Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cancer Res ; 79(2): 311-319, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30482774

ABSTRACT

PARP inhibitors (PARPi) have shown remarkable therapeutic efficacy against BRCA1/2-mutant cancers through a synthetic lethal interaction. PARPi exert their therapeutic effects mainly through the blockade of ssDNA damage repair, which leads to the accumulation of toxic DNA double-strand breaks specifically in cancer cells with DNA repair deficiency (BCRAness), including those harboring BRCA1/2 mutations. Here we show that PARPi-mediated modulation of the immune response contributes to their therapeutic effects independently of BRCA1/2 mutations. PARPi promoted accumulation of cytosolic DNA fragments because of unresolved DNA lesions, which in turn activated the DNA-sensing cGAS-STING pathway and stimulated production of type I IFNs to induce antitumor immunity independent of BRCAness. These effects of PARPi were further enhanced by immune checkpoint blockade. Overall, these results provide a mechanistic rationale for using PARPi as immunomodulatory agents to harness the therapeutic efficacy of immune checkpoint blockade. SIGNIFICANCE: This work uncovers the mechanism behind the clinical efficacy of PARPi in patients with both BRCA-wild-type and BRCA-mutant tumors and provides a rationale for combining PARPi with immunotherapy in patients with cancer.


Subject(s)
Antibodies/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , B7-H1 Antigen/antagonists & inhibitors , Colorectal Neoplasms/drug therapy , Membrane Proteins/immunology , Ovarian Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Animals , Antibodies/immunology , Antineoplastic Combined Chemotherapy Protocols/immunology , B7-H1 Antigen/immunology , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , DNA/genetics , DNA/immunology , Drug Synergism , Female , Genes, BRCA1 , Genes, BRCA2 , Humans , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Ovarian Neoplasms/immunology , Poly(ADP-ribose) Polymerase Inhibitors/immunology , Signal Transduction/drug effects , Signal Transduction/immunology
2.
Clin Cancer Res ; 23(14): 3711-3720, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28167507

ABSTRACT

Purpose: To explore whether a cross-talk exists between PARP inhibition and PD-L1/PD-1 immune checkpoint axis, and determine whether blockade of PD-L1/PD-1 potentiates PARP inhibitor (PARPi) in tumor suppression.Experimental Design: Breast cancer cell lines, xenograft tumors, and syngeneic tumors treated with PARPi were assessed for PD-L1 expression by immunoblotting, IHC, and FACS analyses. The phospho-kinase antibody array screen was used to explore the underlying mechanism of PARPi-induced PD-L1 upregulation. The therapeutic efficacy of PARPi alone, PD-L1 blockade alone, or their combination was tested in a syngeneic tumor model. The tumor-infiltrating lymphocytes and tumor cells isolated from syngeneic tumors were analyzed by CyTOF and FACS to evaluate the activity of antitumor immunity in the tumor microenvironment.Results: PARPi upregulated PD-L1 expression in breast cancer cell lines and animal models. Mechanistically, PARPi inactivated GSK3ß, which in turn enhanced PARPi-mediated PD-L1 upregulation. PARPi attenuated anticancer immunity via upregulation of PD-L1, and blockade of PD-L1 resensitized PARPi-treated cancer cells to T-cell killing. The combination of PARPi and anti-PD-L1 therapy compared with each agent alone significantly increased the therapeutic efficacy in vivoConclusions: Our study demonstrates a cross-talk between PARPi and tumor-associated immunosuppression and provides evidence to support the combination of PARPi and PD-L1 or PD-1 immune checkpoint blockade as a potential therapeutic approach to treat breast cancer. Clin Cancer Res; 23(14); 3711-20. ©2017 AACR.


Subject(s)
B7-H1 Antigen/immunology , Breast Neoplasms/drug therapy , Poly (ADP-Ribose) Polymerase-1/immunology , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Programmed Cell Death 1 Receptor/immunology , Animals , B7-H1 Antigen/genetics , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunosuppression Therapy , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/immunology , Programmed Cell Death 1 Receptor/genetics , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...