Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.500
Filter
1.
AAPS PharmSciTech ; 25(5): 95, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710921

ABSTRACT

Verapamil hydrochloride (VRP), an antihypertensive calcium channel blocker drug has limited bioavailability and short half-life when taken orally. The present study was aimed at developing cubosomes containing VRP for enhancing its bioavailability and targeting to brain for cluster headache (CH) treatment as an off-label use. Factorial design was conducted to analyze the impact of different components on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and percent drug release. Various in-vitro characterizations were performed followed by pharmacokinetic and brain targeting studies. The results revealed the significant impact of glyceryl monooleate (GMO) on increasing EE%, PS, and ZP of cubosomes with a negative influence on VRP release. The remarkable effect of Poloxamer 407 (P407) on decreasing EE%, PS, and ZP of cubosomes was observed besides its influence on accelerating VRP release%. The DSC thermograms indicated the successful entrapment of the amorphous state of VRP inside the cubosomes. The design suggested an optimized formulation containing GMO (50% w/w) and P407 (5.5% w/w). Such formulation showed a significant increase in drug permeation through nasal mucosa with high Er value (2.26) when compared to VRP solution. Also, the histopathological study revealed the safety of the utilized components used in the cubosomes preparation. There was a significant enhancement in the VRP bioavailability when loaded in cubosomes owing to its sustained release favored by its direct transport to brain. The I.N optimized formulation had greater BTE% and DTP% at 183.53% and 90.19%, respectively in comparison of 41.80% and 59% for the I.N VRP solution.


Subject(s)
Administration, Intranasal , Brain , Drug Delivery Systems , Drug Liberation , Glycerides , Nasal Mucosa , Particle Size , Verapamil , Administration, Intranasal/methods , Animals , Brain/metabolism , Brain/drug effects , Drug Delivery Systems/methods , Verapamil/administration & dosage , Verapamil/pharmacokinetics , Tissue Distribution , Glycerides/chemistry , Nasal Mucosa/metabolism , Biological Availability , Rats , Calcium Channel Blockers/pharmacokinetics , Calcium Channel Blockers/administration & dosage , Poloxamer/chemistry , Male , Chemistry, Pharmaceutical/methods , Rats, Wistar , Nanoparticles/chemistry
2.
Proc Natl Acad Sci U S A ; 121(22): e2403013121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38781207

ABSTRACT

Biomolecular condensates are cellular compartments that concentrate biomolecules without an encapsulating membrane. In recent years, significant advances have been made in the understanding of condensates through biochemical reconstitution and microscopic detection of these structures. Quantitative visualization and biochemical assays of biomolecular condensates rely on surface passivation to minimize background and artifacts due to condensate adhesion. However, the challenge of undesired interactions between condensates and glass surfaces, which can alter material properties and impair observational accuracy, remains a critical hurdle. Here, we introduce an efficient, broadly applicable, and simple passivation method employing self-assembly of the surfactant Pluronic F127 (PF127). The method greatly reduces nonspecific binding across a range of condensates systems for both phase-separated droplets and biomolecules in dilute phase. Additionally, by integrating PF127 passivation with the Biotin-NeutrAvidin system, we achieve controlled multipoint attachment of condensates to surfaces. This not only preserves condensate properties but also facilitates long-time fluorescence recovery after photobleaching imaging and high-precision single-molecule analyses. Using this method, we have explored the dynamics of polySIM molecules within polySUMO/polySIM condensates at the single-molecule level. Our observations suggest a potential heterogeneity in the distribution of available polySIM-binding sites within the condensates.


Subject(s)
Avidin , Biomolecular Condensates , Biotin , Poloxamer , Biomolecular Condensates/chemistry , Biomolecular Condensates/metabolism , Poloxamer/chemistry , Biotin/chemistry , Biotin/metabolism , Avidin/chemistry , Avidin/metabolism , Fluorescence Recovery After Photobleaching/methods , Surface Properties , Surface-Active Agents/chemistry , Surface-Active Agents/metabolism , Single Molecule Imaging/methods
3.
Bull Exp Biol Med ; 176(5): 626-630, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38730109

ABSTRACT

We studied the antitumor activity of the combined use of local proton irradiation in two modes (10 and 31 Gy) with preliminary intra-tumoral injection of two types of bismuth nanoparticles differing in surface coating: coated with the amphiphilic molecule Pluronic-F127 or Silane-PEG (5 kDa)-COOH polymer. Nanoparticles were used in doses of 0.75 and 1.5 mg/mouse. In two independent series on experimental tumor model (solid Ehrlich carcinoma), bismuth nanoparticles of both modifications injected directly into the tumor enhanced the antitumor effects of proton therapy. Moreover, the radiosensitizing effect of bismuth nanoparticles administered via this route increased with the increasing the doses of nanoparticles and the doses of radiation exposure. In our opinion, these promising data obtained for the first time extend the possibilities of treating malignant neoplasms.


Subject(s)
Bismuth , Carcinoma, Ehrlich Tumor , Poloxamer , Proton Therapy , Carcinoma, Ehrlich Tumor/radiotherapy , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Animals , Bismuth/therapeutic use , Bismuth/chemistry , Mice , Proton Therapy/methods , Poloxamer/chemistry , Radiation-Sensitizing Agents/therapeutic use , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacology , Polyethylene Glycols/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Nanoparticles/chemistry , Female
4.
ACS Appl Bio Mater ; 7(5): 2836-2850, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38717017

ABSTRACT

High-altitude regions, cold deserts, permafrost regions, and the polar region have some of the severest cold conditions on earth and pose immense perils of cold injuries to exposed individuals. Accidental and unintended exposures to severe cold, either unintentionally or due to occupational risks, can greatly increase the risk of serious conditions including hypothermia, trench foot, and cold injuries like frostbite. Cold-induced vasoconstriction and intracellular/intravascular ice crystal formation lead to hypoxic conditions at the cellular level. The condition is exacerbated in individuals having inadequate and proper covering and layering, particularly when large area of the body are exposed to extremely cold environments. There is a paucity of preventive and therapeutic pharmacological modalities that have been explored for managing and treating cold injuries. Given this, an efficient modality that can potentiate the healing of frostbite was investigated by studying various complex pathophysiological changes that occur during severe cold injuries. In the current research, we report the effectiveness and healing properties of a standardized formulation, i.e., a herbosomal-loaded PEG-poloxamer topical formulation (n-HPTF), on frostbite. The intricate mechanistic pathways modulated by the novel formulation have been elucidated by studying the pathophysiological sequelae that occur following severe cold exposures leading to frostbite. The results indicate that n-HPTF ameliorates the outcome of frostbite, as it activates positive sensory nerves widely distributed in the epidermis transient receptor potential vanilloid 1 (TRPV1), significantly (p < 0.05) upregulates cytokeratin-14, promotes angiogenesis (VEGF-A), prominently represses the expression of thromboxane formation (TXA2), and significantly (p < 0.05) restores levels of enzymatic (glutathione reductase, superoxide dismutase, and catalase) and nonenzymatic antioxidants (glutathione). Additionally, n-HPTF attenuates oxidative stress and the expression of inflammatory proteins PGF-2α, NFκB-p65, TNF-α, IL-6, IL-1ß, malondialdehyde (MDA), advanced oxidative protein products (AOPP), and protein carbonylation (PCO). Masson's Trichrome staining showed that n-HPTF stimulates cellular proliferation, and increases collagen fiber deposition, which significantly (p < 0.05) promotes the healing of frostbitten tissue, as compared to control. We conclude that protection against severe cold injuries by n-HPTF is mediated via modulation of pathways involving TRPV1, VEGF-A, TXA2, redox homeostasis, and inflammatory cascades. The study is likely to have widespread implications for the prophylaxis and management of moderate-to-severe frostbite conditions.


Subject(s)
Homeostasis , Poloxamer , Polyethylene Glycols , TRPV Cation Channels , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor A/metabolism , TRPV Cation Channels/metabolism , Animals , Poloxamer/chemistry , Poloxamer/pharmacology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Homeostasis/drug effects , Oxidation-Reduction , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Rats , Materials Testing , Cold Injury/metabolism , Cold Injury/drug therapy , Particle Size , Inflammation/drug therapy , Inflammation/metabolism , Male , Liposomes/chemistry , Humans , Administration, Topical , Frostbite/metabolism , Frostbite/drug therapy
5.
PLoS One ; 19(5): e0295849, 2024.
Article in English | MEDLINE | ID: mdl-38696491

ABSTRACT

INTRODUCTION: Microfluidic resistive pulse sensing (MRPS) can determine the concentration and size distribution of extracellular vesicles (EVs) by measuring the electrical resistance of single EVs passing through a pore. To ensure that the sample flows through the pore, the sample needs to contain a wetting agent, such as bovine serum albumin (BSA). BSA leaves EVs intact but occasionally results in unstable MRPS measurements. Here, we aim to find a new wetting agent by evaluating Poloxamer-188 and Tween-20. METHODS: An EV test sample was prepared using an outdated erythrocyte blood bank concentrate. The EV test sample was diluted in Dulbecco's phosphate-buffered saline (DPBS) or DPBS containing 0.10% BSA (w/v), 0.050% Poloxamer-188 (v/v) or 1.00% Tween-20 (v/v). The effect of the wetting agents on the concentration and size distribution of EVs was determined by flow cytometry. To evaluate the precision of sample volume determination with MRPS, the interquartile range (IQR) of the particles transit time through the pore was examined. To validate that DPBS containing Poloxamer-188 yields reliable MRPS measurements, the repeatability of MRPS in measuring blood plasma samples was examined. RESULTS: Flow cytometry results show that the size distribution of EVs in Tween 20, in contrast to Poloxamer-188, differs from the control measurements (DPBS and DPBS containing BSA). MRPS results show that Poloxamer-188 improves the precision of sample volume determination compared to BSA and Tween-20, because the IQR of the transit time of EVs in the test sample is 11 µs, which is lower than 56 µs for BSA and 16 µs for Tween-20. Furthermore, the IQR of the transit time of particles in blood samples with Poloxamer-188 are 14, 16, and 14 µs, which confirms the reliability of MRPS measurements. CONCLUSION: The solution of 0.050% Poloxamer-188 in DPBS does not lyse EVs and results in repeatable and unimpeded MRPS measurements.


Subject(s)
Extracellular Vesicles , Poloxamer , Poloxamer/chemistry , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Humans , Polysorbates/chemistry , Serum Albumin, Bovine/chemistry , Microfluidics/methods , Wettability , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Animals
6.
J Biomed Mater Res B Appl Biomater ; 112(5): e35405, 2024 May.
Article in English | MEDLINE | ID: mdl-38701384

ABSTRACT

The structure and handling properties of a P407 hydrogel-based bone substitute material (BSM) might be affected by different poloxamer P407 and silicon dioxide (SiO2) concentrations. The study aimed to compare the mechanical properties and biological parameters (bone remodeling, BSM degradation) of a hydroxyapatite: silica (HA)-based BSM with various P407 hydrogels in vitro and in an in vivo rat model. Rheological analyses for mechanical properties were performed on one BSM with an SiO2-enriched hydrogel (SPH25) as well on two BSMs with unaltered hydrogels in different gel concentrations (PH25 and PH30). Furthermore, the solubility of all BSMs were tested. In addition, 30 male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. Defects were filled randomly with PH30 (n = 15) or SPH25 (n = 15). Animals were sacrificed after 12 (n = 5 each), 21 (n = 5 each), and 63 days (n = 5 each). Histological evaluation and histomorphometrical quantification of new bone formation (NB;%), residual BSM (rBSM;%), and soft tissue (ST;%) was conducted. Rheological tests showed an increased viscosity and lower solubility of SPH when compared with the other hydrogels. Histomorphometric analyses in cancellous bone showed a decrease of ST in PH30 (p = .003) and an increase of NB (PH30: p = .001; SPH: p = .014) over time. A comparison of both BSMs revealed no significant differences. The addition of SiO2 to a P407 hydrogel-based hydroxyapatite BSM improves its mechanical stability (viscosity, solubility) while showing similar in vivo healing properties compared to PH30. Additionally, the SiO2-enrichment allows a reduction of poloxamer ratio in the hydrogel without impairing the material properties.


Subject(s)
Bone Substitutes , Durapatite , Hydrogels , Poloxamer , Rats, Wistar , Silicon Dioxide , Animals , Male , Poloxamer/chemistry , Poloxamer/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Durapatite/chemistry , Durapatite/pharmacology , Silicon Dioxide/chemistry , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Rats , Materials Testing , Rheology , Tibia/metabolism
7.
ACS Appl Bio Mater ; 7(5): 3306-3315, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38634490

ABSTRACT

Photodynamic therapy (PDT) and ferroptosis show significant potential in tumor treatment. However, their therapeutic efficacy is often hindered by the oxygen-deficient tumor microenvironment and the challenges associated with efficient intracellular drug delivery into tumor cells. Toward this end, this work synthesized perfluorocarbon (PFC)-modified Pluronic F127 (PFC-F127), and then exploits it as a carrier for codelivery of photosensitizer Chlorin e6 (Ce6) and the ferroptosis promoter sorafenib (Sor), yielding an oxygen self-supplying nanoplatform denoted as Ce6-Sor@PFC-F127. The PFCs on the surface of the micelle play a crucial role in efficiently solubilizing and delivering oxygen as well as increasing the hydrophobicity of the micelle surface, giving rise to enhanced endocytosis by cancer cells. The incorporation of an oxygen-carrying moiety into the micelles enhances the therapeutic impact of PDT and ferroptosis, leading to amplified endocytosis and cytotoxicity of tumor cells. Hypotonic saline technology was developed to enhance the cargo encapsulation efficiency. Notably, in a murine tumor model, Ce6-Sor@PFC-F127 effectively inhibited tumor growth through the combined use of oxygen-enhanced PDT and ferroptosis. Taken together, this work underscores the promising potential of Ce6-Sor@PFC-F127 as a multifunctional therapeutic nanoplatform for the codelivery of multiple cargos such as oxygen, photosensitizers, and ferroptosis inducers.


Subject(s)
Antineoplastic Agents , Chlorophyllides , Drug Screening Assays, Antitumor , Ferroptosis , Fluorocarbons , Micelles , Oxygen , Photochemotherapy , Photosensitizing Agents , Ferroptosis/drug effects , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Animals , Mice , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Humans , Oxygen/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Materials Testing , Particle Size , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Porphyrins/chemistry , Porphyrins/pharmacology , Cell Survival/drug effects , Cell Proliferation/drug effects , Mice, Inbred BALB C , Sorafenib/chemistry , Sorafenib/pharmacology , Sorafenib/administration & dosage , Poloxamer/chemistry , Cell Line, Tumor , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplasms, Experimental/metabolism , Molecular Structure
8.
Anal Chem ; 96(17): 6746-6755, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38632675

ABSTRACT

Nonionic surfactant excipients (NISEs) are commonly added to biologics formulations to mitigate the effects of stress incurred by the active biotherapeutic during manufacturing, transport, and storage. During manufacturing, NISEs are added by dilution of a stock solution directly into a protein formulation, and their accurate addition is critical in maintaining the quality and integrity of the drug product and thus ensuring patient safety. This is especially true for the common NISEs, polysorbates 20 and 80 (PS20 and PS80, respectively) and poloxamer 188 (P188). With the increasing diversity of biologic modalities within modern pharmaceutical pipelines, there is thus a critical need to develop and deploy convenient and user-accessible analytical techniques that can rapidly and reliably quantify these NISEs under biopharmaceutically relevant conditions. We thus pursued 60 MHz benchtop quantitative NMR (qNMR) as a nondestructive and user-friendly analytical technique for the quantification of PS20, PS80, and P188 under such conditions. We demonstrated the ability of benchtop qNMR (1) to quantify simulated PS20, PS80, and P188 stock solutions representative of those used during the drug substance (DS) formulation step in biomanufacturing and (2) to quantify these NISEs at and below their target concentrations (≤0.025% w/v) directly in biologics formulations containing histidine, sucrose, and one of three biotherapeutic modalities (monoclonal antibody, antibody-drug conjugate, and Fc-fusion protein). Our results demonstrate that benchtop qNMR offers a fit-for-purpose, reliable, user-friendly, and green analytical route by which NISE of interest to the biopharmaceutical industry may be readily and reliably quantified. We conclude that benchtop qNMR has the potential to be applied to other excipient formulation components in the presence of various biological modalities as well as the potential for routine integration within analytical and QC laboratories across pharmaceutical development and manufacturing sites.


Subject(s)
Excipients , Magnetic Resonance Spectroscopy , Surface-Active Agents , Surface-Active Agents/chemistry , Excipients/chemistry , Excipients/analysis , Magnetic Resonance Spectroscopy/methods , Polysorbates/chemistry , Poloxamer/chemistry , Biological Products/chemistry , Biological Products/analysis
9.
J Mater Chem B ; 12(19): 4708-4716, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38654609

ABSTRACT

Atherosclerosis (AS) is a significant contributor to cardiovascular events. Advanced AS is particularly concerning, as it leads to the formation of high-risk vulnerable plaques. Current treatments for AS focus on antithrombotic and lipid-lowering interventions, which are effective in treating early-stage AS. Recent studies have shown that macrophage polarization plays a crucial role in the development of AS. This study presents a new biomedical application of natural tannic acid as an anti-inflammatory nanoplatform for advanced AS. Tannic acid-poloxamer nanoparticles (TPNP) are fabricated through self-assembly of tannic acid (TA) and poloxamer. TPNP has the potential to provide effective treatment for advanced AS. According to in vitro studies, TPNP has been found to suppress the inflammatory response in lipopolysaccharide-stimulated macrophages by scavenging reactive oxygen species (ROS), downregulating the expression levels of inflammatory cytokines (such as interleukin-10 and tumor necrosis factor-α) and regulating polarization of macrophages. In vivo studies further reveal that TPNP can retard the development of advanced atherosclerotic plaques by reducing ROS production and promoting M2 macrophage polarization in the aorta of ApoE-/- mice. Overall, these findings suggest that TPNP could be used to develop natural multifunctional nanoplatforms for molecular therapy of AS and other inflammation-related diseases.


Subject(s)
Atherosclerosis , Macrophages , Nanoparticles , Poloxamer , Tannins , Tannins/chemistry , Tannins/pharmacology , Animals , Mice , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Nanoparticles/chemistry , Poloxamer/chemistry , Poloxamer/pharmacology , Macrophages/drug effects , Macrophages/metabolism , RAW 264.7 Cells , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Particle Size , Surface Properties , Male
10.
Int J Biol Macromol ; 267(Pt 2): 131667, 2024 May.
Article in English | MEDLINE | ID: mdl-38636761

ABSTRACT

A thiolated RGD was incorporated into the threaded allyl-ß-cyclodextrins (Allyl-ß-CDs) of the polyrotaxane (PR) through a thiol-ene click reaction, resulting in the formation of dynamic RGD ligands on the PR surface (dRGD-PR). When maintaining consistent RGD density and other physical properties, endothelial cells (ECs) cultured on dRGD-PR exhibited significantly increased cell proliferation and a larger cell spreading area compared to those on the non-dynamic RGD (nRGD-PCL). Furthermore, ECs on dRGD-PR demonstrated elevated expression levels of FAK, p-FAK, and p-AKT, along with a larger population of cells in the G2/M stage during cell cycle analysis, in contrast to cells on nRGD-PCL. These findings suggest that the movement of the RGD ligands may exert additional beneficial effects in promoting EC spreading and proliferation, beyond their essential adhesion and proliferation-promoting capabilities, possibly mediated by the RGD-integrin-FAK-AKT pathway. Moreover, in vitro vasculogenesis tests were conducted using two methods, revealing that ECs cultured on dRGD-PR exhibited much better vasculogenesis than nRGD-PCL in vitro. In vivo testing further demonstrated an increased presence of CD31-positive tissues on dRGD-PR. In conclusion, the enhanced EC spreading and proliferation resulting from the dynamic RGD ligands may contribute to improved in vitro vasculogenesis and in vivo vascularization.


Subject(s)
Cell Proliferation , Cyclodextrins , Oligopeptides , Humans , Cell Adhesion/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cyclodextrins/chemistry , Cyclodextrins/pharmacology , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Ligands , Neovascularization, Physiologic/drug effects , Oligopeptides/pharmacology , Oligopeptides/chemistry , Poloxamer/chemistry , Poloxamer/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Rotaxanes
11.
Int J Pharm ; 657: 124109, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38626846

ABSTRACT

Breast cancer continues to pose a substantial global health challenge, emphasizing the critical need for the advancement of novel therapeutic approaches. Key players in the regulation of apoptosis, a fundamental process in cell death, are the B-cell lymphoma 2 (Bcl-2) family proteins, namely Bcl-2 and Bax. These proteins have garnered attention as highly promising targets for the treatment of breast cancer. Targeting the overexpressed anti-apoptotic Bcl-2 protein in breast cancer, Gefitinib (GEF), an EGFR (Epidermal Growth Factor Receptor) inhibitor, emerges as a potential solution. This study focuses on designing Gefitinib-loaded polymeric mixed micelles (GPMM) using poloxamer 407 and TPGS (D-alpha tocopherol PEG1000 succinate) for breast cancer therapy. In silico analyses unveil strong interactions between GEF- Bcl-2 and TPGS-Pgp-2 receptors, indicating efficacy against breast cancer. Molecular dynamics simulations offer insights into GEF and TPGS interactions within the micelles. Formulation optimization via Design of Experiment ensures particle size and entrapment efficiency within acceptable ranges. Characterization tools such as zeta sizer, ATR-FTIR, XRD, TEM, AFM, NMR, TGA, and DSC confirms particle size, structure, functional groups, and thermodynamic events. The optimized micelles exhibit a particle size of 22.34 ± 0.18 nm, PDI of 0.038 ± 0.009, and zeta potential of -0.772 ± 0.12 mV. HPLC determines 95.67 ± 0.34% entrapment efficiency and 1.05 ± 0.12% drug loading capacity. In-vitro studies with MDA-MB-231 cell lines demonstrate enhanced cytotoxicity of GPMM compared to free GEF, suggesting its potential in breast cancer therapy. Cell cycle analysis reveals apoptosis induction through key apoptotic proteins. Western blot results confirm GPMM's ability to trigger apoptosis in MDA-MB-231 cells by activating caspase-3, Bax, Bcl-2, and Parp. In conclusion, these polymeric mixed micelles show promise in selectively targeting cancer cells, warranting future in-vivo studies for optimized clinical application against breast cancer.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Gefitinib , Micelles , Poloxamer , Vitamin E , Humans , Poloxamer/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Vitamin E/chemistry , Female , Gefitinib/administration & dosage , Gefitinib/pharmacology , Gefitinib/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Molecular Dynamics Simulation , Cell Line, Tumor , Drug Carriers/chemistry , Computer Simulation , Particle Size , Cell Survival/drug effects , Animals , Proto-Oncogene Proteins c-bcl-2/metabolism , Polyethylene Glycols/chemistry , Drug Liberation , Apoptosis/drug effects
12.
Nanomedicine ; 58: 102748, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663789

ABSTRACT

Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (AMSC-EVs) have been highlighted as a cell-free therapy due to their regenerative capability to enhance tissue and organ regeneration. Herein, we aimed to examine the mechanism of PF127-hydrogel@AMSC-EVs in promoting tracheal cartilage defect repair. Based on bioinformatics methods, SCNN1B was identified as a key gene for the osteogenic differentiation of AMSCs induced by AMSC-EVs. EVs were isolated from rat AMSCs and then loaded onto thermo-sensitive PF-127 hydrogel to develop PF127-hydrogel@AMSC-EVs. It was established that PF127-hydrogel@AMSC-EVs could effectively deliver SCNN1B into AMSCs, where SCNN1B promoted AMSC osteogenic differentiation. The promotive effect was evidenced by enhanced ALP activity, extracellular matrix mineralization, and expression of s-glycosaminoglycan, RUNX2, OCN, collagen II, PERK, and ATF4. Furthermore, the in vivo experiments revealed that PF127-hydrogel@AMSC-SCNN1B-EVs stimulated tracheal cartilage regeneration in rats through PERK/ATF4 signaling axis activation. Therefore, PF127-hydrogel@AMSC-SCNN1B-EVs may be a novel cell-free biomaterial to facilitate tracheal cartilage regeneration and cartilage injury repair.


Subject(s)
Cartilage , Extracellular Vesicles , Hydrogels , Mesenchymal Stem Cells , Trachea , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Hydrogels/chemistry , Rats , Trachea/metabolism , Cartilage/metabolism , Regeneration , Poloxamer/chemistry , Poloxamer/pharmacology , Rats, Sprague-Dawley , Cell Differentiation/drug effects , Adipose Tissue/cytology , Adipose Tissue/metabolism , Osteogenesis/drug effects , Male
13.
BMC Biotechnol ; 24(1): 22, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664752

ABSTRACT

BACKGROUND: The advancement of AAV vectors into clinical testing has accelerated rapidly over the past two decades. While many of the AAV vectors being utilized in clinical trials are derived from natural serotypes, engineered serotypes are progressing toward clinical translation due to their enhanced tissue tropism and immune evasive properties. However, novel AAV vectors require formulation and stability testing to determine optimal storage conditions prior to their use in a clinical setting. RESULTS: Here, we evaluated the thermal stability of AAV6.2FF, a rationally engineered capsid with strong tropism for lung and muscle, in two different buffer formulations; phosphate buffered saline (PBS), or PBS supplemented with 0.001% non-ionic surfactant Pluronic F68 (PF-68). Aliquots of AAV6.2FF vector encoding the firefly luciferase reporter gene (AAV6.2FF-ffLuc) were incubated at temperatures ranging from -20°C to 55°C for varying periods of time and the impact on infectivity and particle integrity evaluated. Additionally, the impact of several rounds of freeze-thaw treatments on the infectivity of AAV6.2FF was investigated. Vector infectivity was measured by quantifying firefly luciferase expression in HEK 293 cells and AAV particle integrity was measured by qPCR quantification of encapsidated viral DNA. CONCLUSIONS: Our data demonstrate that formulating AAV6.2FF in PBS containing 0.001% PF-68 leads to increased stability and particle integrity at temperatures between -20℃ to 21℃ and protection against the destructive effects of freeze-thaw. Finally, AAV6.2FF-GFP formulated in PBS supplemented with 0.001% PF-68 displayed higher transduction efficiency in vivo in murine lung epithelial cells following intranasal administration than vector buffered in PBS alone further demonstrating the beneficial properties of PF-68.


Subject(s)
Dependovirus , Genetic Vectors , Poloxamer , Animals , Humans , HEK293 Cells , Poloxamer/pharmacology , Poloxamer/chemistry , Mice , Dependovirus/genetics , Genetic Vectors/genetics , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Temperature , Genes, Reporter
14.
Int J Biol Macromol ; 268(Pt 2): 131646, 2024 May.
Article in English | MEDLINE | ID: mdl-38636765

ABSTRACT

Plant-based food proteins are a promising choice for the preparation of nanoparticles (NPs) due to their high digestibility, low cost, and ability to interact with various compounds and nutrients. Moreover, nanoencapsulation offers a potential solution for protecting nutrients during processing and enhancing their bioavailability. This study aimed to develop and evaluate nanoparticles (NPs) based on legumin/vicilin (LV) proteins extracted from fava beans, with the goal of encapsulating and delivering a model nutraceutical compound, folic acid (FA). Specifically, NPs were self-assembled from LV proteins extracted from commercially available frozen fava beans using a pH-coacervation method with poloxamer 188 (P188) and chemically cross-linked with glutaraldehyde. Microscopy and spectroscopy studies were carried out on the empty and FA-loaded NPs in order to evaluate the particle morphology, size, size distribution, composition, mechanism of formation, impact of FA loading and release behavior. In vitro studies with Caco-2 cells also confirmed that the empty and FA-loaded nanoparticles were non-toxic. Thus, the LV-NPs are good candidates as food additives for the delivery and stabilization of nutrients as well as in drug delivery for the controlled release of therapeutics.


Subject(s)
Delayed-Action Preparations , Folic Acid , Nanoparticles , Poloxamer , Folic Acid/chemistry , Humans , Nanoparticles/chemistry , Poloxamer/chemistry , Caco-2 Cells , Delayed-Action Preparations/chemistry , Drug Liberation , Particle Size , Plant Proteins/chemistry , Drug Carriers/chemistry , Drug Compounding
15.
Exp Parasitol ; 260: 108743, 2024 May.
Article in English | MEDLINE | ID: mdl-38513973

ABSTRACT

Treatment against leishmaniasis presents problems, mainly due to the toxicity of the drugs, high cost, and the emergence of resistant strains. A previous study showed that two vanillin-derived synthetic molecules, 3s [4-(2-hydroxy-3-(4-octyl-1H-1,2,3-triazol-1-yl)propoxy)-3-methoxybenzaldehyde] and 3t [4-(3-(4-decyl-1H-1,2,3-triazol-1-yl)-2-hydroxypropoxy)-3-methoxybenzaldehyde], presented antileishmanial activity against Leishmania infantum, L. amazonensis, and L. braziliensis species. In the present work, 3s and 3t were evaluated to treat L. amazonensis-infected mice. Molecules were used pure or incorporated into Poloxamer 407-based micelles. In addition, amphotericin B (AmpB) and its liposomal formulation, Ambisome®, were used as control. Animals received the treatment and, one and 30 days after, they were euthanized to evaluate immunological, parasitological, and biochemical parameters. Results showed that the micellar compositions (3s/Mic and 3t/Mic) induced significant reductions in the lesion mean diameter and parasite load in the infected tissue and distinct organs, as well as a specific and significant antileishmanial Th1-type immune response, which was based on significantly higher levels of IFN-γ, IL-12, nitrite, and IgG2a isotype antibodies. Drug controls showed also antileishmanial action; although 3s/Mic and 3t/Mic have presented better and more significant parasitological and immunological data, which were based on significantly higher IFN-γ production and lower parasite burden in treated animals. In addition, significantly lower levels of urea, creatinine, alanine transaminase, and aspartate transaminase were found in mice treated with 3s/Mic and 3t/Mic, when compared to the others. In conclusion, results suggest that 3s/Mic and 3t/Mic could be considered as therapeutic candidates to treat against L. amazonensis infection.


Subject(s)
Antiprotozoal Agents , Benzaldehydes , Leishmania mexicana , Mice, Inbred BALB C , Micelles , Animals , Mice , Benzaldehydes/pharmacology , Benzaldehydes/chemistry , Leishmania mexicana/drug effects , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/chemistry , Leishmaniasis, Cutaneous/drug therapy , Female , Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Poloxamer/chemistry , Poloxamer/pharmacology , Male , Spleen/parasitology
16.
ACS Appl Bio Mater ; 7(3): 1976-1989, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38447202

ABSTRACT

The development of nanocarriers to prolong the residence time and enhance the permeability of chemotherapeutic drugs on bladder mucosa is important in the postsurgery treatment of superficial bladder cancers (BCs). Here, the mucoadhesive HA-SH/PF127 nanogels composed of a temperature-sensitive Pluronic F127 (PF127) core and thiolated hyaluronic acid (HA-SH) shell were prepared by the emulsification/solvent evaporation method. The nanogels were constructed through the thiol-maleimide click reaction in the HA-SH aqueous side of the oil-water interface and self-oxidized cross-linking thiols between HA-SH. The HA-SH/PF127 nanogels prepared at different thiol-to-maleimide group molar ratios, water-to-oil volume ratios, and cross-linking reaction times were characterized regarding hydrodynamic diameter (Dh) and zeta potential (ζ), and the optimal formulation was obtained. The excellent mucoadhesive properties of the HA-SH/PF127 nanogels were evaluated by using the mucin particle method. Doxorubicin (DOX) was encapsulated in the PF127 core of DOX@HA-SH/PF127 nanogels with a high loading efficiency (87.5%) and sustained release from the nanogels in artificial urine. Ex vivo studies on porcine bladder mucosa showed that the DOX@HA-SH/PF127 nanogels enhanced the penetration of the DOX into the bladder mucosa without disrupting the mucus structure or the bladder tissue. A significant dose-dependent cytotoxic effect of DOX@HA-SH/PF127 nanogels on both T24 and MB49 cells was observed. The present study demonstrates that the mucoadhesive HA-SH/PF127 nanogels are a promising intravesical drug delivery system for superficial BC therapy.


Subject(s)
Hyaluronic Acid , Maleimides , Poloxamer , Polyethylene Glycols , Polyethyleneimine , Sulfhydryl Compounds , Animals , Swine , Poloxamer/chemistry , Nanogels , Hyaluronic Acid/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Doxorubicin/chemistry , Water
17.
Ultrason Sonochem ; 104: 106835, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38460473

ABSTRACT

Curcumin (Cur) as a natural pigment and biological component, can be widely used in food and beverages. However, the water insolubility of Cur significantly limits its applications. In this study, we prepared a series of nanocrystals via ultrasound-assisted method to improve the solubility and availability of Cur. The results showed artemisia sphaerocephala krasch polysaccharide (ASKP), gum arabic (GA) and wheat protein (WP) were outstanding stabilizers for nanocryatals except traditional agent, poloxamer 188 (F68). The obtained curcumin nanocrystals (Cur-NC) displayed a rod-shaped, crystal- and nanosized structure, and extremely high loading capacity (more over 80 %, w/w). Compared with raw powder, Cur-NC greatly improved the water solubility and dispersibility, and the slow and complete release of Cur of Cur-NC also endowed them excellent antioxidant capacities even at 10 µg/mL. Importantly, as functional factor additive in beverages (e.g. water and emulsion), Cur-NC could increase the content of Cur to at least 600 µg/mL and retain a good stability. Overall, we provided an effective improvement method for the liposoluble active molecules (e.g. Cur) based on the nanocrystals, which not only tremendously enhanced its water solubility, but also strengthened its bioactivity. Notably, our findings broadened the application of water-insoluble compounds.


Subject(s)
Curcumin , Nanoparticles , Curcumin/pharmacology , Curcumin/chemistry , Solubility , Poloxamer/chemistry , Nanoparticles/chemistry , Water/chemistry , Particle Size
18.
Acta Trop ; 254: 107189, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522630

ABSTRACT

Cutaneous leishmaniasis (CL) is a vector-borne disease characterized by skin lesions that can evolve into high-magnitude ulcerated lesions. Thus, this study aimed to develop an innovative nanoemulsion (NE) with clove oil, Poloxamer® 407, and multiple drugs, such as amphotericin B (AmB) and paromomycin (PM), for use in the topical treatment of CL. METHODS: Droplet size, morphology, drug content, stability, in vitro release profile, in vitro cytotoxicity on RAW 264.7 macrophages, and antileishmanial activity using axenic amastigotes of Leishmania amazonensis were assessed for NEs. RESULTS: After optimizing the formulation parameters, such as the concentration of clove oil and drugs, using an experimental design, it was possible to obtain a NE with an average droplet size of 40 nm and a polydispersion index of 0.3, and these parameters were maintained throughout the 365 days. Furthermore, the NE showed stability of AmB and PM content for 180 days under refrigeration (4 °C), presented a pH compatible with the skin, and released modified AmB and PM. NE showed the same toxicity as free AmB and higher toxicity than free PM against RAW 264.7 macrophages. The same activity as free AmB, and higher activity than free PM against amastigotes L. amazonensis. CONCLUSION: It is possible to develop a NE for the treatment of CL; however, complementary studies regarding the antileishmanial activity of NE should be carried out.


Subject(s)
Amphotericin B , Antiprotozoal Agents , Emulsions , Leishmaniasis, Cutaneous , Paromomycin , Paromomycin/pharmacology , Paromomycin/administration & dosage , Amphotericin B/pharmacology , Amphotericin B/administration & dosage , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , Animals , Mice , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/chemistry , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/parasitology , Leishmania mexicana/drug effects , Clove Oil/pharmacology , Clove Oil/chemistry , Poloxamer/chemistry , Drug Stability , Nanoparticles/chemistry
19.
Pharm Dev Technol ; 29(4): 291-299, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38466377

ABSTRACT

In the current work, we aimed to prepare a liraglutide-loaded porous microsphere-gel composite system. By employing polyethylene glycol (PEG) as a porogenic agent and poly (lactic-co-glycolic acid) copolymer (PLGA) as a carrier, the liraglutide microspheres were prepared and dispersed in a temperature-sensitive gel made of poloxamer 407 (F-127) and poloxamer 188 (F-68), which served as the gel matrix, to construct the composite system. The porous microsphere-gel composite system demonstrated prolonged and steady drug release, with a reduction to 4.7% in the initial release within 1 d, according to data from in vitro release tests. The drug release from the porous microspheres decreased from 53% to 29% during the rapid release phase as the PEG concentration increased and the release rate slowed down. In vivo experiments in rats revealed that the composite system prolonged the release period by about 10 d. The pharmacokinetic parameter AUC0-1 was decreased by 24.78 ng/ml*h, the initial burst release was decreased, and the blood drug concentration fluctuation was lessened. The construction of a porous microsphere-gel composite matrix offers a novel approach to the systems with a sustained, long-lasting release that utilizes rational design.


Subject(s)
Drug Liberation , Gels , Liraglutide , Microspheres , Polylactic Acid-Polyglycolic Acid Copolymer , Rats, Sprague-Dawley , Animals , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Porosity , Liraglutide/administration & dosage , Liraglutide/pharmacokinetics , Rats , Male , Drug Carriers/chemistry , Polyethylene Glycols/chemistry , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/chemistry , Lactic Acid/chemistry , Poloxamer/chemistry , Delayed-Action Preparations , Polyglycolic Acid/chemistry
20.
Adv Sci (Weinh) ; 11(18): e2309562, 2024 May.
Article in English | MEDLINE | ID: mdl-38460171

ABSTRACT

The viscoelasticity of mechanically sensitive tissues such as periodontal ligaments (PDLs) is key in maintaining mechanical homeostasis. Unfortunately, PDLs easily lose viscoelasticity (e.g., stress relaxation) during periodontitis or dental trauma, which disrupt cell-extracellular matrix (ECM) interactions and accelerates tissue damage. Here, Pluronic F127 diacrylate (F127DA) hydrogels with PDL-matched stress relaxation rates and high elastic moduli are developed. The hydrogel viscoelasticity is modulated without chemical cross-linking by controlling precursor concentrations. Under cytomechanical loading, F127DA hydrogels with fast relaxation rates significantly improved the fibrogenic differentiation potential of PDL stem cells (PDLSCs), while cells cultured on F127DA hydrogels with various stress relaxation rates exhibited similar fibrogenic differentiation potentials with limited cell spreading and traction forces under static conditions. Mechanically, faster-relaxing F127DA hydrogels leveraged cytomechanical loading to activate PDLSC mechanotransduction by upregulating integrin-focal adhesion kinase pathway and thus cytoskeletal rearrangement, reinforcing cell-ECM interactions. In vivo experiments confirm that faster-relaxing F127DA hydrogels significantly promoted PDL repair and reduced abnormal healing (e.g., root resorption and ankyloses) in delayed replantation of avulsed teeth. This study firstly investigated how matrix nonlinear viscoelasticity influences the fibrogenesis of PDLSCs under mechanical stimuli, and it reveals the underlying mechanobiology, which suggests novel strategies for PDL regeneration.


Subject(s)
Biocompatible Materials , Hydrogels , Periodontal Ligament , Regeneration , Stress, Mechanical , Periodontal Ligament/cytology , Periodontal Ligament/physiology , Regeneration/physiology , Hydrogels/chemistry , Biocompatible Materials/chemistry , Animals , Humans , Cells, Cultured , Viscosity , Poloxamer/chemistry , Poloxamer/pharmacology , Stem Cells/cytology , Elasticity , Cell Differentiation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...