Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.137
Filter
1.
Sci Rep ; 14(1): 12595, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38824213

ABSTRACT

Poly (ADP-ribose) polymerase inhibitors have been increasingly used in ovarian cancer treatment. However, the real-world safety data of these drugs in Japanese patients are limited. This retrospective study included 181 patients with ovarian cancer who received olaparib or niraparib at two independent hospitals in Japan between May 2018 and December 2022. Clinical information and blood sampling data were collected. Regarding patient backgrounds, the olaparib group had higher proportions of patients with serous carcinoma, BRCA positivity, homologous recombination deficiency, and those receiving maintenance therapy after recurrence treatment than the niraparib group. Regarding toxicity properties, the most common reasons for discontinuation in the olaparib group were anemia, fatigue, and nausea, while the reason in the niraparib was thrombocytopenia. Thrombocytopenia caused by niraparib treatment occurred earlier than anemia caused by olaparib treatment. Patients with a low body mass index or who had undergone several previous treatment regimens were more likely to discontinue treatment within the first 3 months. Although we analyzed blood collection data, predicting treatment interruptions due to blood toxicity was challenging. In this study, we revealed the characteristics of patients and the timing of interruptions for each drug, highlighting the importance of carefully managing adverse effects.


Subject(s)
Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Ovarian Neoplasms/drug therapy , Middle Aged , Aged , Japan , Retrospective Studies , Piperidines/adverse effects , Piperidines/therapeutic use , Phthalazines/adverse effects , Phthalazines/therapeutic use , Piperazines/adverse effects , Piperazines/therapeutic use , Piperazines/administration & dosage , Indazoles/adverse effects , Indazoles/therapeutic use , Indazoles/administration & dosage , Adult , Aged, 80 and over , Thrombocytopenia/chemically induced , East Asian People
2.
Oncotarget ; 15: 361-373, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829622

ABSTRACT

Histone deacetylase inhibitors (HDACi) can modulate the acetylation status of proteins, influencing the genomic instability exhibited by cancer cells. Poly (ADP ribose) polymerase (PARP) inhibitors (PARPi) have a direct effect on protein poly (ADP-ribosyl)ation, which is important for DNA repair. Decitabine is a nucleoside cytidine analogue, which when phosphorylated gets incorporated into the growing DNA strand, inhibiting methylation and inducing DNA damage by inactivating and trapping DNA methyltransferase on the DNA, thereby activating transcriptionally silenced DNA loci. We explored various combinations of HDACi and PARPi +/- decitabine (hypomethylating agent) in pancreatic cancer cell lines BxPC-3 and PL45 (wild-type BRCA1 and BRCA2) and Capan-1 (mutated BRCA2). The combination of HDACi (panobinostat or vorinostat) with PARPi (talazoparib or olaparib) resulted in synergistic cytotoxicity in all cell lines tested. The addition of decitabine further increased the synergistic cytotoxicity noted with HDACi and PARPi, triggering apoptosis (evidenced by increased cleavage of caspase 3 and PARP1). The 3-drug combination treatments (vorinostat, talazoparib, and decitabine; vorinostat, olaparib, and decitabine; panobinostat, talazoparib, and decitabine; panobinostat, olaparib, and decitabine) induced more DNA damage (increased phosphorylation of histone 2AX) than the individual drugs and impaired the DNA repair pathways (decreased levels of ATM, BRCA1, and ATRX proteins). The 3-drug combinations also altered the epigenetic regulation of gene expression (NuRD complex subunits, reduced levels). This is the first study to demonstrate synergistic interactions between the aforementioned agents in pancreatic cancer cell lines and provides preclinical data to design individualized therapeutic approaches with the potential to improve pancreatic cancer treatment outcomes.


Subject(s)
Azacitidine , Decitabine , Drug Synergism , Histone Deacetylase Inhibitors , Pancreatic Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Decitabine/pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Cell Line, Tumor , Histone Deacetylase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Azacitidine/pharmacology , Azacitidine/analogs & derivatives , Apoptosis/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology
3.
BMC Cancer ; 24(1): 706, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851712

ABSTRACT

BACKGROUND: Poly (ADP- ribose) polymerase inhibitors (PARPi) has been increasingly adopted for metastatic castration-resistance prostate cancer (mCRPC) patients with homologous recombination repair deficiency (HRD). However, it is unclear which PARPi is optimal in mCRPC patients with HRD in 2nd -line setting. METHOD: We conducted a systematic review of trials regarding PARPi- based therapies on mCRPC in 2nd -line setting and performed a Bayesian network meta-analysis (NMA). Radiographic progression-free survival (rPFS) was assessed as primary outcome. PSA response and adverse events (AEs) were evaluated as secondary outcomes. Subgroup analyses were performed according to specific genetic mutation. RESULTS: Four RCTs comprised of 1024 patients (763 harbored homologous recombination repair (HRR) mutations) were identified for quantitative analysis. Regarding rPFS, olaparib monotherapy, rucaparib and cediranib plus olaparib showed significant improvement compared with ARAT. Olaparib plus cediranib had the highest surface under cumulative ranking curve (SUCRA) scores (87.5%) for rPFS, followed by rucaparib, olaparib and olaparib plus abiraterone acetate prednisone. For patients with BRCA 1/2 mutations, olaparib associated with the highest probability (98.1%) of improved rPFS. For patients with BRCA-2 mutations, olaparib and olaparib plus cediranib had similar efficacy. However, neither olaparib nor rucaparib showed significant superior effectiveness to androgen receptor-axis-targeted therapy (ARAT) in patients with ATM mutations. For safety, olaparib showed significantly lower ≥ 3 AE rate compared with cediranib plus olaparib (RR: 0.72, 95% CI: 0.51, 0.97), while olaparib plus cediranib was associated with the highest risk of all-grade AE. CONCLUSION: PARPi-based therapy showed considerable efficacy for mCRPC patients with HRD in 2nd -line setting. However, patients should be treated accordingly based on their genetic background as well as the efficacy and safety of the selected regimen. TRIAL REGISTRATION: CRD42023454079.


Subject(s)
Bayes Theorem , Mutation , Phthalazines , Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms, Castration-Resistant , Humans , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Male , Phthalazines/therapeutic use , Phthalazines/adverse effects , Phthalazines/administration & dosage , Network Meta-Analysis , Piperazines/therapeutic use , Piperazines/adverse effects , Piperazines/administration & dosage , BRCA2 Protein/genetics , Recombinational DNA Repair/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Randomized Controlled Trials as Topic , Progression-Free Survival , Indoles/therapeutic use , Indoles/adverse effects , Indoles/administration & dosage , BRCA1 Protein/genetics , Treatment Outcome , Quinazolines
4.
Int J Biol Sci ; 20(7): 2454-2475, 2024.
Article in English | MEDLINE | ID: mdl-38725854

ABSTRACT

The emergence of Poly (ADP-ribose) polymerase inhibitors (PARPi) has marked the beginning of a precise targeted therapy era for ovarian cancer. However, an increasing number of patients are experiencing primary or acquired resistance to PARPi, severely limiting its clinical application. Deciphering the underlying mechanisms of PARPi resistance and discovering new therapeutic targets is an urgent and critical issue to address. In this study, we observed a close correlation between glycolysis, tumor angiogenesis, and PARPi resistance in ovarian cancer. Furthermore, we discovered that the natural compound Paris saponin VII (PS VII) partially reversed PARPi resistance in ovarian cancer and demonstrated synergistic therapeutic effects when combined with PARPi. Additionally, we found that PS VII potentially hindered glycolysis and angiogenesis in PARPi-resistant ovarian cancer cells by binding and stabilizing the expression of RORα, thus further inhibiting ECM1 and interfering with the VEGFR2/FAK/AKT/GSK3ß signaling pathway. Our research provides new targeted treatment for clinical ovarian cancer therapy and brings new hope to patients with PARPi-resistant ovarian cancer, effectively expanding the application of PARPi in clinical treatment.


Subject(s)
Diosgenin/analogs & derivatives , Glycolysis , Neovascularization, Pathologic , Ovarian Neoplasms , Saponins , Signal Transduction , Vascular Endothelial Growth Factor Receptor-2 , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Signal Transduction/drug effects , Glycolysis/drug effects , Cell Line, Tumor , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Drug Resistance, Neoplasm/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Animals , Mice, Nude , Mice , Angiogenesis
5.
Genes Chromosomes Cancer ; 63(5): e23243, 2024 May.
Article in English | MEDLINE | ID: mdl-38747337

ABSTRACT

Breast cancer susceptibility 1/2 (BRCA1/2) genes play a crucial role in DNA damage repair, yet mutations in these genes increase the susceptibility to tumorigenesis. Exploiting the synthetic lethality mechanism between BRCA1/2 mutations and poly(ADP-ribose) polymerase (PARP) inhibition has led to the development and clinical approval of PARP inhibitor (PARPi), representing a milestone in targeted therapy for BRCA1/2 mutant tumors. This approach has paved the way for leveraging synthetic lethality in tumor treatment strategies. Despite the initial success of PARPis, resistance to these agents diminishes their efficacy in BRCA1/2-mutant tumors. Investigations into PARPi resistance have identified replication fork stability and homologous recombination repair as key factors sensitive to PARPis. Additionally, studies suggest that replication gaps may also confer sensitivity to PARPis. Moreover, emerging evidence indicates a correlation between PARPi resistance and cisplatin resistance, suggesting a potential overlap in the mechanisms underlying resistance to both agents. Given these findings, it is imperative to explore the interplay between replication gaps and PARPi resistance, particularly in the context of platinum resistance. Understanding the impact of replication gaps on PARPi resistance may offer insights into novel therapeutic strategies to overcome resistance mechanisms and enhance the efficacy of targeted therapies in BRCA1/2-mutant tumors.


Subject(s)
BRCA1 Protein , BRCA2 Protein , Drug Resistance, Neoplasm , Mutation , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Drug Resistance, Neoplasm/genetics , BRCA2 Protein/genetics , BRCA1 Protein/genetics , Female , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Neoplasms/genetics , Neoplasms/drug therapy
6.
J Cell Mol Med ; 28(9): e18342, 2024 May.
Article in English | MEDLINE | ID: mdl-38693852

ABSTRACT

Urothelial carcinoma (UC) urgently requires new therapeutic options. Histone deacetylases (HDAC) are frequently dysregulated in UC and constitute interesting targets for the development of alternative therapy options. Thus, we investigated the effect of the second generation HDAC inhibitor (HDACi) quisinostat in five UC cell lines (UCC) and two normal control cell lines in comparison to romidepsin, a well characterized HDACi which was previously shown to induce cell death and cell cycle arrest. In UCC, quisinostat led to cell cycle alterations, cell death induction and DNA damage, but was well tolerated by normal cells. Combinations of quisinostat with cisplatin or the PARP inhibitor talazoparib led to decrease in cell viability and significant synergistic effect in five UCCs and platinum-resistant sublines allowing dose reduction. Further analyses in UM-UC-3 and J82 at low dose ratio revealed that the mechanisms included cell cycle disturbance, apoptosis induction and DNA damage. These combinations appeared to be well tolerated in normal cells. In conclusion, our results suggest new promising combination regimes for treatment of UC, also in the cisplatin-resistant setting.


Subject(s)
Apoptosis , Histone Deacetylase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors , Urinary Bladder Neoplasms , Humans , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/pharmacology , DNA Damage/drug effects , Drug Synergism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urologic Neoplasms/drug therapy , Urologic Neoplasms/pathology
8.
Am Soc Clin Oncol Educ Book ; 44(3): e438582, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788185

ABSTRACT

Targeted therapies have changed the treatment landscape in gynecologic cancer. Studies released over the past year have led to the incorporation of immunotherapy (IO) into the treatment for all patients with endometrial and cervical cancers at some point during their disease course. Poly(ADP-ribose) polymerase (PARP) inhibitors continue to play a role in women with ovarian carcinoma, particularly in homologous repair deficient tumors. Furthermore, the benefit of PARP inhibitors in challenging subgroups continues to be elucidated. Biomarker identification has led to the approval or compendium listing of several antibody-drug conjugates (ADCs). This review will update on IO, ADCs, and PARP inhibition for the treatment of gynecologic cancers.


Subject(s)
Genital Neoplasms, Female , Molecular Targeted Therapy , Humans , Female , Genital Neoplasms, Female/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Immunotherapy/methods , Immunoconjugates/therapeutic use , Antineoplastic Agents/therapeutic use
9.
Int J Gynecol Cancer ; 34(1): 88-98, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38805344

ABSTRACT

OBJECTIVE: To evaluate disease characteristics and survival according to BRCA status, administration of poly-(ADP-ribose) polymerase inhibitors (PARPi), and surgery in patients with ovarian cancer and brain metastases. METHODS: This is a monocentric retrospective cohort of patients with ovarian cancer and brain metastases treated between 2000 and 2021. Data were collected by a retrospective review of medical records and analyzed according to: (1) BRCA mutation; (2) PARPi before and after brain metastases; (3) surgery for brain metastases. RESULTS: Eighty-five patients with ovarian cancer and brain metastasis and known BRCA status (31 BRCA mutated (BRCAm), 54 BRCA wild-type (BRCAwt)) were analyzed. Twenty-two patients had received PARPi before brain metastases diagnosis (11 BRCAm, 11 BRCAwt) and 12 after (8 BRCAm, 4 BRCAwt). Brain metastases occurred >1 year later in patients who had received previous PARPi. Survival was longer in the BRCAm group (median post-brain metastasis survival: BRCAm 23 months vs BRCAwt 8 months, p=0.0015). No differences were found based on BRCA status analyzing the population who did not receive PARPi after brain metastasis (median post-brain metastasis survival: BRCAm 8 months vs BRCAwt 8 months, p=0.31). In the BRCAm group, survival was worse in patients who had received previous PARPi (median post-brain metastasis survival: PARPi before, 7 months vs no-PARPi before, 24 months, p=0.003). If PARPi was administered after brain metastases, survival of the overall population improved (median post-brain metastasis survival: PARPi after, 46 months vs no-PARPi after, 8 months, p=0.00038).In cases of surgery for brain metastases, the prognosis seemed better (median post-brain metastasis survival: surgery 13 months vs no-surgery 8 months, p=0.036). Three variables were significantly associated with prolonged survival at multivariate analysis: BRCA mutation, multimodal treatment, and ≤1 previous chemotherapy line. CONCLUSIONS: BRCA mutations might impact brain metastasis occurrence and lead to better outcomes. In a multimodal treatment, surgery seems to affect survival even in cases of extracranial disease. PARPi use should be considered as it seems to prolong survival if administered after brain metastasis.


Subject(s)
Brain Neoplasms , Carcinoma, Ovarian Epithelial , Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Brain Neoplasms/surgery , Brain Neoplasms/mortality , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Retrospective Studies , Middle Aged , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/mortality , Ovarian Neoplasms/surgery , Ovarian Neoplasms/genetics , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/surgery , Carcinoma, Ovarian Epithelial/mortality , Carcinoma, Ovarian Epithelial/secondary , Carcinoma, Ovarian Epithelial/pathology , Aged , Adult , BRCA2 Protein/genetics , BRCA1 Protein/genetics
10.
J Hematol Oncol ; 17(1): 36, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783389

ABSTRACT

Oncolytic viruses (OVs) offer a novel approach to treat solid tumors; however, their efficacy is frequently suboptimal due to various limiting factors. To address this challenge, we engineered an OV containing targets for neuron-specific microRNA-124 and Granulocyte-macrophage colony-stimulating factor (GM-CSF), significantly enhancing its neuronal safety while minimally compromising its replication capacity. Moreover, we identified PARP1 as an HSV-1 replication restriction factor using genome-wide CRISPR screening. In models of glioblastoma (GBM) and triple-negative breast cancer (TNBC), we showed that the combination of OV and a PARP inhibitor (PARPi) exhibited superior efficacy compared to either monotherapy. Additionally, single-cell RNA sequencing (scRNA-seq) revealed that this combination therapy sensitized TNBC to immune checkpoint blockade, and the incorporation of an immune checkpoint inhibitor (ICI) further increased the survival rate of tumor-bearing mice. The combination of PARPi and ICI synergistically enhanced the ability of OV to establish durable tumor-specific immune responses. Our study effectively overcomes the inherent limitations of OV therapy, providing valuable insights for the clinical treatment of TNBC, GBM, and other malignancies.


Subject(s)
Oncolytic Virotherapy , Oncolytic Virotherapy/methods , Animals , Humans , Mice , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Glioblastoma/therapy , Glioblastoma/genetics , Oncolytic Viruses/genetics , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/genetics , Female , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Herpesvirus 1, Human/genetics , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , MicroRNAs/genetics , Xenograft Model Antitumor Assays , CRISPR-Cas Systems
11.
J Exp Clin Cancer Res ; 43(1): 146, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750579

ABSTRACT

Over the last few decades, the incidence of urogenital cancers has exhibited diverse trends influenced by screening programs and geographical variations. Among women, there has been a consistent or even increased occurrence of endometrial and ovarian cancers; conversely, prostate cancer remains one of the most diagnosed malignancies, with a rise in reported cases, partly due to enhanced and improved screening efforts.Simultaneously, the landscape of cancer therapeutics has undergone a remarkable evolution, encompassing the introduction of targeted therapies and significant advancements in traditional chemotherapy. Modern targeted treatments aim to selectively address the molecular aberrations driving cancer, minimizing adverse effects on normal cells. However, traditional chemotherapy retains its crucial role, offering a broad-spectrum approach that, despite its wider range of side effects, remains indispensable in the treatment of various cancers, often working synergistically with targeted therapies to enhance overall efficacy.For urogenital cancers, especially ovarian and prostate cancers, DNA damage response inhibitors, such as PARP inhibitors, have emerged as promising therapeutic avenues. In BRCA-mutated ovarian cancer, PARP inhibitors like olaparib and niraparib have demonstrated efficacy, leading to their approval for specific indications. Similarly, patients with DNA damage response mutations have shown sensitivity to these agents in prostate cancer, heralding a new frontier in disease management. Furthermore, the progression of ovarian and prostate cancer is intricately linked to hormonal regulation. Ovarian cancer development has also been associated with prolonged exposure to estrogen, while testosterone and its metabolite dihydrotestosterone, can fuel the growth of prostate cancer cells. Thus, understanding the interplay between hormones, DNA damage and repair mechanisms can hold promise for exploring novel targeted therapies for ovarian and prostate tumors.In addition, it is of primary importance the use of preclinical models that mirror as close as possible the biological and genetic features of patients' tumors in order to effectively translate novel therapeutic findings "from the bench to the bedside".In summary, the complex landscape of urogenital cancers underscores the need for innovative approaches. Targeted therapy tailored to DNA repair mechanisms and hormone regulation might offer promising avenues for improving the management and outcomes for patients affected by ovarian and prostate cancers.


Subject(s)
Ovarian Neoplasms , Precision Medicine , Prostatic Neoplasms , Humans , Female , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Precision Medicine/methods , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Urogenital Neoplasms/drug therapy , Urogenital Neoplasms/genetics , Animals , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
12.
Mol Cancer ; 23(1): 111, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778348

ABSTRACT

BACKGROUND: Poly (ADP-ribose) polymerase inhibitor (PARPi) resistance poses a significant challenge in ovarian carcinoma (OC). While the role of DOT1L in cancer and chemoresistance is acknowledged, its specific role in PARPi resistance remains unclear. This study aims to elucidate the molecular mechanism of DOT1L in PARPi resistance in OC patients. METHODS: This study analyzed the expression of DOT1L in PARPi-resistant cell lines compared to sensitive ones and correlated it with clinical outcomes in OC patients. Comprehensive in vitro and in vivo functional experiments were conducted using cellular and mouse models. Molecular investigations, including RNA sequencing, chromatin immunoprecipitation (ChIP) and Cleavage Under Targets and Tagmentation (CUT&Tag) assays, were employed to unravel the molecular mechanisms of DOT1L-mediated PARPi resistance. RESULTS: Our investigation revealed a robust correlation between DOT1L expression and clinical PARPi resistance in non-BRCA mutated OC cells. Upregulated DOT1L expression in PARPi-resistant tissues was associated with diminished survival in OC patients. Mechanistically, we identified that PARP1 directly binds to the DOT1L gene promoter, promoting transcription independently of its enzyme activity. PARP1 trapping induced by PARPi treatment amplified this binding, enhancing DOT1L transcription and contributing to drug resistance. Sequencing analysis revealed that DOT1L plays a crucial role in the transcriptional regulation of PLCG2 and ABCB1 via H3K79me2. This established the PARP1-DOT1L-PLCG2/ABCB1 axis as a key contributor to PARPi resistance. Furthermore, we discovered that combining a DOT1L inhibitor with PARPi demonstrated a synergistic effect in both cell line-derived xenograft mouse models (CDXs) and patient-derived organoids (PDOs). CONCLUSIONS: Our results demonstrate that DOT1L is an independent prognostic marker for OC patients. The PARP1-DOT1L/H3K79me2-PLCG2/ABCB1 axis is identified as a pivotal contributor to PARPi resistance. Targeted inhibition of DOT1L emerges as a promising therapeutic strategy for enhancing PARPi treatment outcomes in OC patients.


Subject(s)
Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Ovarian Neoplasms , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors , Xenograft Model Antitumor Assays , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/mortality , Female , Drug Resistance, Neoplasm/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Animals , Mice , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Prognosis , Histone-Lysine N-Methyltransferase
13.
Cell Rep ; 43(5): 114205, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38753485

ABSTRACT

The advent of PARP inhibitors (PARPis) has profoundly changed the treatment landscape of BRCA1/BRCA2-mutated cancers. Despite this, the development of resistance to these compounds has become a major challenge. Hence, a detailed understanding of the mechanisms underlying PARPi sensitivity is crucially needed. Here, we show that loss of the POLE3-POLE4 subunits of DNA polymerase epsilon (Polε) strongly sensitizes cancer cells to PARPis in a Polε level-independent manner. Loss of POLE3-POLE4 is not associated with defective RAD51 foci formation, excluding a major defect in homologous recombination. On the contrary, treatment with PARPis triggers replicative gap accumulation in POLE3-POLE4 knockout (KO) cells in a PRIMPOL-dependent manner. In addition to this, the loss of POLE3-POLE4 further sensitizes BRCA1-silenced cells to PARPis. Importantly, the knockdown of 53BP1 does not rescue PARPi sensitivity in POLE3-POLE4 KO cells, bypassing a common PARPi resistance mechanism and outlining a potential strategy to sensitize cancer cells to PARPis.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Humans , DNA Replication/drug effects , Cell Line, Tumor , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , DNA Polymerase II/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism , Rad51 Recombinase/metabolism
14.
Cell Rep ; 43(5): 114234, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38758646

ABSTRACT

Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) not only suppress PARP1 catalytic activity but also prolong its association to damaged chromatin. Here, through live-cell imaging, we quantify the alterations in PARP1 dynamics and activity elicited by seven PARPis over a wide range of concentrations to deliver a unified mechanism of PARPi-induced PARP1 chromatin retention. We find that gross PARP1 retention at DNA damage sites is jointly governed by catalytic inhibition and allosteric trapping, albeit in a strictly independent manner-catalytic inhibition causes multiple unproductive binding-dissociation cycles of PARP1, while allosteric trapping prolongs the lesion-bound state of PARP1 to greatly increase overall retention. Importantly, stronger PARP1 retention produces greater temporal shifts in downstream DNA repair events and superior cytotoxicity, highlighting PARP1 retention, a complex but precisely quantifiable characteristic of PARPis, as a valuable biomarker for PARPi efficacy. Our approach can be promptly repurposed for interrogating the properties of DNA-repair-targeting compounds beyond PARPis.


Subject(s)
Chromatin , DNA Damage , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Humans , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Chromatin/metabolism , DNA Repair/drug effects
15.
Adv Ther ; 41(6): 2196-2216, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767824

ABSTRACT

Despite advances in our understanding of the molecular landscape of prostate cancer and the development of novel biomarker-driven therapies, the prognosis of patients with metastatic prostate cancer that is resistant to conventional hormonal therapy remains poor. Data suggest that a significant proportion of patients with metastatic castration-resistant prostate cancer (mCRPC) have mutations in homologous recombination repair (HRR) genes and may benefit from poly(ADP-ribose) polymerase (PARP) inhibitors. However, the adoption of HRR gene mutation testing in prostate cancer remains low, meaning there is a missed opportunity to identify patients who may benefit from targeted therapy with PARP inhibition, with or without novel hormonal agents. Here, we review the current knowledge regarding the clinical significance of HRR gene mutations in prostate cancer and discuss the efficacy of PARP inhibition in patients with mCRPC. This comprehensive overview aims to increase the clinical implementation of HRR gene mutation testing and inform future efforts in personalized treatment of prostate cancer.


Subject(s)
Mutation , Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms, Castration-Resistant , Recombinational DNA Repair , Humans , Male , Recombinational DNA Repair/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Prevalence , Prognosis
16.
Sci Adv ; 10(21): eadk8908, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781342

ABSTRACT

DNA replication is a vulnerable cellular process, and its deregulation leads to genomic instability. Here, we demonstrate that chromobox protein homolog 3 (CBX3) binds replication protein A 32-kDa subunit (RPA2) and regulates RPA2 retention at stalled replication forks. CBX3 is recruited to stalled replication forks by RPA2 and inhibits ring finger and WD repeat domain 3 (RFWD3)-facilitated replication restart. Phosphorylation of CBX3 at serine-95 by casein kinase 2 (CK2) kinase augments cadherin 1 (CDH1)-mediated CBX3 degradation and RPA2 dynamics at stalled replication forks, which permits replication fork restart. Increased expression of CBX3 due to gene amplification or CK2 inhibitor treatment sensitizes prostate cancer cells to poly(ADP-ribose) polymerase (PARP) inhibitors while inducing replication stress and DNA damage. Our work reveals CBX3 as a key regulator of RPA2 function and DNA replication, suggesting that CBX3 could serve as an indicator for targeted therapy of cancer using PARP inhibitors.


Subject(s)
Casein Kinase II , DNA Replication , Poly(ADP-ribose) Polymerase Inhibitors , Replication Protein A , Humans , Casein Kinase II/metabolism , Casein Kinase II/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Replication Protein A/metabolism , Replication Protein A/genetics , Cell Line, Tumor , Proteolysis , DNA Damage , Phosphorylation , Chromosomal Proteins, Non-Histone
17.
Sci Adv ; 10(21): eadj1564, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781347

ABSTRACT

Resistance to therapy commonly develops in patients with high-grade serous ovarian carcinoma (HGSC) and triple-negative breast cancer (TNBC), urging the search for improved therapeutic combinations and their predictive biomarkers. Starting from a CRISPR knockout screen, we identified that loss of RB1 in TNBC or HGSC cells generates a synthetic lethal dependency on casein kinase 2 (CK2) for surviving the treatment with replication-perturbing therapeutics such as carboplatin, gemcitabine, or PARP inhibitors. CK2 inhibition in RB1-deficient cells resulted in the degradation of another RB family cell cycle regulator, p130, which led to S phase accumulation, micronuclei formation, and accelerated PARP inhibition-induced aneuploidy and mitotic cell death. CK2 inhibition was also effective in primary patient-derived cells. It selectively prevented the regrowth of RB1-deficient patient HGSC organoids after treatment with carboplatin or niraparib. As about 25% of HGSCs and 40% of TNBCs have lost RB1 expression, CK2 inhibition is a promising approach to overcome resistance to standard therapeutics in large strata of patients.


Subject(s)
Casein Kinase II , Retinoblastoma Binding Proteins , Humans , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/metabolism , Casein Kinase II/genetics , Retinoblastoma Binding Proteins/metabolism , Retinoblastoma Binding Proteins/genetics , Female , Cell Line, Tumor , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Carboplatin/pharmacology , Synthetic Lethal Mutations , DNA Replication/drug effects , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology
18.
Swiss Med Wkly ; 154: 3386, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38754016

ABSTRACT

BACKGROUND AND AIMS OF THE STUDY: Due to its importance for treatment and potential prevention in family members, germline testing for BRCA1/2 in patients with newly diagnosed ovarian cancer is decisive and considered a standard of care. Maintenance therapy with poly(ADP-ribose) polymerase (PARP) inhibitors substantially improves progression-free survival in patients with BRCA mutations and homologous recombination-deficient tumours by inducing synthetic lethality. In Switzerland, they are licensed only for these patients. Therefore, it is crucial to test patients early while they are receiving adjuvant chemotherapy. This study aimed to determine whether genetic counselling followed by homologous recombination deficiency testing is feasible for initialising maintenance therapy within eight weeks and cost-effective in daily practice in Switzerland compared to somatic tumour analysis of all patients at diagnosis. METHODS: This single-centre retrospective study included 44 patients with newly diagnosed high-grade serous ovarian cancer of a Federation of Gynaecology and Obstetrics (FIGO) stage of IIIA-IVB diagnosed between 12/2020 and 12/2022. It collected the outcomes of genetic counselling, germline testing, and somatic Geneva test for homologous recombination deficiency. Delays in initiating maintenance therapy, total testing costs per patient, and progression-free survival were examined to assess feasibility and cost-effectiveness in clinical practice. RESULTS: Thirty-seven of 44 patients (84%) with newly diagnosed ovarian cancer received counselling, of which 34 (77%) were tested for germline BRCA and other homologous recombination repair gene mutations. Five (15%) BRCA and three (9%) other homologous recombination deficiency mutations were identified. Eleven of the remaining 26 patients (42%) had tumours with somatic homologous recombination deficiency. The mean time to the initiation of maintenance therapy of 5.2 weeks was not longer than in studies for market authorisation (SOLO1, PAOLA, and PRIMA). The mean testing costs per patient were 3880 Swiss Franks (CHF), compared to 5624 CHF if all patients were tested at diagnosis with the myChoice CDx test (p <0.0001). CONCLUSION: Using genetic counselling to consent patients with newly diagnosed ovarian cancer for germline testing fulfils the international gold standard. Subsequent somatic homologous recombination deficiency analysis complements testing and identifies more patients who will benefit from PARP inhibitor maintenance therapy. Contrary to previous health cost model studies, the procedure does not increase testing costs in the Swiss population and does not delay maintenance therapy. Therefore, all patients should be offered a primary germline analysis. The challenge for the future will be to ensure sufficient resources for prompt genetic counselling and germline testing.


Subject(s)
Cost-Benefit Analysis , Feasibility Studies , Genetic Counseling , Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/economics , Retrospective Studies , Genetic Counseling/economics , Middle Aged , Switzerland , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/economics , Germ-Line Mutation , Aged , Genetic Testing/economics , Genetic Testing/methods , Adult , Progression-Free Survival
19.
Mol Cell ; 84(10): 1824-1825, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759623
20.
Trials ; 25(1): 301, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702828

ABSTRACT

BACKGROUND: Maintenance therapy with niraparib, a poly(ADP-ribose) polymerase inhibitor, has been shown to extend progression-free survival in patients with newly diagnosed advanced ovarian cancer who responded to first-line platinum-based chemotherapy, regardless of biomarker status. However, there are limited data on niraparib's efficacy and safety in the neoadjuvant setting. The objective of Cohort C of the OPAL trial (OPAL-C) is to evaluate the efficacy, safety, and tolerability of neoadjuvant niraparib treatment compared with neoadjuvant platinum-taxane doublet chemotherapy in patients with newly diagnosed stage III/IV ovarian cancer with confirmed homologous recombination-deficient tumors. METHODS: OPAL is an ongoing global, multicenter, randomized, open-label, phase 2 trial. In OPAL-C, patients will be randomized 1:1 to receive three 21-day cycles of either neoadjuvant niraparib or platinum-taxane doublet neoadjuvant chemotherapy per standard of care. Patients with a complete or partial response per Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST v1.1) will then undergo interval debulking surgery; patients with stable disease may proceed to interval debulking surgery or alternative therapy at the investigator's discretion. Patients with disease progression will exit the study treatment and proceed to alternative therapy at the investigator's discretion. After interval debulking surgery, all patients will receive up to three 21-day cycles of platinum-taxane doublet chemotherapy followed by niraparib maintenance therapy for up to 36 months. Adult patients with newly diagnosed stage III/IV ovarian cancer eligible to receive neoadjuvant platinum-taxane doublet chemotherapy followed by interval debulking surgery may be enrolled. Patients must have tumors that are homologous recombination-deficient. The primary endpoint is the pre-interval debulking surgery unconfirmed overall response rate, defined as the investigator-assessed percentage of patients with unconfirmed complete or partial response on study treatment before interval debulking surgery per RECIST v1.1. DISCUSSION: OPAL-C explores the use of niraparib in the neoadjuvant setting as an alternative to neoadjuvant platinum-taxane doublet chemotherapy to improve postsurgical residual disease outcomes for patients with ovarian cancer with homologous recombination-deficient tumors. Positive findings from this approach could significantly impact preoperative ovarian cancer therapy, particularly for patients who are ineligible for primary debulking surgery. TRIAL REGISTRATION: ClinicalTrials.gov NCT03574779. Registered on February 28, 2022.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Indazoles , Neoadjuvant Therapy , Neoplasm Staging , Ovarian Neoplasms , Piperidines , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Neoadjuvant Therapy/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Piperidines/adverse effects , Piperidines/administration & dosage , Piperidines/therapeutic use , Indazoles/adverse effects , Indazoles/therapeutic use , Indazoles/administration & dosage , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Progression-Free Survival , Clinical Trials, Phase II as Topic , Homologous Recombination , Bridged-Ring Compounds/administration & dosage , Bridged-Ring Compounds/therapeutic use , Bridged-Ring Compounds/adverse effects , Piperazines/adverse effects , Piperazines/administration & dosage , Piperazines/therapeutic use , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...