product (Mebo)®.


Subject(s)
Burns , Chitosan , Drug Carriers , Particle Size , Sitosterols , Sitosterols/chemistry , Sitosterols/administration & dosage , Animals , Chitosan/chemistry , Drug Carriers/chemistry , Burns/drug therapy , Drug Liberation , Wound Healing/drug effects , Male , Drug Delivery Systems/methods , Rats , Poloxamer/chemistry , Hydrophobic and Hydrophilic Interactions , Nanostructures/chemistry , Administration, Topical
2.
J Phys Chem B ; 128(25): 6151-6166, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38845485

ABSTRACT

This study investigates the nanoscale self-assembly from mixtures of two symmetrical poly(ethylene oxide)-poly(propylene oxide)-pol(ethylene oxide) (PEO-PPO-PEO) block copolymers (BCPs) with different lengths of PEO blocks and similar PPO blocks. The blended BCPs (commercially known as Pluronic F88 and L81, with 80 and 10% PEO, respectively) exhibited rich phase behavior in an aqueous solution. The relative viscosity (ηrel) indicated significant variations in the flow behavior, ranging from fluidic to viscous, thereby suggesting a possible micellar growth or morphological transition. The tensiometric experiments provided insight into the intermolecular hydrophobic interactions at the liquid-air interface favoring the surface activity of mixed-system micellization. Dynamic light scattering (DLS) and small-angle neutron scattering (SANS) revealed the varied structural morphologies of these core-shell mixed micelles and polymersomes formed under different conditions. At a concentration of ≤5% w/v, Pluronic F88 exists as molecularly dissolved unimers or Gaussian chains. However, the addition of the very hydrophobic Pluronic L81, even at a much lower (<0.2%) concentration, induced micellization and promoted micellar growth/transition. These results were further substantiated through molecular dynamics (MD) simulations, employing a readily transferable coarse-grained (CG) molecular model grounded in the MARTINI force field with density and solvent-accessible surface area (SASA) profiles. These findings proved that F88 underwent micellar growth/transition in the presence of L81. Furthermore, the potential use of these Pluronic mixed micelles as nanocarriers for the anticancer drug quercetin (QCT) was explored. The spectral analysis provided insight into the enhanced solubility of QCT through the assessment of the standard free energy of solubilization (ΔG°), drug-loading efficiency (DL%), encapsulation efficiency (EE%), and partition coefficient (P). A detailed optimization of the drug release kinetics was presented by employing various kinetic models. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] MTT assay, a frequently used technique for assessing cytotoxicity in anticancer research, was used to gauge the effectiveness of these QCT-loaded mixed nanoaggregates.


Subject(s)
Micelles , Poloxamer , Polyethylene Glycols , Poloxamer/chemistry , Polyethylene Glycols/chemistry , Drug Carriers/chemistry , Hydrophobic and Hydrophilic Interactions , Humans , Propylene Glycols/chemistry , Viscosity , Molecular Dynamics Simulation
3.
Int J Pharm ; 659: 124295, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38823469

ABSTRACT

Opioids are powerful analgesics; however, their significant systemic adverse effects and the need for frequent administration restrict their use. Nalbuphine (NA) is a κ-agonist narcotic with limited adverse effects, but needs to be frequently administrated due to its short elimination half-life. Whereas sebacoyl dinalbuphine ester (SDE) is a NA prodrug, which can effectively prolong the analgesic effect, but lacks immediate pain relief. Therefore, in this study, a rapid and sustained local delivery formulation to introduce NA and SDE directly into surgical sites was developed. An amphiphilic nanostructured lipid carrier (NLC) poloxamer 407 (P407) gel (NLC-Gel) was developed to permit concurrent delivery of hydrophobic SDE from the NLC core and hydrophilic NA from P407, offering a dual rapid and prolonged analgesic effect. Benefiting from the thermal-sensitive characteristic of P407, the formulation can be injected in liquid phase and instantly transit into gel at wound site. NLC-Gel properties, including particle size, drug release, rheology, and stability, were assessed. In vivo evaluation using a rat spinal surgery model highlighted the effect of the formulation through pain behavior test and hematology analysis. NLC-Gels demonstrated an analgesic effect comparable with that of commercial intramuscular injected SDE formulation (IM SDE), with only 15 % of the drug dosage. The inclusion of supplemental NA in the exterior gel (PA12-Gel + NA) provided rapid drug onset owing to swift NA dispersion, addressing acute pain within hours along with prolonged analgesic effects. Our findings suggest that this amphiphilic formulation significantly enhanced postoperative pain management in terms of safety and efficacy.


Subject(s)
Analgesics, Opioid , Drug Carriers , Drug Liberation , Gels , Nalbuphine , Pain, Postoperative , Poloxamer , Rats, Sprague-Dawley , Nalbuphine/administration & dosage , Pain, Postoperative/drug therapy , Animals , Male , Poloxamer/chemistry , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/chemistry , Drug Carriers/chemistry , Rats , Lipids/chemistry , Particle Size , Nanostructures/administration & dosage , Nanostructures/chemistry , Esters/chemistry
4.
Sci Rep ; 14(1): 13352, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858467

ABSTRACT

Liver cancer ranks as the fifth leading cause of cancer-related death globally. Direct intratumoral injections of anti-cancer therapeutics may improve therapeutic efficacy and mitigate adverse effects compared to intravenous injections. Some challenges of intratumoral injections are that the liquid drug formulation may not remain localized and have unpredictable volumetric distribution. Thus, drug delivery varies widely, highly-dependent upon technique. An X-ray imageable poloxamer 407 (POL)-based drug delivery gel was developed and characterized, enabling real-time feedback. Utilizing three needle devices, POL or a control iodinated contrast solution were injected into an ex vivo bovine liver. The 3D distribution was assessed with cone beam computed tomography (CBCT). The 3D distribution of POL gels demonstrated localized spherical morphologies regardless of the injection rate. In addition, the gel 3D conformal distribution could be intentionally altered, depending on the injection technique. When doxorubicin (DOX) was loaded into the POL and injected, DOX distribution on optical imaging matched iodine distribution on CBCT suggesting spatial alignment of DOX and iodine localization in tissue. The controllability and localized deposition of this formulation may ultimately reduce the dependence on operator technique, reduce systemic side effects, and facilitate reproducibility across treatments, through more predictable standardized delivery.


Subject(s)
Cone-Beam Computed Tomography , Doxorubicin , Drug Delivery Systems , Hydrogels , Needles , Poloxamer , Hydrogels/chemistry , Animals , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Delivery Systems/methods , Poloxamer/chemistry , Cattle , Cone-Beam Computed Tomography/methods , Liver/diagnostic imaging , Liver/metabolism
5.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 40: e20240002, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862271

ABSTRACT

OBJECTIVE: Raloxifene hydrochloride (RLX) is used extensively in the treatment of osteoporosis, only 2% of RLX's bioavailability remains after a significant first pass metabolism. Besides coming from BCS class II, RLX is not very soluble in water. Thus, the goal of the current study was to improve RLX solubility by creating an inclusion complex using ß cyclodextrin (ß-CD) as a carrier and solid dispersion with Poloxamer 407. METHODS: Inclusion complex and solid dispersion were made using a variety of techniques, including kneading, co-precipitation, and physical mixing and solid dispersion using different drug to carrier ratios (1:1, 1:2 and 1:3). RESULTS: Inclusion complex made using the co-precipitation method had shown 9-fold improvements in water solubility when compared with plain RLX. In order to assess the optimized complex's compatibility, thermal analysis, and crystallinity, X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopy were used. The XRD and DSC study's results indicated that RLX changed from a crystalline to an amorphous state. IC-6 exhibits effective water solubility based on the outcome. However, upon comparison of the two techniques, the ß-CD complexation method shown an impressive rise in drug solubility when compared to solid dispersion.


Subject(s)
Biological Availability , Raloxifene Hydrochloride , Solubility , beta-Cyclodextrins , Raloxifene Hydrochloride/chemistry , Raloxifene Hydrochloride/pharmacokinetics , beta-Cyclodextrins/chemistry , Animals , Poloxamer/chemistry , Drug Carriers/chemistry
6.
AAPS PharmSciTech ; 25(6): 144, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918282

ABSTRACT

The current treatment for oral inflammatory ulcerative diseases has limitations. In situ forming hydrogels have shown great potential to deliver therapeutic substances for drug delivery to the buccal cavity. This study aimed to prepare and characterize lipid- and surfactant-based mixed micelle in situ gel (MIG) and evaluate whether it can offer more favorable properties than the in situ gel for effective treatment of the disease. Dexamethasone was incorporated into the MIGs particles, based on Poloxamer 407 and chitosan. The lower gelation time at 37 ℃ was considered a criterion to select superior formulations among the different lipid- and surfactant-based candidates. Further characterization was performed to evaluate the opted formulations regarding morphology, physical stability, rheology, texture, and release profile. All formulations were thermoresponsive and had a shorter gelation time as the temperature increased. Dexamethasone was released in a highly controlled manner, and morphological evaluation revealed that the mixed micelle in situ gels had spherical nanoparticles. Thixotropic behavior was observed in all MIGs, indicating a prolonged retention time of the formulation after oral administration. This study has shown that among different MIGs, the one with oleic acid is a more promising candidate than the in situ gel and other MIGs for drug delivery to the buccal cavity.


Subject(s)
Chitosan , Dexamethasone , Drug Delivery Systems , Drug Liberation , Gels , Micelles , Poloxamer , Dexamethasone/administration & dosage , Dexamethasone/chemistry , Chitosan/chemistry , Gels/chemistry , Drug Delivery Systems/methods , Poloxamer/chemistry , Surface-Active Agents/chemistry , Chemistry, Pharmaceutical/methods , Hydrogels/chemistry , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Nanoparticles/chemistry , Drug Carriers/chemistry , Rheology/methods , Oral Ulcer/drug therapy , Administration, Oral , Lipids/chemistry , Oleic Acid/chemistry
7.
J Control Release ; 371: 101-110, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782065

ABSTRACT

Vaginal drug delivery is often preferred over systemic delivery to reduce side effects and increase efficacy in treating diseases and conditions of the female reproductive tract (FRT). Current vaginal products have drawbacks, including spontaneous ejection of drug-eluting rings and unpleasant discharge from vaginal creams. Here, we describe the development and characterization of a hypotonic, gel-forming, Pluronic-based delivery system for vaginal drug administration. The rheological properties were characterized with and without common hydrogel polymers to demonstrate the versatility. Both qualitative and quantitative approaches were used to determine the Pluronic F127 concentration below the critical gel concentration (CGC) that was sufficient to achieve gelation when formulated to be hypotonic to the mouse vagina. The hypotonic, gel-forming formulation was found to form a thin, uniform gel layer along the vaginal epithelium in mice, in contrast to the rapidly forming conventional gelling formulation containing polymer above the CGC. When the hypotonic, gel-forming vehicle was formulated in combination with a progesterone nanosuspension (ProGel), equivalent efficacy was observed in the prevention of chemically-induced preterm birth (PTB) compared to commercial Crinone® vaginal cream. Further, ProGel showed marked benefits in reducing unpleasant discharge, reducing product-related toxicity, and improving compatibility with vaginal bacteria in vitro. A hypotonic, gel-forming delivery system may be a viable option for therapeutic delivery to the FRT.


Subject(s)
Drug Delivery Systems , Gels , Poloxamer , Vagina , Female , Animals , Administration, Intravaginal , Poloxamer/chemistry , Vagina/drug effects , Progesterone/administration & dosage , Progesterone/chemistry , Rheology , Mice , Vaginal Creams, Foams, and Jellies/administration & dosage , Pregnancy
8.
Langmuir ; 40(23): 12159-12166, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38815139

ABSTRACT

Microbial biological control agents are believed to be a potential alternative to classical fertilizers to increase the sustainability of agriculture. In this work, the formulation of Trichoderma afroharzianum T22 (T22) spores with carboxymethyl cellulose (CMC) and Pluronic F-127 (PF-127) solutions was investigated. Rheological and microscopical analysis were performed on T22-based systems at three different CMC/PF-127 concentrations, showing that polymer aggregates tend to surround T22 spores, without viscosity, and the viscoelastic properties of the formulations were affected. Contact angle measurements showed the ability of PF-127 to increase the wettability of the systems, and the effect of the formulations on the viability of the spores was evaluated. The viability of the spores was higher over 21 days in all the formulations, compared to the control in water, at 4 and 25 °C. Finally, the effectiveness of the formulations on sweet basil was estimated by greenhouse tests. The results revealed a beneficial effect of the CMC/PF-127 mixture, but none on the formulation with T22. The data show the potential of CMC/PF-127 mixtures for the future design of microorganism-based formulations.


Subject(s)
Carboxymethylcellulose Sodium , Poloxamer , Trichoderma , Poloxamer/chemistry , Trichoderma/chemistry , Carboxymethylcellulose Sodium/chemistry , Agriculture , Spores, Fungal/chemistry
9.
Proc Natl Acad Sci U S A ; 121(22): e2403013121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38781207

ABSTRACT

Biomolecular condensates are cellular compartments that concentrate biomolecules without an encapsulating membrane. In recent years, significant advances have been made in the understanding of condensates through biochemical reconstitution and microscopic detection of these structures. Quantitative visualization and biochemical assays of biomolecular condensates rely on surface passivation to minimize background and artifacts due to condensate adhesion. However, the challenge of undesired interactions between condensates and glass surfaces, which can alter material properties and impair observational accuracy, remains a critical hurdle. Here, we introduce an efficient, broadly applicable, and simple passivation method employing self-assembly of the surfactant Pluronic F127 (PF127). The method greatly reduces nonspecific binding across a range of condensates systems for both phase-separated droplets and biomolecules in dilute phase. Additionally, by integrating PF127 passivation with the Biotin-NeutrAvidin system, we achieve controlled multipoint attachment of condensates to surfaces. This not only preserves condensate properties but also facilitates long-time fluorescence recovery after photobleaching imaging and high-precision single-molecule analyses. Using this method, we have explored the dynamics of polySIM molecules within polySUMO/polySIM condensates at the single-molecule level. Our observations suggest a potential heterogeneity in the distribution of available polySIM-binding sites within the condensates.


Subject(s)
Avidin , Biomolecular Condensates , Biotin , Poloxamer , Biomolecular Condensates/chemistry , Biomolecular Condensates/metabolism , Poloxamer/chemistry , Biotin/chemistry , Biotin/metabolism , Avidin/chemistry , Avidin/metabolism , Fluorescence Recovery After Photobleaching/methods , Surface Properties , Surface-Active Agents/chemistry , Surface-Active Agents/metabolism , Single Molecule Imaging/methods
10.
Int J Pharm ; 659: 124255, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38782151

ABSTRACT

With the aim to find an alternative vehicle to the most used thermosensitive hydrogels for efficient nanotechnology-based nose-to-brain delivery approach for Parkinson's disease (PD) treatment, in this work we evaluated the Dopamine (DA) and the antioxidant grape seed-derived pro-anthocyanidins (Grape Seed Extract, GSE) co-loaded solid lipid nanoparticles (SLNs) put in slight viscous dispersions (SVDs). These SVDs were prepared by dispersion in water at low concentrations of mucoadhesive polymers to which SLN pellets were added. For the purpose, we investigated two polymeric blends, namely Poloxamer/Carbopol (PF-127/Carb) and oxidized alginate/Hydroxypropylmethyl cellulose (AlgOX/HPMC). Rheological studies showed that the two fluids possess Newtonian behaviour with a viscosity slightly higher that water. The pH values of the SVDs were mainly within the normal range of nasal fluid as well as almost no osmotic effect was associated to both SVDs. All the SVDs were capable to provide DA permeation through nasal porcine mucosa. Moreover, it was found that PF-127/Carb blend possesses penetration enhancer capability better than the Alg OX/HPMC combination. Flow cytometry studies demonstrated the uptake of viscous liquids incorporating fluorescent SLNs by human nasal RPMI 2650 cell in time-dependent manner. In conclusion, the SVD formulations may be considered promising alternatives to thermosensitive hydrogels strategy. Moreover, in a broader perspective, such SVD formulations may be also hopeful for treating various neurological diseases beyond PD treatment.


Subject(s)
Administration, Intranasal , Dopamine , Grape Seed Extract , Nanoparticles , Nasal Mucosa , Nanoparticles/chemistry , Grape Seed Extract/chemistry , Grape Seed Extract/administration & dosage , Animals , Viscosity , Swine , Dopamine/administration & dosage , Dopamine/chemistry , Nasal Mucosa/metabolism , Nasal Mucosa/drug effects , Humans , Poloxamer/chemistry , Drug Carriers/chemistry , Rheology , Polymers/chemistry , Lipids/chemistry , Liposomes
11.
Int J Pharm ; 659: 124277, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38802027

ABSTRACT

The application of 3D printing technology in the delivery of macromolecules, such as proteins and enzymes, is limited by the lack of suitable inks. In this study, we report the development of novel inks for 3D printing of constructs containing proteins while maintaining the activity of the proteins during and after printing. Different ink formulations containing Pluronic F-127 (20-35 %, w/v), trehalose (2-10 %, w/v) or mannitol, poly (ethylene glycol) diacrylate (PEGDA) (0 or 10 %, w/w), and diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO, 0 or 0.2 mg/mL) were prepared for 3D-microextrusion printing. The F2 formulation that contained ß-galactosidase (ß-gal) as a model enzyme, Pluronic F-127 (30 %), and trehalose (10 %) demonstrated the desired viscosity, printability, and dose flexibility. The shear-thinning property of the F2 formulation enabled the printing of ß-gal containing constructs with a good peak force during extrusion. After 3D printing, the enzymatic activity of the ß-gal in the constructs was maintained for an extended period, depending on the construct design and storage conditions. For instance, there was a 50 % reduction in ß-gal activity in the two-layer constructs, but only a 20 % reduction in the four-layer construct (i.e., 54.5 ± 1.2 % and 82.7 ± 9.9 %, respectively), after 4 days of storage. The ß-gal activity in constructs printed from the F2 formulation was maintained for up to 20 days when stored in sealed bags at room temperatures (21 ± 2 °C), but not when stored unsealed in the same conditions (e.g., ∼60 % activity loss within 7 days). The ß-gal from constructs printed from F2 started to release within 5 min and reached 100 % after 20 min. With the design flexibility offered by the 3D printing, the ß-gal release from the constructs was delayed to 3 h by printing a backing layer of ß-gal-free F5 ink on the constructs printed from the F2 ink. Finally, ovalbumin as an alternative protein was also incorporated in similar ink compositions. Ovalbumin exhibited a release profile like that of the ß-gal, and the release can also be modified with different shape design and/or ink composition. In conclusion, ink formulations that possess desirable properties for 3D printing of protein-containing constructs while maintaining the protein activity during and after printing were developed.


Subject(s)
Ink , Poloxamer , Polyethylene Glycols , Printing, Three-Dimensional , Trehalose , beta-Galactosidase , beta-Galactosidase/chemistry , Poloxamer/chemistry , Polyethylene Glycols/chemistry , Trehalose/chemistry , Viscosity , Excipients/chemistry , Drug Delivery Systems/methods , Mannitol/chemistry , Technology, Pharmaceutical/methods , Phosphines/chemistry
12.
Int J Pharm ; 659: 124263, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38815639

ABSTRACT

Periodontitis is a multifactorial inflammatory disease characterized by severe alveolar bone damage and attachment loss. The imbalance of T help 17 (Th17) / regulatory T cells (Treg) induces excessive interleukin (IL)-17, which leads to alveolar bone damage and aggravates the development of periodontitis. Therefore, we proposed a therapeutic strategy to restore Th17/Treg homeostasis by interfering reactive oxygen species (ROS)-macrophage polarization cascade using active targeting microemulsions-based thermosensitive hydrogel. Folic acid-modified quercetin-loaded microemulsions (FA-Qu-MEs) were dispersed in poloxamer 407 and poly(N-isopropylacrylamide) matrix of hydrogel (FA-Qu-MEs@Gel). FA-Qu-MEs@Gel could be locally injected into the periodontal pocket and sustainedly release drugs. FA-Qu-MEs exhibited excellent ROS scavenging potency by targeting macrophages, resulting M1 phenotype macrophage from to M2 phenotype macrophage. Subsequently, the phenotypic changes of macrophages lead to decreased expression of IL-6 and tumor necrosis factor-α, which inhibited activated Th17, while IL-10 secreted by M2 macrophages promoted Treg differentiation. Finally, the restored Th17/Treg homeostasis reduced the level of IL-17 to accelerate alveolar bone regeneration. This study deigns a novel system that promote alveolar bone regeneration by remodeling Th17/Treg homeostasis via regulating ROS-macrophages polarization cascade for periodontitis treatment.


Subject(s)
Emulsions , Homeostasis , Hydrogels , Macrophages , Periodontitis , Reactive Oxygen Species , T-Lymphocytes, Regulatory , Th17 Cells , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Reactive Oxygen Species/metabolism , Periodontitis/drug therapy , Periodontitis/immunology , Animals , Th17 Cells/drug effects , Th17 Cells/immunology , Hydrogels/administration & dosage , Homeostasis/drug effects , Macrophages/drug effects , Macrophages/immunology , Mice , Male , Poloxamer/chemistry , RAW 264.7 Cells , Acrylic Resins/chemistry , Bone Regeneration/drug effects , Mice, Inbred C57BL
13.
Int J Biol Macromol ; 271(Pt 2): 132742, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821297

ABSTRACT

Injectable hydrogels, offering adaptable drug delivery of growth factors (GFs), hold promise for treating bone defects. To optimize osteogenic efficacy, the release of GFs should mirror the natural bone healing. We developed an injectable thermo-responsive hydrogel/microgels platform for dual GF delivery for bone regeneration. Stromal cell-derived factor-1 alpha (SDF-1a) and the Methacrylate Gelatin (GelMA) microgels which encapsulated insulin-like growth factor-1 (IGF-1) loaded liposomes (Ls) were introduced into Poloxamer 407 (P407) hydrogel matrix. This system achieved the biomimetic release profile of SDF-1a and IGF-1, which covered the early stage from day 1 to 7 and the continuous stage from day 5 to 21, respectively. In vitro study confirmed the enhanced migration, osteogenic biomarker expression, and matrix mineralization of the bone marrow mesenchymal stem cells (BMSCs) co-cultivated with the dual GFs delivering hydrogel/microgels. Transcriptome sequencing revealed that the potential mechanism was associated with mitogen-activated protein kinase (MAPK) signaling activation and its downstream ribosomal protein S6 kinase 2 (RSK2) upregulation. In a critical-sized calvarial defect model in Sprague-Dawley (SD) rats, the injectable hydrogel/microgels system promoted significant bone regeneration. Collectively, our study suggested the current hydrogel/microgels system with the biomimetic release of SDF-1a and IGF-1 efficiently promoted bone regeneration, informing the future development of GF delivery systems intended for bone regeneration therapies.


Subject(s)
Bone Regeneration , Chemokine CXCL12 , Gelatin , Hydrogels , Insulin-Like Growth Factor I , Poloxamer , Animals , Bone Regeneration/drug effects , Insulin-Like Growth Factor I/pharmacology , Chemokine CXCL12/pharmacology , Chemokine CXCL12/administration & dosage , Gelatin/chemistry , Hydrogels/chemistry , Poloxamer/chemistry , Rats , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Rats, Sprague-Dawley , Methacrylates/chemistry , Osteogenesis/drug effects , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Drug Liberation , Injections , Male
14.
Methods ; 228: 1-11, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759909

ABSTRACT

The necessity of animal-free performance tests for novel ophthalmic formulation screening is challenging. For this, we developed and validated a new device to simulate the dynamics and physical-chemical barriers of the eye for in vitro performance tests of topic ophthalmic formulations. The OphthalMimic is a 3D-printed device with an artificial lacrimal flow, a cul-de-sac area, a support base, and a simulated cornea comprised of a polymeric membrane containing poly-vinyl alcohol 10 % (w/v), gelatin 2.5 % (w/v), and different proportions of mucin and poloxamer, i.e., 1:1 (M1), 1:2 (M2), and 2:1 (M3) w/v, respectively. The support base is designed to move between 0° and 50° to replicate the movement of an eyelid. We challenged the model by testing the residence performance of poloxamer®407 16 % and poloxamer®407 16 % + chitosan 1 % (PLX16CS10) gels containing fluconazole. The test was conducted with a simulated tear flow of 1.0 mL.min-1 for 5 min. The OphthalMimic successfully distinguished PLX16 and PLX16C10 formulations based on their fluconazole drainage (M1: 65 ± 14 % and 27 ± 10 %; M2: 58 ± 6 % and 38 ± 9 %; M3: 56 ± 5 % and 38 ± 18 %). In conclusion, the OphthalMimic is a promising tool for comparing the animal-free performance of ophthalmic formulations.


Subject(s)
Ophthalmic Solutions , Poloxamer , Poloxamer/chemistry , Ophthalmic Solutions/chemistry , Administration, Ophthalmic , Fluconazole/administration & dosage , Printing, Three-Dimensional , Cornea/drug effects , Cornea/metabolism , Animals , Chitosan/chemistry , Animal Testing Alternatives/methods , Tears/chemistry , Humans , Gelatin/chemistry
15.
Otol Neurotol ; 45(6): e490-e493, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38773842

ABSTRACT

OBJECTIVE: To present and evaluate the treatment of ciprofloxacin-resistant Pseudomonas mastoid cavity otorrhea with a ceftazidime thermosensitive poloxamer gel. STUDY DESIGN: A retrospective clinical capsule report. PATIENTS: Three patients diagnosed with ciprofloxacin-resistant Pseudomonas otorrhea in the setting of a previous canal-wall-down mastoidectomy between March 2019 and June 2023 visiting our tertiary care institution were retrospectively reviewed. INTERVENTION: Application of a 2% ceftazidime thermosensitive poloxamer gel to mastoid cavity. MAIN OUTCOME MEASURES: No evidence of disease during microscopic inspection of the ear within a month of initial treatment or bacterial eradication on subsequent culture. RESULTS: Two patients had complete resolution of symptoms and achieved a safe and dry ear after topical application of the hydrogel. The second patient had pseudomonal eradication on culture, but persistent otorrhea due to other multidrug-resistant bacteria and an anatomically unfavorable mastoid cavity, which ultimately resolved after revision surgery. CONCLUSIONS: This small case series suggests that topical treatment of mastoid cavity otorrhea with a 2% ceftazidime poloxomer gel is a potential therapeutic avenue in patients with ciprofloxacin-resistant Pseudomonas .


Subject(s)
Anti-Bacterial Agents , Ceftazidime , Ciprofloxacin , Gels , Poloxamer , Pseudomonas Infections , Humans , Ciprofloxacin/therapeutic use , Ciprofloxacin/administration & dosage , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Ceftazidime/therapeutic use , Ceftazidime/administration & dosage , Female , Male , Middle Aged , Retrospective Studies , Mastoid/surgery , Drug Resistance, Bacterial , Otitis Media with Effusion/drug therapy , Otitis Media with Effusion/microbiology , Otitis Media with Effusion/surgery , Aged , Adult , Administration, Topical
16.
ACS Appl Bio Mater ; 7(5): 2836-2850, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38717017

ABSTRACT

High-altitude regions, cold deserts, permafrost regions, and the polar region have some of the severest cold conditions on earth and pose immense perils of cold injuries to exposed individuals. Accidental and unintended exposures to severe cold, either unintentionally or due to occupational risks, can greatly increase the risk of serious conditions including hypothermia, trench foot, and cold injuries like frostbite. Cold-induced vasoconstriction and intracellular/intravascular ice crystal formation lead to hypoxic conditions at the cellular level. The condition is exacerbated in individuals having inadequate and proper covering and layering, particularly when large area of the body are exposed to extremely cold environments. There is a paucity of preventive and therapeutic pharmacological modalities that have been explored for managing and treating cold injuries. Given this, an efficient modality that can potentiate the healing of frostbite was investigated by studying various complex pathophysiological changes that occur during severe cold injuries. In the current research, we report the effectiveness and healing properties of a standardized formulation, i.e., a herbosomal-loaded PEG-poloxamer topical formulation (n-HPTF), on frostbite. The intricate mechanistic pathways modulated by the novel formulation have been elucidated by studying the pathophysiological sequelae that occur following severe cold exposures leading to frostbite. The results indicate that n-HPTF ameliorates the outcome of frostbite, as it activates positive sensory nerves widely distributed in the epidermis transient receptor potential vanilloid 1 (TRPV1), significantly (p < 0.05) upregulates cytokeratin-14, promotes angiogenesis (VEGF-A), prominently represses the expression of thromboxane formation (TXA2), and significantly (p < 0.05) restores levels of enzymatic (glutathione reductase, superoxide dismutase, and catalase) and nonenzymatic antioxidants (glutathione). Additionally, n-HPTF attenuates oxidative stress and the expression of inflammatory proteins PGF-2α, NFκB-p65, TNF-α, IL-6, IL-1ß, malondialdehyde (MDA), advanced oxidative protein products (AOPP), and protein carbonylation (PCO). Masson's Trichrome staining showed that n-HPTF stimulates cellular proliferation, and increases collagen fiber deposition, which significantly (p < 0.05) promotes the healing of frostbitten tissue, as compared to control. We conclude that protection against severe cold injuries by n-HPTF is mediated via modulation of pathways involving TRPV1, VEGF-A, TXA2, redox homeostasis, and inflammatory cascades. The study is likely to have widespread implications for the prophylaxis and management of moderate-to-severe frostbite conditions.


Subject(s)
Homeostasis , Poloxamer , Polyethylene Glycols , TRPV Cation Channels , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor A/metabolism , TRPV Cation Channels/metabolism , Animals , Poloxamer/chemistry , Poloxamer/pharmacology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Homeostasis/drug effects , Oxidation-Reduction , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Rats , Materials Testing , Cold Injury/metabolism , Cold Injury/drug therapy , Particle Size , Inflammation/drug therapy , Inflammation/metabolism , Male , Liposomes/chemistry , Humans , Administration, Topical , Frostbite/metabolism , Frostbite/drug therapy
17.
ACS Nano ; 18(22): 14441-14456, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38758604

ABSTRACT

The active targeting drug delivery system based on special types of endogenous cells such as macrophages has emerged as a promising strategy for tumor therapy, owing to its tumor homing property and biocompatibility. In this work, the active tumor-targeting drug delivery system carrying doxorubicin-loaded nanoparticles (DOX@MPF127-MCP-1, DMPM) on macrophage (RAW264.7) surfaces via the mediation of interaction with the CCR2/MCP-1 axis was exploited. Initially, the amphiphilic block copolymer Pluronic F127 (PF127) was carboxylated to MPF127 at the hydroxyl terminus. Subsequently, MPF127 was modified with MCP-1 peptide to prepare MPF127-MCP-1 (MPM). The DOX was wrapped in MPM to form DMPM nanomicelles (approximately 100 nm) during the self-assembly process of MPM. The DMPM spontaneously bound to macrophages (RAW264.7), which resulted in the construction of an actively targeting delivery system (macrophage-DMPM, MA-DMPM) in vitro and in vivo. The DOX in MA-DMPM was released in the acidic tumor microenvironment (TME) in a pH-responsive manner to increase DOX accumulation and enhance the tumor treatment effect. The ratio of MA-DMPM homing reached 220% in vitro compared with the control group, indicating that the MA-DMPM was excellently capable of tumor-targeting delivery. In in vivo experiments, nonsmall cell lung cancer cell (NCI-H1299) tumor models were established. The results of the fluorescence imaging system (IVIS) showed that MA-DMPM demonstrated tremendous tumor-targeting ability in vivo. The antitumor effects of MA-DMPM in vivo indicated that the proportion of tumor cell apoptosis in the DMPM-treated group was 63.33%. The findings of the tumor-bearing mouse experiment proved that MA-DMPM significantly suppressed tumor cell growth, which confirmed its immense potential and promising applications in tumor therapy.


Subject(s)
Doxorubicin , Macrophages , Nanoparticles , Poloxamer , Tumor Microenvironment , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Animals , Tumor Microenvironment/drug effects , Mice , Poloxamer/chemistry , Nanoparticles/chemistry , Macrophages/metabolism , Macrophages/drug effects , RAW 264.7 Cells , Drug Delivery Systems , Humans , Drug Carriers/chemistry , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , Mice, Inbred BALB C , Chemokine CCL2/metabolism
18.
Int J Biol Macromol ; 270(Pt 1): 132377, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759412

ABSTRACT

Developing new materials that could identify fingerprint using the naked eye and observe the level 3 microscopic details is challenging. Here, we designed a novel hydrochromic and piezochromic dual-responsive optical film, which achieved the visual transparency transition. The performances of hydrochromic and piezochromic responses from high transparency to opaque whiteness were attributed to the introduction of poloxamer. The hygroscopic swelling of the disordered micelles led to light scattering, causing the hydrochromic response. The piezochromic response may be ascribed to the microcracks in the fragments of poloxamer crystals, which changed the refractive index of light. The fascinating combination of hydrochromic and piezochromic response was effectively applied in fingerprint identification. Hydrochromic response accurately recognized sweat pores, and piezochromic response could gradually reveal the ridges and valleys according to the different color of imprinted fingerprints. The film could identify fake fingerprints based on the differences in sweat pores between fake fingerprints and living fingers. More importantly, the film could easily detected not only the clear ridges but also the detailed sweat pores using the naked eye, indicating that the film has profound research significance in fingerprint analysis and liveness fingerprint detection.


Subject(s)
Cellulose , Dermatoglyphics , Poloxamer , Poloxamer/chemistry , Cellulose/chemistry , Cellulose/analogs & derivatives , Humans
19.
Carbohydr Polym ; 337: 122143, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710552

ABSTRACT

Cyclodextrins (CDs) are essential in the pharmaceutical industry and have long been used as food and pharmaceutical additives. CD-based interlocked molecules, such as rotaxanes, polyrotaxanes, catenanes, and polycatenanes, have been synthesized and have attracted considerable attention in supramolecular chemistry. Among them, CD polyrotaxanes have been employed as slide-ring materials and biomaterials. CD polycatenanes are new materials; therefore, to date, no examples of applied research on CD polycatenanes have been reported. Consequently, we expect that applied research on CD polycatenanes will accelerate in the future. This review article summarizes the syntheses and structural analyses of CD polyrotaxanes and polycatenanes to facilitate their applications in the pharmaceutical industry. We believe that this review will promote further research on CD-based interlocked molecules.


Subject(s)
Cyclodextrins , Poloxamer , Rotaxanes , Rotaxanes/chemistry , Rotaxanes/chemical synthesis , Cyclodextrins/chemistry , Cyclodextrins/chemical synthesis , Catenanes/chemistry , Catenanes/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis
20.
J Colloid Interface Sci ; 670: 234-245, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38761576

ABSTRACT

The clinical translation of photosensitizers based on ruthenium(II) polypyridyl complexes (RPCs) in photodynamic therapy of cancer faces several challenges. To address these limitations, we conducted an investigation to assess the potential of a cubosome formulation stabilized in water against coalescence utilizing a polyphosphoester analog of Pluronic F127 as a stabilizer and loaded with newly synthesized RPC-based photosensitizer [Ru(dppn)2(bpy-morph)](PF6)2 (bpy-morph = 2,2'-bipyridine-4,4'-diylbis(morpholinomethanone)), PS-Ru. The photophysical characterization of PS-Ru revealed its robust capacity to induce the formation of singlet oxygen (1O2). Furthermore, the physicochemical analysis of the PS-Ru-loaded cubosomes dispersion demonstrated that the encapsulation of the photosensitizer within the nanoparticles did not disrupt the three-dimensional arrangement of the lipid bilayer. The biological tests showed that PS-Ru-loaded cubosomes exhibited significant phototoxic activity when exposed to the light source, in stark contrast to empty cubosomes and to the same formulation without irradiation. This promising outcome suggests the potential of the formulation in overcoming the drawbacks associated with the clinical use of RPCs in photodynamic therapy for anticancer treatments.


Subject(s)
Lung Neoplasms , Photochemotherapy , Photosensitizing Agents , Ruthenium , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Humans , Ruthenium/chemistry , Ruthenium/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Particle Size , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Nanoparticles/chemistry , Cell Survival/drug effects , Poloxamer/chemistry , Drug Screening Assays, Antitumor , Surface Properties , A549 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...