Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.811
Filter
1.
Development ; 151(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38775708

ABSTRACT

In utero infection and maternal inflammation can adversely impact fetal brain development. Maternal systemic illness, even in the absence of direct fetal brain infection, is associated with an increased risk of neuropsychiatric disorders in affected offspring. The cell types mediating the fetal brain response to maternal inflammation are largely unknown, hindering the development of novel treatment strategies. Here, we show that microglia, the resident phagocytes of the brain, highly express receptors for relevant pathogens and cytokines throughout embryonic development. Using a rodent maternal immune activation (MIA) model in which polyinosinic:polycytidylic acid is injected into pregnant mice, we demonstrate long-lasting transcriptional changes in fetal microglia that persist into postnatal life. We find that MIA induces widespread gene expression changes in neuronal and non-neuronal cells; importantly, these responses are abolished by selective genetic deletion of microglia, indicating that microglia are required for the transcriptional response of other cortical cell types to MIA. These findings demonstrate that microglia play a crucial durable role in the fetal response to maternal inflammation, and should be explored as potential therapeutic cell targets.


Subject(s)
Brain , Inflammation , Microglia , Poly I-C , Animals , Microglia/metabolism , Microglia/immunology , Female , Pregnancy , Mice , Brain/pathology , Brain/immunology , Brain/metabolism , Inflammation/pathology , Inflammation/genetics , Poly I-C/pharmacology , Fetus , Mice, Inbred C57BL , Gene Expression Regulation, Developmental , Neurons/metabolism
2.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791517

ABSTRACT

Maternal immune activation (MIA) is a risk factor for multiple neurodevelopmental disorders; however, animal models developed to explore MIA mechanisms are sensitive to experimental factors, which has led to complexity in previous reports of the MIA phenotype. We sought to characterize an MIA protocol throughout development to understand how prenatal immune insult alters the trajectory of important neurodevelopmental processes, including the microglial regulation of synaptic spines and complement signaling. We used polyinosinic:polycytidylic acid (polyI:C) to induce MIA on gestational day 9.5 in CD-1 mice, and measured their synaptic spine density, microglial synaptic pruning, and complement protein expression. We found reduced dendritic spine density in the somatosensory cortex starting at 3-weeks-of-age with requisite increases in microglial synaptic pruning and phagocytosis, suggesting spine density loss was caused by increased microglial synaptic pruning. Additionally, we showed dysregulation in complement protein expression persisting into adulthood. Our findings highlight disruptions in the prenatal environment leading to alterations in multiple dynamic processes through to postnatal development. This could potentially suggest developmental time points during which synaptic processes could be measured as risk factors or targeted with therapeutics for neurodevelopmental disorders.


Subject(s)
Complement System Proteins , Dendritic Spines , Microglia , Poly I-C , Animals , Microglia/metabolism , Microglia/drug effects , Microglia/immunology , Mice , Female , Pregnancy , Dendritic Spines/metabolism , Poly I-C/pharmacology , Complement System Proteins/metabolism , Complement System Proteins/immunology , Prenatal Exposure Delayed Effects , Phagocytosis , Disease Models, Animal , Somatosensory Cortex/drug effects , Somatosensory Cortex/metabolism , Synapses/metabolism , Synapses/drug effects , Neuronal Plasticity/drug effects
3.
Fish Shellfish Immunol ; 149: 109609, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705549

ABSTRACT

As a crucial member of pattern-recognition receptors (PRRs), the Tolls/Toll-like receptors (TLRs) gene family has been proven to be involved in innate immunity in crustaceans. In this study, nine members of TLR gene family were identified from the mud crab (Scylla paramamosain) transcriptome, and the structure and phylogeny of different SpTLRs were analyzed. It was found that different SpTLRs possessed three conserved structures in the TIR domain. Meanwhile, the expression patterns of different Sptlr genes in examined tissues detected by qRT-PCR had wide differences. Compared with other Sptlr genes, Sptlr-6 gene was significantly highly expressed in the hepatopancreas and less expressed in other tissues. Therefore, the function of Sptlr-6 was further investigated. The expression of the Sptlr-6 gene was up-regulated by Poly I: C, PGN stimulation and Vibrio parahaemolyticus infection. In addition, the silencing of Sptlr-6 in hepatopancreas mediated by RNAi technology resulted in the significant decrease of several conserved genes involved in innate immunity in mud crab after V. parahaemolyticus infection, including relish, myd88, dorsal, anti-lipopolysaccharide factor (ALF), anti-lipopolysaccharide factor 2 (ALF-2) and glycine-rich antimicrobial peptide (glyamp). This study provided new knowledge for the role of the Sptlr-6 gene in defense against V. parahaemolyticus infection in S. paramamosain.


Subject(s)
Arthropod Proteins , Brachyura , Immunity, Innate , Phylogeny , Toll-Like Receptors , Vibrio parahaemolyticus , Animals , Brachyura/immunology , Brachyura/genetics , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Arthropod Proteins/chemistry , Immunity, Innate/genetics , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Toll-Like Receptors/chemistry , Vibrio parahaemolyticus/physiology , Gene Expression Regulation/immunology , Amino Acid Sequence , Sequence Alignment , Gene Expression Profiling , Poly I-C/pharmacology
4.
PLoS One ; 19(5): e0302286, 2024.
Article in English | MEDLINE | ID: mdl-38805503

ABSTRACT

Studies of the interplay between metabolism and immunity, known as immunometabolism, is steadily transforming immunological research into new understandings of how environmental cues like diet are affecting innate and adaptive immune responses. The aim of this study was to explore antiviral transcriptomic responses under various levels of polyunsaturated fatty acid. Atlantic salmon kidney cells (ASK cell line) were incubated for one week in different levels of the unsaturated n-3 eicosapentaneoic acid (EPA) resulting in cellular levels ranging from 2-20% of total fatty acid. These cells were then stimulated with the viral mimic and interferon inducer poly I:C (30 ug/ml) for 24 hours before total RNA was isolated and sequenced for transcriptomic analyses. Up to 200 uM EPA had no detrimental effects on cell viability and induced very few transcriptional changes in these cells. However, in combination with poly I:C, our results shows that the level of EPA in the cellular membranes exert profound dose dependent effects of the transcriptional profiles induced by this treatment. Metabolic pathways like autophagy, apelin and VEGF signaling were attenuated by EPA whereas transcripts related to fatty acid metabolism, ferroptosis and the PPAR signaling pathways were upregulated. These results suggests that innate antiviral responses are heavily influenced by the fatty acid profile of salmonid cells and constitute another example of the strong linkage between general metabolic pathways and inflammatory responses.


Subject(s)
Eicosapentaenoic Acid , Immunity, Innate , Kidney , Poly I-C , Salmo salar , Animals , Salmo salar/immunology , Salmo salar/genetics , Salmo salar/virology , Immunity, Innate/drug effects , Eicosapentaenoic Acid/pharmacology , Cell Line , Poly I-C/pharmacology , Kidney/drug effects , Kidney/immunology , Kidney/metabolism , Transcriptome/drug effects , Signal Transduction/drug effects , Cell Survival/drug effects , Gene Expression Profiling
5.
PLoS One ; 19(5): e0302913, 2024.
Article in English | MEDLINE | ID: mdl-38728358

ABSTRACT

In the fight against antimicrobial resistance, host defense peptides (HDPs) are increasingly referred to as promising molecules for the design of new antimicrobial agents. In terms of their future clinical use, particularly small, synthetic HDPs offer several advantages, based on which their application as feed additives has aroused great interest in the poultry sector. However, given their complex mechanism of action and the limited data about the cellular effects in production animals, their investigation is of great importance in these species. The present study aimed to examine the immunomodulatory activity of the synthetic HDP Pap12-6 (PAP) solely and in inflammatory environments evoked by lipoteichoic acid (LTA) and polyinosinic-polycytidylic acid (Poly I:C), in a primary chicken hepatocyte-non-parenchymal cell co-culture. Based on the investigation of the extracellular lactate dehydrogenase (LDH) activity, PAP seemed to exert no cytotoxicity on hepatic cells, suggesting its safe application. Moreover, PAP was able to influence the immune response, reflected by the decreased production of interleukin (IL)-6, IL-8, and "regulated on activation, normal T cell expressed and secreted"(RANTES), as well as the reduced IL-6/IL-10 ratio in Poly I:C-induced inflammation. PAP also diminished the levels of extracellular H2O2 and nuclear factor erythroid 2-related factor 2 (Nrf2) when applied together with Poly I:C and in both inflammatory conditions, respectively. Consequently, PAP appeared to display potent immunomodulatory activity, preferring to act towards the cellular anti-inflammatory and antioxidant processes. These findings confirm that PAP might be a promising alternative for designing novel antimicrobial immunomodulatory agents for chickens, thereby contributing to the reduction of the use of conventional antibiotics.


Subject(s)
Chickens , Hepatocytes , Lipopolysaccharides , Poly I-C , Animals , Hepatocytes/drug effects , Hepatocytes/immunology , Hepatocytes/metabolism , Poly I-C/pharmacology , Lipopolysaccharides/pharmacology , Immunologic Factors/pharmacology , Teichoic Acids/pharmacology , Cells, Cultured , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Coculture Techniques , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Cytokines/metabolism , Antimicrobial Cationic Peptides/pharmacology
6.
Biol Pharm Bull ; 47(5): 946-954, 2024.
Article in English | MEDLINE | ID: mdl-38735732

ABSTRACT

There is accumulating evidence that selective serotonin reuptake inhibitors (SSRIs), clinically used as antidepressants, have a beneficial effect on inflammatory diseases such as coronavirus disease 2019 (COVID-19). We previously compared the inhibitory effects of five U.S. Food and Drug Administration (FDA)-approved SSRIs on the production of an inflammatory cytokine, interleukin-6 (IL-6), and concluded that fluoxetine (FLX) showed the most potent anti-inflammatory activity. Here, we investigated the structure-activity relationship of FLX for anti-inflammatory activity towards J774.1 murine macrophages. FLX suppressed IL-6 production induced by the TLR3 agonist polyinosinic-polycytidylic acid (poly(I : C)) with an IC50 of 4.76 µM. A derivative of FLX containing chlorine instead of the methylamino group lacked activity, suggesting that the methylamino group is important for the anti-inflammatory activity. FLX derivatives bearing an N-propyl or N-(pyridin-3-yl)methyl group in place of the N-methyl group exhibited almost the same activity as FLX. Other derivatives showed weaker activity, and the N-phenyl and N-(4-trifluoromethyl)benzyl derivatives were inactive. The chlorine-containing derivative also lacked inhibitory activity against TLR9- or TLR4-mediated IL-6 production. These derivatives showed similar structure-activity relationships for TLR3- and TLR9-mediated inflammatory responses. However, the activities of all amino group-containing derivatives against the TLR4-mediated inflammatory response were equal to or higher than the activity of FLX. These results indicate that the substituent at the nitrogen atom in FLX strongly influences the anti-inflammatory effect.


Subject(s)
Anti-Inflammatory Agents , Fluoxetine , Interleukin-6 , Structure-Activity Relationship , Animals , Fluoxetine/pharmacology , Mice , Interleukin-6/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Cell Line , Macrophages/drug effects , Macrophages/metabolism , Cytokines/metabolism , Toll-Like Receptor 3/metabolism , Poly I-C/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Selective Serotonin Reuptake Inhibitors/chemistry , Inflammation/drug therapy
7.
Vet Immunol Immunopathol ; 272: 110770, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735115

ABSTRACT

Interferon lambda (IFN-λ) is an important type III interferon triggered mainly by viral infection. IFN-λ binds to their heterodimeric receptors and signals through JAK-STAT pathways similar to type I IFN. In this study, we deduced the buffalo IFN-λ sequences through the polymerase chain reaction, and then studied IFN-λ's expression patterns in different tissues, and post induction with poly I:C and live MRSA using RT-qPCR. The full-length sequences of buffalo IFN-λ3, IFN-λ receptors, and a transcript variant of IFN-λ4 were determined. IFN-λ1 is identified as a pseudogene. Virus response elements and a recombination hotspot factor was observed in the regulatory region of IFN-λ. The IFN-λ3 expressed highest in lungs and monocytes but IFN-λ4 did not. The expression of Interferon Lambda Receptor 1 was tissue specific, while Interleukin 10 Receptor subunit beta was ubiquitous. Following poly I:C induction, IFN-λ3 expression was primarily observed in epithelial cells as opposed to fibroblasts, displaying cell type-dependent expression. The cytosolic RNA sensors were expressed highest in endometrial epithelial cells, whereas the endosomal receptor was higher in fibroblasts. 2',5'-oligoadenylate synthetase expressed higher in fibroblasts, myxoma resistance protein 1 and IFN-stimulated gene 56 in epithelial cells, displaying cell-specific antiviral response of the interferon stimulated genes (ISGs). The endometrial epithelial cells expressed IFN-λ3 after live S. aureus infection indicating its importance in bacterial infection. The induction of IFN-λ3 was S. aureus isolate specific at the same multiplicity of infection (MOI). This study elucidates the IFN-λ sequences, diverse expression patterns revealing tissue specificity, and specificity in response to poly I:C and bacterial stimuli, emphasising its crucial role in innate immune response modulation.


Subject(s)
Buffaloes , Interferons , Animals , Buffaloes/immunology , Buffaloes/genetics , Interferons/genetics , Interferons/immunology , Poly I-C/pharmacology , Gene Expression Profiling/veterinary , Phylogeny , Interferon Lambda , Amino Acid Sequence , Receptors, Interferon/genetics , Receptors, Interferon/immunology , Female , 2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/metabolism , Staphylococcus aureus/immunology
8.
Nat Commun ; 15(1): 3882, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719809

ABSTRACT

In this randomized phase II clinical trial, we evaluated the effectiveness of adding the TLR agonists, poly-ICLC or resiquimod, to autologous tumor lysate-pulsed dendritic cell (ATL-DC) vaccination in patients with newly-diagnosed or recurrent WHO Grade III-IV malignant gliomas. The primary endpoints were to assess the most effective combination of vaccine and adjuvant in order to enhance the immune potency, along with safety. The combination of ATL-DC vaccination and TLR agonist was safe and found to enhance systemic immune responses, as indicated by increased interferon gene expression and changes in immune cell activation. Specifically, PD-1 expression increases on CD4+ T-cells, while CD38 and CD39 expression are reduced on CD8+ T cells, alongside an increase in monocytes. Poly-ICLC treatment amplifies the induction of interferon-induced genes in monocytes and T lymphocytes. Patients that exhibit higher interferon response gene expression demonstrate prolonged survival and delayed disease progression. These findings suggest that combining ATL-DC with poly-ICLC can induce a polarized interferon response in circulating monocytes and CD8+ T cells, which may represent an important blood biomarker for immunotherapy in this patient population.Trial Registration: ClinicalTrials.gov Identifier: NCT01204684.


Subject(s)
CD8-Positive T-Lymphocytes , Cancer Vaccines , Carboxymethylcellulose Sodium/analogs & derivatives , Dendritic Cells , Glioma , Interferons , Poly I-C , Polylysine/analogs & derivatives , Humans , Dendritic Cells/immunology , Dendritic Cells/drug effects , Glioma/immunology , Glioma/therapy , Female , Male , Middle Aged , Cancer Vaccines/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/therapeutic use , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Poly I-C/administration & dosage , Poly I-C/pharmacology , Adult , Toll-Like Receptors/agonists , Imidazoles/pharmacology , Imidazoles/therapeutic use , Aged , Vaccination , Monocytes/immunology , Monocytes/drug effects , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects , Immunotherapy/methods , Toll-Like Receptor Agonists
9.
Biochem Biophys Res Commun ; 719: 150103, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38761636

ABSTRACT

The RNA-binding protein PKR serves as a crucial antiviral innate immune factor that globally suppresses translation by sensing viral double-stranded RNA (dsRNA) and by phosphorylating the translation initiation factor eIF2α. Recent findings have unveiled that single-stranded RNAs (ssRNAs), including in vitro transcribed (IVT) mRNA, can also bind to and activate PKR. However, the precise mechanism underlying PKR activation by ssRNAs, remains incompletely understood. Here, we developed a NanoLuc Binary Technology (NanoBiT)-based in vitro PKR dimerization assay to assess the impact of ssRNAs on PKR dimerization. Our findings demonstrate that, akin to double-stranded polyinosinic:polycytidylic acid (polyIC), an encephalomyocarditis virus (EMCV) RNA, as well as NanoLuc luciferase (Nluc) mRNA, can induce PKR dimerization. Conversely, homopolymeric RNA lacking secondary structure fails to promote PKR dimerization, underscoring the significance of secondary structure in this process. Furthermore, adenovirus VA RNA 1, another ssRNA, impedes PKR dimerization by competing with Nluc mRNA. Additionally, we observed structured ssRNAs capable of forming G-quadruplexes induce PKR dimerization. Collectively, our results indicate that ssRNAs have the ability to either induce or inhibit PKR dimerization, thus representing potential targets for the development of antiviral and anti-inflammatory agents.


Subject(s)
Encephalomyocarditis virus , Protein Multimerization , RNA, Double-Stranded , RNA, Viral , eIF-2 Kinase , eIF-2 Kinase/metabolism , eIF-2 Kinase/chemistry , Humans , RNA, Viral/metabolism , RNA, Viral/genetics , RNA, Viral/chemistry , Encephalomyocarditis virus/genetics , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/chemistry , Poly I-C/pharmacology , Nucleic Acid Conformation
10.
Physiol Behav ; 280: 114550, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614416

ABSTRACT

Neuroinflammation in the early postnatal period can disturb trajectories of the completion of normal brain development and can lead to mental illnesses, such as depression, anxiety disorders, and personality disorders later in life. In our study, we focused on evaluating short- and long-term effects of neonatal inflammation induced by lipopolysaccharide, poly(I:C), or their combination in female and male C57BL/6 and BTBR mice. We chose the BTBR strain as potentially more susceptible to neonatal inflammation because these mice have behavioral, neuroanatomical, and physiological features of autism spectrum disorders, an abnormal immune response, and several structural aberrations in the brain. Our results indicated that BTBR mice are more sensitive to the influence of the neonatal immune activation (NIA) on the formation of neonatal reflexes than C57BL/6 mice are. In these experiments, the injection of lipopolysaccharide had an effect on the formation of the cliff aversion reflex in female BTBR mice. Nonetheless, NIA had no delayed effects on either social behavior or anxiety-like behavior in juvenile and adolescent BTBR and C57BL/6 mice. Altogether, our data show that NIA has mimetic-, age-, and strain-dependent effects on the development of neonatal reflexes and on exploratory activity in BTBR and C57BL/6 mice.


Subject(s)
Animals, Newborn , Inflammation , Lipopolysaccharides , Mice, Inbred C57BL , Poly I-C , Animals , Female , Lipopolysaccharides/pharmacology , Male , Mice , Inflammation/chemically induced , Poly I-C/pharmacology , Anxiety/chemically induced , Social Behavior , Disease Models, Animal , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Behavior, Animal/drug effects , Behavior, Animal/physiology , Reflex/physiology , Reflex/drug effects
11.
EMBO Mol Med ; 16(5): 1193-1219, 2024 May.
Article in English | MEDLINE | ID: mdl-38671318

ABSTRACT

Radiotherapy (RT) has been reported to induce abscopal effect in advanced hepatocellular carcinoma (HCC), but such phenomenon was only observed in sporadic cases. Here, we demonstrated that subcutaneous administration of Toll-like receptor 3 (TLR3) agonist poly(I:C) could strengthen the abscopal effect during RT through activating tumor cell ferroptosis signals in bilateral HCC subcutaneous tumor mouse models, which could be significantly abolished by TLR3 knock-out or ferroptosis inhibitor ferrostatin-1. Moreover, poly(I:C) could promote the presentation of tumor neoantigens by dendritic cells to enhance the recruitment of activated CD8+ T cells into distant tumor tissues for inducing tumor cell ferroptosis during RT treatment. Finally, the safety and feasibility of combining poly(I:C) with RT for treating advanced HCC patients were further verified in a prospective clinical trial. Thus, enhancing TLR3 signaling activation during RT could provide a novel strategy for strengthening abscopal effect to improve the clinical benefits of advanced HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Poly I-C , Toll-Like Receptor 3 , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 3/agonists , Animals , Carcinoma, Hepatocellular/radiotherapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/radiotherapy , Liver Neoplasms/pathology , Humans , Mice , Poly I-C/pharmacology , Male , Female , Cell Line, Tumor , Mice, Inbred C57BL , Disease Models, Animal , Mice, Knockout , Middle Aged
12.
Schizophr Res ; 267: 432-440, 2024 May.
Article in English | MEDLINE | ID: mdl-38642484

ABSTRACT

Maternal immune activation (MIA) during pregnancy is known to increase the risk of development of schizophrenia in the offspring. Sex steroid hormone analogues have been proposed as potential antipsychotic treatments but the mechanisms of action involved remain unclear. Estrogen has been shown to alter N-methyl-d-aspartate (NMDA) receptor binding in the brain. We therefore studied the effect of chronic treatment with 17ß-estradiol, its isomer, 17α-estradiol, and the selective estrogen receptor modulator, raloxifene, on MIA-induced psychosis-like behaviour and the effect of the NMDA receptor antagonist, MK-801. Pregnant rats were treated with saline or the viral mimetic, poly(I:C), on gestational day 15. Adult female offspring were tested for changes in baseline prepulse inhibition (PPI) and the effects of acute treatment with MK-801 on PPI and locomotor activity. Poly(I:C) offspring had significantly lower baseline PPI compared to control offspring, and this effect was prevented by 17ß-estradiol and raloxifene, but not 17α-estradiol. MK-801 reduced PPI in control offspring but had no effect in poly(I:C) offspring treated with vehicle. Chronic treatment with 17ß-estradiol and raloxifene restored the effect of MK-801 on PPI. There were no effects of MIA or estrogenic treatment on MK-801 induced locomotor hyperactivity. These results show that MIA affects baseline PPI as well as NMDA receptor-mediated regulation of PPI in female rats, and strengthen the view that estrogenic treatment may have antipsychotic effects.


Subject(s)
Disease Models, Animal , Dizocilpine Maleate , Estradiol , Poly I-C , Prenatal Exposure Delayed Effects , Prepulse Inhibition , Raloxifene Hydrochloride , Receptors, N-Methyl-D-Aspartate , Schizophrenia , Animals , Female , Estradiol/pharmacology , Raloxifene Hydrochloride/pharmacology , Schizophrenia/drug therapy , Schizophrenia/chemically induced , Pregnancy , Prepulse Inhibition/drug effects , Dizocilpine Maleate/pharmacology , Poly I-C/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Rats , Excitatory Amino Acid Antagonists/pharmacology , Male , Selective Estrogen Receptor Modulators/pharmacology , Estrogens/pharmacology , Motor Activity/drug effects
13.
Fish Shellfish Immunol ; 149: 109581, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670412

ABSTRACT

Deubiquitinating enzyme A (DUBA), a member of the ovarian tumor (OTU) subfamily of deubiquitinases (DUBs), is recognized for its negative regulatory role in type I interferon (IFN) expression downstream of Toll-like receptor 3 (TLR3). However, its involvement in the TLR3 signaling pathway in fish remains largely unexplored. In this study, we investigated the regulatory role of DUBA (OmDUBA) in the TLR3 response in rainbow trout (Oncorhynchus mykiss). OmDUBA features a conserved OTU domain, and its expression increased in RTH-149 cells following stimulation with the TLR3 agonist poly(I:C). Gain- and loss-of-function experiments demonstrated that OmDUBA attenuated the activation of TANK-binding kinase 1 (TBK1), resulting in a subsequent reduction in type I IFN expression and IFN-stimulated response element (ISRE) activation in poly(I:C)-stimulated cells. OmDUBA interacted with TRAF3, a crucial mediator in TLR3-mediated type I IFN production. Under poly(I:C) stimulation, there was an augmentation in the K63-linked polyubiquitination of TRAF3, a process significantly inhibited upon OmDUBA overexpression. These findings suggest that OmDUBA may function similarly to its mammalian counterparts in downregulating the poly(I:C)-induced type I IFN response in rainbow trout by removing the K63-linked ubiquitin chain on TRAF3. Our study provides novel insights into the role of fish DUBA in antiviral immunity.


Subject(s)
Fish Proteins , Interferon Type I , Oncorhynchus mykiss , Poly I-C , Signal Transduction , TNF Receptor-Associated Factor 3 , Animals , Oncorhynchus mykiss/immunology , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , TNF Receptor-Associated Factor 3/immunology , Interferon Type I/immunology , Interferon Type I/genetics , Interferon Type I/metabolism , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , Signal Transduction/immunology , Poly I-C/pharmacology , Immunity, Innate , Gene Expression Regulation/immunology , Ubiquitination , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 3/immunology
14.
Fish Shellfish Immunol ; 149: 109591, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679344

ABSTRACT

Toll-like receptors (TLRs) are one of the extensively studied pattern recognition receptors (PRRs) and play crucial roles in the immune responses of vertebrates and invertebrates. In this study, 14 TLR genes were identified from the genome-wide data of Octopus sinensis. Protein structural domain analysis showed that most TLR proteins had three main structural domains: extracellular leucine-rich repeats (LRR), transmembrane structural domains, and intracellular Toll/IL-1 receptor domain (TIR). The results of subcellular localization prediction showed that the TLRs of O. sinensis were mainly located on the plasma membrane. The results of quantitative real-time PCR (qPCR) showed that the detected TLR genes were differentially expressed in the hemolymph, white bodies, hepatopancreas, gills, gill heart, intestine, kidney, and salivary gland of O. sinensis. Furthermore, the present study investigated the expression changes of O. sinensis TLR genes in hemolymph, white bodies, gills, and hepatopancreas in different phases (6 h, 12 h, 24 h, 48 h) after stimulation with PGN, poly(I: C) and Vibrio parahaemolyticus. The expression of most of the TLR genes was upregulated at different time points after infection with pathogens or stimulation with PAMPs, a few genes were unchanged or even down-regulated, and many of the TLR genes were much higher after V. parahaemolyticus infection than after PGN and poly(I:C) stimulation. The results of this study contribute to a better understanding of the molecular immune mechanisms of O. sinensis TLRs genes in resistance to pathogen stimulation.


Subject(s)
Gene Expression Regulation , Immunity, Innate , Octopodiformes , Toll-Like Receptors , Vibrio parahaemolyticus , Animals , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Toll-Like Receptors/chemistry , Vibrio parahaemolyticus/physiology , Octopodiformes/genetics , Octopodiformes/immunology , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Phylogeny , Gene Expression Profiling/veterinary , Poly I-C/pharmacology , Peptidoglycan/pharmacology , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Arthropod Proteins/chemistry , Pathogen-Associated Molecular Pattern Molecules/pharmacology
15.
Fish Shellfish Immunol ; 149: 109560, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615702

ABSTRACT

The JAK (Janus kinase)-STAT (Signal transducer and activator of transcription) is a well-known functional signaling pathway that plays a key role in several important biological activities such as apoptosis, cell proliferation, differentiation, and immunity. However, limited studies have explored the functions of STAT genes in invertebrates. In the present study, the gene sequences of two STAT genes from the Pacific oyster (Crassostrea gigas), termed CgSTAT-Like-1 (CgSTAT-L1) and CgSTAT-Like-2 (CgSTAT-L2), were obtained using polymerase chain reaction (PCR) amplification and cloning. Multiple sequence comparisons revealed that the sequences of crucial domains of these proteins were conserved, and the similarity with the protein sequence of other molluscan STAT is close to 90 %. The phylogenetic analyses indicated that CgSTAT-L1 and CgSTAT-L2 are novel members of the mollusk STAT family. Quantitative real-time PCR results implied that CgSTAT-L1 and CgSTAT-L2 mRNA expression was found in all tissues, and significantly induced after challenge with lipopolysaccharide (LPS), peptidoglycan (PGN), or poly(I:C). After that, dual-luciferase reporter assays denoted that overexpression of CgSTAT-L1 and CgSTAT-L2 significantly activated the NF-κB signaling, and, interestingly, the overexpressed CgSTAT proteins potentiated LPS-induced NF-κB activation. These results contributed a preliminary analysis of the immune-related function of STAT genes in oysters, laying the foundation for deeper understanding of the function of invertebrate STAT genes.


Subject(s)
Amino Acid Sequence , Crassostrea , Phylogeny , STAT Transcription Factors , Sequence Alignment , Animals , Crassostrea/genetics , Crassostrea/immunology , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Sequence Alignment/veterinary , Lipopolysaccharides/pharmacology , Immunity, Innate/genetics , Peptidoglycan/pharmacology , Poly I-C/pharmacology , Base Sequence , Gene Expression Regulation/immunology , Gene Expression Regulation/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , DNA, Complementary/genetics , Cloning, Molecular , Signal Transduction
16.
Fish Shellfish Immunol ; 149: 109568, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636741

ABSTRACT

Pompano fishes have been widely farmed worldwide. As a representative commercial marine species of the Carangidae family, the golden pompano (Trachinotus blochii) has gained significant popularity in China and worldwide. However, because of rapid growth and high-density aquaculture, the golden pompano has become seriously threatened by various diseases. Cell lines are the most cost-effective resource for in vitro studies and are widely used for physiological and pathological research owing to their accessibility and convenience. In this study, we established a novel immortal cell line, GPF (Golden pompano fin cells). GPF has been passaged over 69 generations for 10 months. The morphology, adhesion and extension processes of GPF were evaluated using light and electron microscopy. GPF cells were passaged every 3 days with L-15 containing 20 % fetal bovine serum (FBS) at 1:3. The optimum conditions for GPF growth were 28 °C and a 20 % FBS concentration. DNA sequencing of 18S rRNA and mitochondrial 16S rRNA confirmed that GPF was derived from the golden pompano. Chromosomal analysis revealed that the number pattern of GPF was 48 chromosomes. Transfection experiments demonstrated that GPF could be utilized to express foreign genes. Furthermore, heavy metals (Cd, Cu, and Fe) exhibited dose-dependent cytotoxicity against GPF. After polyinosinic-polycytidylic acid (poly I:C) treatment, transcription of the retinoic acid-inducible gene I-like receptor (RLR) pathway genes, including mda5, mita, tbk1, irf3, and irf7 increased, inducing the expression of interferon (IFN) and anti-viral proteins in GPF cells. In addition, lipopolysaccharide (LPS) stimulation up-regulated the expression of inflammation-related factors, including myd88, irak1, nfκb, il1ß, il6, and cxcl10 expression. To the best of our knowledge, this is the first study on the immune response signaling pathways of the golden pompano using an established fin cell line. In this study, we describe a preliminary investigation of the GPF cell line immune response to poly I:C and LPS, and provide a more rapid and efficient experimental material for research on marine fish immunology.


Subject(s)
Fish Diseases , Animals , Cell Line , Fish Diseases/immunology , Animal Fins/immunology , Poly I-C/pharmacology , Immunity, Innate , Perciformes/immunology , Perciformes/genetics , Fishes/immunology
17.
Int J Biol Macromol ; 266(Pt 2): 131282, 2024 May.
Article in English | MEDLINE | ID: mdl-38565369

ABSTRACT

IRF9 is a crucial component in the JAK-STAT pathway. IRF9 interacts with STAT1 and STAT2 to form IFN-I-stimulated gene factor 3 (ISGF3) in response to type I IFN stimulation, which promotes ISG transcription. However, the mechanism by which IFN signaling regulates Malabar grouper (Epinephelus malabaricus) IRF9 is still elusive. Here, we explored the nd tissue-specific mRNA distribution of the MgIRF9 gene, as well as its antiviral function in E. malabaricus. MgIRF9 encodes a protein of 438 amino acids with an open reading frame of 1317 base pairs. MgIRF9 mRNA was detected in all tissues of a healthy M. grouper, with the highest concentrations in the muscle, gills, and brain. It was significantly up-regulated by nervous necrosis virus infection and poly (I:C) stimulation. The gel mobility shift test demonstrated a high-affinity association between MgIRF9 and the promoter of zfIFN in vitro. In GK cells, grouper recombinant IFN-treated samples showed a significant response in ISGs and exhibited antiviral function. Subsequently, overexpression of MgIRF9 resulted in a considerable increase in IFN and ISGs mRNA expression (ADAR1, ADAR1-Like, and ADAR2). Co-immunoprecipitation studies demonstrated that MgIRF9 and STAT2 can interact in vivo. According to the findings, M. grouper IRF9 may play a role in how IFN signaling induces ISG gene expression in grouper species.


Subject(s)
Bass , Interferon-Stimulated Gene Factor 3, gamma Subunit , Animals , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , Bass/genetics , Bass/immunology , Bass/metabolism , Nodaviridae , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Diseases/virology , Fish Diseases/immunology , Amino Acid Sequence , Poly I-C/pharmacology , Gene Expression Regulation/drug effects , Antiviral Agents/pharmacology , Promoter Regions, Genetic , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism
18.
J Biol Chem ; 300(5): 107249, 2024 May.
Article in English | MEDLINE | ID: mdl-38556084

ABSTRACT

Tripartite-motif protein-56 (TRIM56) positively regulates the induction of type I interferon response via the TLR3 pathway by enhancing IRF3 activation and depends on its C-terminal residues 621-750 for interacting with the adaptor TRIF. However, the precise underlying mechanism and detailed TRIM56 determinants remain unclear. Herein, we show ectopic expression of murine TRIM56 also enhances TLR3-dependent interferon-ß promoter activation, suggesting functional conservation. We found that endogenous TRIM56 and TRIF formed a complex early (0.5-2 h) after poly-I:C stimulation and that TRIM56 overexpression also promoted activation of NF-κB by poly-I:C but not that by TNF-α or IL-1ß, consistent with a specific effect on TRIF prior to the bifurcation of NF-κB and IRF3. Using transient transfection and Tet-regulated cell lines expressing various TRIM56 mutants, we demonstrated the Coiled-coil domain and a segment spanning residues ∼434-610, but not the B-box or residues 355-433, were required for TRIM56 augmentation of TLR3 signaling. Moreover, alanine substitution at each putative phosphorylation site, Ser471, Ser475, and Ser710, abrogated TRIM56 function. Concordantly, mutants bearing Ser471Ala, Ser475Ala, or Ser710Ala, or lacking the Coiled-coil domain, all lost the capacity to enhance poly-I:C-induced establishment of an antiviral state. Furthermore, the Ser710Ala mutation disrupted the TRIM56-TRIF association. Using phospho-specific antibodies, we detected biphasic phosphorylation of TRIM56 at Ser471 and Ser475 following TLR3 stimulation, with the early phase occurring at ∼0.5 to 1 h, prior to IRF3 phosphorylation. Together, these data reveal novel molecular details critical for the TRIM56 augmentation of TLR3-dependent antiviral response and highlight important roles for TRIM56 scaffolding and phosphorylation.


Subject(s)
Adaptor Proteins, Vesicular Transport , Immunity, Innate , Poly I-C , Toll-Like Receptor 3 , Tripartite Motif Proteins , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 3/genetics , Phosphorylation , Animals , Humans , Mice , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/immunology , Poly I-C/pharmacology , Protein Domains , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , HEK293 Cells , NF-kappa B/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
19.
Front Cell Infect Microbiol ; 14: 1308362, 2024.
Article in English | MEDLINE | ID: mdl-38476167

ABSTRACT

Infectious peritonitis is a leading cause of peritoneal functional impairment and a primary factor for therapy discontinuation in peritoneal dialysis (PD) patients. Although bacterial infections are a common cause of peritonitis episodes, emerging evidence suggests a role for viral pathogens. Toll-like receptors (TLRs) specifically recognize conserved pathogen-associated molecular patterns (PAMPs) from bacteria, viruses, and fungi, thereby orchestrating the ensuing inflammatory/immune responses. Among TLRs, TLR3 recognizes viral dsRNA and triggers antiviral response cascades upon activation. Epigenetic regulation, mediated by histone deacetylase (HDAC), has been demonstrated to control several cellular functions in response to various extracellular stimuli. Employing epigenetic target modulators, such as epidrugs, is a current therapeutic option in several cancers and holds promise in treating viral diseases. This study aims to elucidate the impact of TLR3 stimulation on the plasticity of human mesothelial cells (MCs) in PD patients and to investigate the effects of HDAC1-3 inhibition. Treatment of MCs from PD patients with the TLR3 agonist polyinosinic:polycytidylic acid (Poly(I:C)), led to the acquisition of a bona fide mesothelial-to-mesenchymal transition (MMT) characterized by the upregulation of mesenchymal genes and loss of epithelial-like features. Moreover, Poly(I:C) modulated the expression of several inflammatory cytokines and chemokines. A quantitative proteomic analysis of MCs treated with MS-275, an HDAC1-3 inhibitor, unveiled altered expression of several proteins, including inflammatory cytokines/chemokines and interferon-stimulated genes (ISGs). Treatment with MS-275 facilitated MMT reversal and inhibited the interferon signature, which was associated with reduced STAT1 phosphorylation. However, the modulation of inflammatory cytokine/chemokine production was not univocal, as IL-6 and CXCL8 were augmented while TNF-α and CXCL10 were decreased. Collectively, our findings underline the significance of viral infections in acquiring a mesenchymal-like phenotype by MCs and the potential consequences of virus-associated peritonitis episodes for PD patients. The observed promotion of MMT reversal and interferon response inhibition by an HDAC1-3 inhibitor, albeit without a general impact on inflammatory cytokine production, has translational implications deserving further analysis.


Subject(s)
Benzamides , Interferon Type I , Peritonitis , Pyridines , Virus Diseases , Humans , Interferon Type I/metabolism , Toll-Like Receptor 3/metabolism , Epigenesis, Genetic , Proteomics , Cytokines/metabolism , Chemokines/metabolism , Poly I-C/pharmacology , Toll-Like Receptors/metabolism , Virus Diseases/genetics , Phenotype , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism
20.
Brain Behav Immun ; 118: 437-448, 2024 May.
Article in English | MEDLINE | ID: mdl-38499210

ABSTRACT

Systemic activation of toll-like receptor 3 (TLR3) signaling using poly(I:C), a TLR3 agonist, drives ethanol consumption in several rodent models, while global knockout of Tlr3 reduces drinking in C57BL/6J male mice. To determine if brain TLR3 pathways are involved in drinking behavior, we used CRISPR/Cas9 genome editing to generate a Tlr3 floxed (Tlr3F/F) mouse line. After sequence confirmation and functional validation of Tlr3 brain transcripts, we injected Tlr3F/F male mice with an adeno-associated virus expressing Cre recombinase (AAV5-CMV-Cre-GFP) to knockdown Tlr3 in the medial prefrontal cortex, nucleus accumbens, or dorsal striatum (DS). Only Tlr3 knockdown in the DS decreased two-bottle choice, every-other-day (2BC-EOD) ethanol consumption. DS-specific deletion of Tlr3 also increased intoxication and prevented acute functional tolerance to ethanol. In contrast, poly(I:C)-induced activation of TLR3 signaling decreased intoxication in male C57BL/6J mice, consistent with its ability to increase 2BC-EOD ethanol consumption in these mice. We also found that TLR3 was highly colocalized with DS neurons. AAV5-Cre transfection occurred predominantly in neurons, but there was minimal transfection in astrocytes and microglia. Collectively, our previous and current studies show that activating or inhibiting TLR3 signaling produces opposite effects on acute responses to ethanol and on ethanol consumption. While previous studies, however, used global knockout or systemic TLR3 activation (which alter peripheral and brain innate immune responses), the current results provide new evidence that brain TLR3 signaling regulates ethanol drinking. We propose that activation of TLR3 signaling in DS neurons increases ethanol consumption and that a striatal TLR3 pathway is a potential target to reduce excessive drinking.


Subject(s)
Ethanol , Toll-Like Receptor 3 , Mice , Male , Animals , Toll-Like Receptor 3/metabolism , Mice, Inbred C57BL , Ethanol/pharmacology , Signal Transduction , Alcohol Drinking/metabolism , Poly I-C/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...